首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A field experiment was conducted for 10 years to examine the long‐term effects of non‐flooded mulching cultivation on rice yield and soil organic carbon on Chengdu Plain, south‐west China. Compared with traditional flooded cultivation (TF), non‐flooded plastic film mulching (PM) resulted in a 14% higher average rice (Oryza sativa L.) yield. However, non‐flooded straw mulching (SM) decreased the average rice yield by 11% compared with TF. After 10 years, PM led to similar or higher (SM) soil organic carbon (SOC) and total soil N (TN) in the top 5 cm of the soil profile compared with TF. No differences were found among the three cultivation systems in SOC or total N at 5–12 and 12–24 cm soil depths. Small macroaggregates (0.25–2 mm) were predominant in the top 5 cm of the soil (58–63% of whole soil) across the three cultivation systems. However, the proportion of large macroaggregates (>2 mm) from SM and PM was significantly larger than from TF in the top 5 cm of the soil. Non‐flooded mulching cultivation led to increased C and N contents in large macroaggregates and mean weight diameter of aggregates in the 0–5 cm soil depth. This suggests that non‐flooded mulching cultivation increased soil aggregation concomitant with soil C stabilization within the improved soil structure.  相似文献   

3.
Because Mediterranean ecosystems are prone to fire, their soils are expected to contain relevant amounts of black carbon (BC); nevertheless, quantitative information is scarce. Herein, we provide data on the abundance of BC in the surface soil (uppermost 5 cm) of shrubland plots on old agricultural fields diversely affected by fires (0, 1, or 2 wildfires in the last 25 y) and with contrasted land‐use histories (either never cropped, early abandoned, or recently abandoned). Black C and black nitrogen (BN) were quantified in the surface horizon (0–5 cm) as the residue of low‐temperature dichromate oxidation, after previous destruction of mineral matter with HF. The obtained amounts of BC ranged from 0.73 to 10.32 g (kg dw)–1 (mean: 3.07, which corresponds to an average of 8.62% of the total organic C), while the amounts of BN ranged from 21.5 to 373.0 mg (kg dw)–1 (mean: 97.1, or an average of 4.30% of the total N of the samples). Repeated fires did not consistently increase either the BC or the BN amounts. Black‐C and (especially) BN accumulation seems related to fine silt, whereas the effect of clay is unclear. Even though the amounts of BC obtained in this study are slightly higher than those from other ecosystems, including Mediterranean broad‐leaved forests, overall they are far from the very high values reported in the literature for chernozems from Germany or Canada. Thus, on the whole, in Mediterranean shrublands affected by wildfires, BC does not seem to be a dominant fraction in the soil organic C.  相似文献   

4.
Agricultural soils are considered to have great potential for carbon sequestration through land‐use change. In this paper, we compiled data from the literatures and studied the change in soil organic carbon (SOC) following the ‘Grain‐for‐Green’ Programme (GGP, i.e., conversion from farmland to plantation, secondary forests and grasslands) in China. The results showed that SOC stocks accumulated at an average rate of 36·67 g m−2 y−1 in the top 20 cm with large variation. The current SOC storage could be estimated using the initial SOC stock and year since land use transformation (Adjusted R2 = 0·805, p = 0·000). After land use change, SOC stocks decreased during the initial 4–5 years, followed by an increase after above ground vegetation restoration. Annual average precipitation and initial SOC stocks had a significant effect (p < 0·05) on the rate of change in SOC, while no significant effects were observed between plantation and natural regeneration (p > 0·05). The ongoing ‘Grain‐for‐Green’ project might make significant contribution to China's carbon sequestration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Research information from a systematic planned study on the effects of vehicular passages and axle load on soil carbon dioxide (CO2) fluxes and soil carbon (C) sequestration under long‐term NT farming is scanty. Therefore, the present study was conducted on an on‐going 20‐year experiment to assess the impacts of variable vehicular passages of a low axle load on soil CO2 emission and soil C sequestration from a no‐till (NT) managed corn (Zea mays L.)–soybean (Glycine max Linneo) rotation in comparison with that a soil under woodlots (soils under natural wooded plantation). The experimental treatment consisted of an empty wagon [0 Mg load for compaction (C‐0; control)] compared with 2 (C‐2) and 4 (C‐4) passages of 2.5 Mg water wagon axle load, applied to the entire plot every year during April/May for 20 consecutive years. Soil samples were obtained in November 2016 to determine the effects of various vehicular passages on C and nitrogen (N) contents and CO2 emissions. Soil CO2 fluxes were measured from November 16, 2016, to May 30, 2017, on the bi‐weekly (November to December and April to May) and monthly (January to March) basis by using high‐density polyvinyl chloride static gas chambers. The soil CO2 fluxes ranged from –1.05 to 9.03 g CO2 m?2 d?1. The lowest soil CO2 fluxes were observed in December coinciding with the minimum soil temperature. In general, daily soil CO2 fluxes were higher under C‐0 than those under other treatments. Vehicular traffic and axle load reduced the cumulative emission of CO2 by 22.6 and 29.8% under C‐2 and C‐4, respectively, compared with that under C‐0 (6.09 Mg ha?1). Soil and air temperatures had a significant positive correlation with the diurnal fluxes of soil CO2 in all the treatments except that under C‐4. Electrical conductivity, soil C and N contents and pools did not differ significantly among the treatments. Further, 2 to 4 passages of vehicles with 2.5 Mg of axle load decreased the soil CO2 emission on Crosby silt loam under NT as compared to that under the control. Therefore, continuous cultivation of row crops with moderate trafficking under NT and residue retention is recommended, and it also reduces the potential of soil CO2 emission while improving the soil organic C pools of well‐drained soils of Central Ohio.  相似文献   

6.
Soil organic matter (SOM) is considered an important indicator of soil quality, which can be impacted by crop production practices such as tillage. In this study, two long‐term tillage regimes (conventional tillage [CT] and no tillage [NT], conducted for 36 years) were compared in continuous sorghum production in a sub‐tropical environment in southeast Texas. The positive effects of long‐term NT practice were more conspicuous at the soil surface compared with the deeper soil profiles. The SOC was greater (1.5 t C ha?1 greater) in the NT system compared with the CT system. Results from an incubation study indicate that the rate of C‐min at 0–5 cm soil depth was significantly greater (164 μg of CO2–C g?1 of soil greater) in NT than that of CT, but this trend was reversed at 10–20 cm depth wherein the C‐min rates were 106 μg of CO2–C g?1 of soil greater in CT compared with NT, which is likely because of soil disturbance during the study. Soil cumulative CO2‐C emissions were greater in the CT system (7.28 g m?2) than in the NT system (5.19 g m?2), which is primarily attributed to high soil temperature conditions in the CT system. Sorghum grain yield however was not influenced by the differences in SOC content in this long‐term experiment. Overall, the present study found that long‐term conservation tillage improved SOC stock and reduced carbon loss, thus had a positive impact on soil health and sustainability.  相似文献   

7.
Potassium (K) deficiency reduces photosynthesis and biomass production of crop plants and also renders them vulnerable to drought stress, whereas elevated carbon dioxide (CO2) has a positive effect on photosynthesis and yield and ameliorates the adverse effects of drought stress. This study aimed to characterize the physiological responses of wheat (Triticum aestivum L.) stressed with K deficiency under elevated CO2 and drought conditions. Increased biomass production caused by elevated CO2 as a consequence of increased photosynthesis and water use efficiency was absent in young K‐deficient wheat plants. Shoot K concentration was negatively affected by elevated CO2 particularly under K‐deficient conditions, whereas K content per plant was greatest in plants supplied with adequate K and adequate water. Specific leaf weight was increased as a consequence of carbohydrate accumulation in the source leaves of K‐deficient plants particularly under elevated CO2 and drought stress. Potassium deficiency clearly impeded the impact of elevated CO2 in both well watered as well as drought‐stressed plants. Adequate K fertilization is a prerequisite for efficient harvesting of atmospheric CO2 through increased photosynthesis, decreased transpiration, and increased biomass production under changing atmospheric CO2 and soil moisture conditions.  相似文献   

8.
The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO2 from root respiration. Maize was labeled in 14CO2 atmosphere followed by subsequent simultaneous leaching and air flushing from soil. 14C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO2. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more 14C than from soil (0.6% vs. 0.4%) and more HPLC‐detectable carboxylates (4.36 vs. 2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil] vs. 1.03 μM [soil–sand]) and total carbohydrates (0.73 vs. 0.34 μM) and 14CO2 from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO2. Simultaneous application of three methods—14C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (14C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.  相似文献   

9.
Several genes in the aspen genome have been modified to generate stem wood with lower lignin content and an altered lignin composition. Lower lignin in wood reduces the time and energy required for pulping. Further, this modification can also increase the allocation of photosynthate to cellulose and total biomass production, potentially increasing CO2‐sequestration capacity. However, widespread planting of trees with altered lignin content and composition could alter soil organic‐C dynamics in complex ways. To further examine the effects of altered lignin biosynthesis on plant growth and accrual of soil organic C (SOC), we conducted a repeated greenhouse study with four lines of transgenic aspen (Populus tremuloides Michx.) and one wild‐type (control) aspen. Accrual of aspen‐derived SOC was quantified by growing aspen trees (C3 plants) in C4 soil and measuring changes in the natural abundance of δ13C. We measured plant growth, biomass, and C content and combined these data with SOC measurements to create C budgets for the plant mesocosms. Lignin modifications resulted in differences in the accrual of aspen‐derived SOC and total mesocosm C, primarily due to differences in biomass between genetically modified lines of aspen. One genetic alteration (low lignin, line 23) was able to perform similarly or better than the wild‐type aspen (control, line 271) without altering SOC. Alterations in lignin structure (S : G ratios) had negative effects on biomass production and SOC formation. The addition of new (aspen‐derived) SOC was proportional to the loss of existing SOC, evidence for a priming effect. The pool of new SOC was related to total plant biomass, suggesting that the effects of lignin modification on SOC are driven by changes in plant growth.  相似文献   

10.
The objective of this work was to evaluate the C and N stocks and organic‐C fractions in soil under mixed forest stands of Scots pine (Pinus sylvestris L.) and Sessile oak (Quercus petraea [Matt.] Liebl.) of different ages in NE Germany. Treatments consisted of pure pine (age 102 y), and pine (age 90–102 y) mixed with 10‐, 35‐, 106‐, and 124‐y‐old oak trees. After sampling O layers, soils in the mineral layer were taken at two different depths (0–10 and 10–20 cm). Oak admixture did not affect total organic‐C (TOC) and N stocks considering the different layers separately. However, when the sum of TOC stocks in the organic and mineral layers was considered, TOC stocks decreased with increasing in oak age (r2 = 0.58, p < 0.10). The microbial C (CMB) was not directly correlated with increase of oak age, however, it was positively related with presence of oak species. There was an increase in the percentage of the CMB‐to‐TOC ratio with increase of oak‐tree ages. On average, light‐fraction C (CLF) comprised 68% of the soil TOC in upper layer corresponding to the highest C pool in the upper layer. CLF and heavy‐fraction C (CHF) were not directly affected by the admixture of oak trees in both layers. The CHF accounted on average for 30% and 59% of the TOC at 0–10 and 10–20 cm depths, respectively. Despite low clay contents in the studied soils, the differences in the DCB‐extractable Fe and Al affected the concentrations of the CHF and TOC in the 10–20 cm layers (p < 0.05). Admixture of oak in pine stands contributed to reduce topsoil C stocks, probably due to higher soil organic matter turnover promoted by higher quality of oak litter.  相似文献   

11.
Restoration of degraded soils is a development strategy to reduce desertification, soil erosion and environmental degradation, and alleviate chronic food shortages with great potential in sub‐Saharan Africa (SSA). Further, it has the potential to provide terrestrial sinks of carbon (C) and reduce the rate of enrichment of atmospheric CO2. Soil organic carbon (SOC) contents decrease by 0 to 63 per cent following deforestation. There exists a high potential for increasing SOC through establishment of natural or improved fallow systems (agroforestry) with attainable rates of C sequestration in the range of 0·1 to 5·3 Mg C ha−1 yr−1. Biomass burning significantly reduces SOC in the upper few centimeters of soil, but has little impact below 10 to 20 cm depth. The timing of burning is also important, and periods with large amounts of biomass available generally have the largest losses of SOC. In cultivated areas, the addition of manure in combination with crop residues and no‐till show similar rates of attainable C sequestration (0 to 0·36 Mg C ha−1 yr−1). Attainable rates of SOC sequestration on permanent cropland in SSA under improved cultivation systems (e.g. no‐till) range from 0·2 to 1·5 Tg C yr−1, while attainable rates under fallow systems are 0·4 to 18·5 Tg C yr−1. Fallow systems generally have the highest potential for SOC sequestration in SSA with rates up to 28·5 Tg C yr−1. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
It is still open to question which method is the best for quantifying organic carbon (OC) and inorganic carbon (IC) in soils containing dolomite. The aims of this study were (1) to compare the accuracy of a novel thermal gradient (ThG), the classical calcimeter (CALC) and the loss‐on‐ignition (LOI) methods on a reference sample set with known proportions of OC present as soil organic matter (SOM) and IC present as dolomite and (2) to compare the results of the different methods on a set of soil samples with different dolomite and SOM contents. The CALC and LOI methods rely on separate quantification or removal of IC by acid or heat, whereas IC and OC can be quantified in a single run by the ThG analysis. The ThG method was the most accurate method for the reference sample set, especially when dolomite contents were high. On the soil sample set, the ThG and CALC methods performed equally well, but only when two outliers were eliminated. The LOI method was not satisfactory for either sample set. Overall, ThG was the most reliable method for measuring IC and OC in dolomite‐containing samples over a wide range of concentrations, but the more widely used CALC method was also acceptable.  相似文献   

13.
This paper demonstrates the potential of wavelet analysis to investigate fine‐scale spatial variation in soil without statistical assumptions that are generally implausible. We analysed the optical densities of different forms of carbon which were measured at intervals of 50 nm along a 16‐µm transect on a soil micro‐aggregate using near‐edge X‐ray fine‐structure spectroscopy (NEXAFS). We found different patterns of scale‐dependent variation between the carbon forms, which could be represented by pair‐wise wavelet correlations at the different scales, and by principal components analysis of all the correlations at each scale. These results represent only one small soil micro‐aggregate and are not presented as general findings about soil carbon, but they do indicate that fine‐scale variation of soil carbon can be complex in ways that the wavelet analysis can accommodate but alternative spatial statistics such as variograms cannot. Among the patterns of variation that the analysis could identify were scale‐dependent correlations of the different forms of carbon. In some cases, positive correlations were found at coarser scales and negative at the finest scales, suggesting a multi‐scale pattern in which contrasting forms of carbon are deposited in common clumps but at finer scales either one or the other form dominates. Aromatic and carboxylic carbon varied jointly in this way. Other forms of carbon, such as carboxylic and aliphatic carbon, were strongly correlated at the finest scales but not the coarser scales. We found evidence for changes in the variance and correlation of forms of carbon along the transect, indicating that the spatial distribution of carbon at these fine scales may be very complex in ways that are inconsistent with the assumptions of geostatistics. This quantitative analysis of the spatial patterns of different soil components at micro‐scales offers a basis for formulating and testing specific hypotheses on replicated samples.  相似文献   

14.
The presence of relatively inert organic materials such as char has to be considered in calibrations of soil C models or when calculating C‐turnover times in soils. Rapid and cheap spectroscopic techniques such as near‐infrared (NIRS) or mid‐infrared spectroscopy (MIRS) may be useful for the determination of the contents of char‐derived C in soils. To test the suitability of both spectroscopic techniques for this purpose, artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals) and forest‐floor Oa material were produced. The total C content of these mixtures (432 samples) ranged from 0.5% to 6% with a proportion of char‐derived C amounting to 0%, 20%, 40%, 50%, 60%, or 80%. All samples were scanned in the visible and near‐IR region (400–2500 nm). Cross‐validation equations for total C and N, C and N derived from char (Cchar, Nchar) and Oa material were developed using the whole spectrum (first and second derivative) and a modified partial least‐square regression method. Thirty‐six samples were additionally scanned in the middle‐IR and parts of the near‐IR region (7000–400 cm–1 which is 1430–25,000 nm) in the diffuse‐reflectance mode. All properties investigated were successfully predicted by NIRS as reflected by RSC values (ratio of standard deviation of the laboratory results to standard error of cross‐validation) > 4.3 and modeling efficiencies (EF) ≥ 0.98. Near‐infrared spectroscopy was also able to differentiate between the different coals. This was probably due to structural differences as suggested by wavelength assignment. Mid‐IR spectroscopy in the diffuse‐reflectance mode was also capable to successfully predict the parameters investigated. The EF values were > 0.9 for all constituents. Our results indicated that both spectroscopic techniques applied, NIRS and MIRS, are able to predict C and N derived from different sources in soil, if closed populations are considered.  相似文献   

15.
16.
17.
18.
Despite the importance of soil organic matter (SOM), very few long‐term data concerning soil organic‐C dynamics are available for calibrating and evaluating C models. The long‐term 14C‐turnover field experiment, established in 1967 in Fuchsenbigl, Lower Austria, offers the unique opportunity to follow the fate of labeled C under different crop‐management systems (bare fallow, spring wheat, crop rotation) over a period of more than 35 y. Compared with the crop‐rotation and spring‐wheat treatments, the decline of total organic C was largest in the bare‐fallow treatments, because no significant C input has occurred since 1967. Nonetheless, the decline was not as fast as predicted with the original RothC‐26.3‐model decomposition rate constants. In this work, we therefore calibrated the Roth‐C‐26.3 model for the Pannonian climatic region based on the field‐experiment results. The main adjustment was in the decomposition rate constant for the humified soil C pool (HUM), which was set to 0.009 instead of 0.02 y–1 as determined in the original Rothamsted field trial. This resulted in a higher HUM pool in the calibrated model because of a longer turnover period (111 vs. 50 y). The modeled output based on the calibrated model fitted better to measured values than output obtained with the original Roth‐C‐26.3‐model parameters. Additionally, the original decomposition rate constant for resistant plant material (RPM) was changed from 0.3 to 0.6 y–1 to describe the decomposition of 14C‐labeled straw more accurately. Application of the calibrated model (modified HUM decomposition rate) to simulate removal of crop residues showed that this can entail a long‐term decline of SOM. However, these impacts are strongly dependent on the crop types and on environmental conditions at a given location.  相似文献   

19.
The impact of land‐use intensity is evaluated through changes in the soil properties in different areas of the traditional central Spanish landscape. Soil organic carbon (SOC) content, bulk density, aggregate stability and water‐holding capacity (WHC) in the topsoil of active and abandoned vineyards, livestock routes (LR) and young Quercus afforested areas were analysed. These different types of land use can be interpreted as having a gradient of progressively less impact on soil functions or conservation. As soil use intensity declines, there is an increase in SOC content (from 0.2 to 0.6%), WHC (from 0.2 to 0.3 g H2O per g soil) and aggregate stability (from 4 to 33 drop impacts). Soils beneath vines have lost their upper horizon (15 cm depth) because of centuries‐old tillage management of vineyards. Except for an increase in bulk density (from 1.2 to 1.4 g/cm3), there were no differences in soil characteristics 4 yr after the abandonment of vine management. LR can be considered sustainable uses of land, which preserve or improve soil characteristics, as there were no significant differences between topsoil from LR and that from a 40‐yr‐old Quercus afforested area. SOC content, one of the main indicators for soil conservation, is considered very low in every case analysed, even in the more conservative uses of land. These data can be useful in understanding the slow rate of recovery of soils, even after long‐term cessation of agricultural land use.  相似文献   

20.
Peatlands are common in many parts of the world. Draining and other changes in the use of peatlands increase atmospheric CO2 concentration. If we are to make reliable quantitative predictions of that effect, we need good information on the CO2 emission rates from peatlands. The present study uses two different methods for predicting CO2‐C release of peatland soils: (i) a 40‐year field investigation of balancing organic carbon stocks and (ii) short‐term CO2‐C release rates from laboratory experiments. To estimate long‐term losses of peat, and its resulting C input to the atmosphere, we combined highly detailed maps of surface topography and its changes, and the organic C contents and bulk densities of a drained peatland from different years. Short‐term CO2‐C release rates were measured in the laboratory by incubating soil samples from several soil horizons at various temperatures and soil moistures. We then derived nonlinear CO2‐C production functions, which we incorporated into a numerical simulation model (HYDRUS). Using HYDRUS, we calculated daily soil water components and CO2‐release for (i) real‐climate data from 1950 to 2003 and (ii) a climate scenario extending to 2050, including an increase in temperature of 2°C and 20% less rainfall during the summer half year, i.e. from April to September inclusive. From our field measurements, we found a mean annual decrease of 0.7 cm in the thickness of the peat. Large losses (> 1.5 cm year?1) occurred only during periods when groundwater levels were low (i.e. a deep water‐table). The annual CO2‐C release results in a mean loss from the peat of about 700 g CO2‐C m?2, mostly as a direct contribution to the atmosphere. Both methods produced very similar results. The model scenarios demonstrated that CO2‐C loss is mainly controlled by the groundwater (i.e. water‐table) depth, which controls subsurface aeration. A local climate scenario estimated a c. 5% increase of CO2‐C losses within the next 50 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号