首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of an organically managed Cambic Arenosol to supply nitrogen (N) from either an applied commercial organic fertilizer (granulated hen manure), a compost produced on‐farm, or four different mixtures of both fertilizers was studied in a laboratory incubation and a pot experiment with lettuce. In the incubation experiment, a significant higher apparent N mineralization occurred after hen‐manure application (53.4% of the organic N applied) compared to compost (4.5%) or mixed‐fertilizer application (8.7% to 16.7%). The apparent N mineralization in a mixed treatment consisting of compost and half rate of hen manure (15.4% of the organic N applied) was significantly higher than that estimated based on the N mineralization for compost and hen‐manure treatments (7.6%), proving that a combined application of both fertilizers enhanced organic‐N mineralization when compared to separate fertilizer supply. In the pot experiment, a higher lettuce fresh‐matter yield was obtained with hen manure (1.9 kg m–2) than with compost (1.7 kg m–2) or unfertilized control treatment (1.3 kg m–2). Combined application of compost with only a half rate of hen manure led to yields (2.0 kg m–2) equal to those obtained with only hen manure. A good correlation was observed between the N‐mineralization incubation data and the N accumulated by lettuce plants in the pot experiment (r = 0.983). Hence, in the organic production of baby‐leaf lettuce, a mixture of compost and hen manure appears to be a good fertilization alternative, since it allows a reduction by half of the typical amount of commercial fertilizer usually applied (granulated hen manure), cutting fertilization costs, and providing an amount of available N that allows maintaining lettuce yields.  相似文献   

2.
This study aims to elucidate the significance of compost and soil characteristics for the biological activity of compost‐amended soils. Two agricultural soils (Ap horizon, loamy arable Orthic Luvisol and Ah horizon, sandy meadow Dystric Cambisol) and a humus‐free sandy mineral substrate were amended with two biowaste composts of different maturity in a controlled microcosm system for 18 months at 5 °C and 14 °C, respectively. Compost application increased the organic matter mineralization, the Cmic : Corg ratio, and the metabolic quotients significantly in all treatments. The total amount of Corg mineralized ranged from < 1 % (control plots) to 20 % (compost amended Dystric Cambisol). Incubation at 14 °C resulted in 2.7‐ to 4‐fold higher cumulative Corg mineralization compared to 5 °C. The Cmic : Corg ratios of the compost‐amended plots declined rapidly during the first 6 months and reached a similar range as the control plots at the end of the experiment. This effect may identify the compost‐derived microbial biomass as an easily degradable C source. Decreasing mineralization rates and metabolic quotients indicated a shift from a compost‐derived to a soil‐adapted microbial community. The Corg mineralization of the compost amended soils was mainly regulated by the compost maturity and the soil texture (higher activity in the sandy textured soils). The pattern of biological activity in the compost‐amended mineral substrate did not differ markedly from that of the compost‐amended agricultural soils, showing that the turnover of compost‐derived organic matter dominated the overall decay process in each soil. However, a priming effect occurring for the Dystric Cambisol indicated, that the effect of compost application may be soil specific.  相似文献   

3.
Soil test indicators are needed to predict the contribution of soil organic N to crop N requirements. Labile organic matter (OM) fractions containing C and N are readily metabolized by soil microorganisms, which leads to N mineralization and contributes to the soil N supply to crops. The objective of this study was to identify labile OM fractions that could be indicators of the soil N supply by evaluating the relationship between the soil N supply, the C and N concentrations, and C/N ratios of water extractable OM, hot‐water extractable OM, particulate OM, microbial biomass, and salt extractable OM. Labile OM fractions were measured before planting spring wheat (Triticum aestivum L.) in fertilized soils and the soil N supply was determined from the wheat N uptake and soil mineral N concentration after 6 weeks. Prior to the study, fertilized sandy loam and silty clay soils received three annual applications of 90 kg available N (ha · y)?1 from mineral fertilizer, liquid dairy cattle manure, liquid swine manure or solid poultry litter, and there was a zero‐N control. Water extractable organic N was the only labile OM fraction to be affected by fertilization in both soil types (P < 0.01). Across both test soils, the soil N supply was significantly correlated with the particulate OM N (r = 0.87, P < 0.001), the particulate OM C (r = 0.83, P < 0.001), and hot‐water extractable organic N (r = 0.81, P < 0.001). We conclude that pre‐planting concentrations of particulate OM and hot‐water extractable organic N could be early season indicators of the soil N supply in fertilized soils of the Saint Lawrence River Lowlands in Quebec, Canada. The suitability of these pre‐planting indicators to predict the soil N supply under field conditions and in fertilized soils from other regions remains to be determined.  相似文献   

4.
Soil properties may affect the decomposition of added organic materials and inorganic nitrogen (N) production in agricultural soils. Three soils, Potu (Pu), Sankengtzu (Sk) and Erhlin (Eh) soils, mixed with sewage sludge compost (SSC) at application rates of 0 (control), 25, 75 and 150 Mg ha−1 were selected from Taiwan for incubation for 112 days. The aim of the present study was to examine the effects of SSC application rates on the carbon decomposition rate, N transformation and pH changes in three soils with different initial soil pH values (4.8–7.7). The results indicated that the highest peaks of the CO2 evolution rate occurred after 3 days of incubation, for all treatments. The Pu soil (pH 4.8) had a relatively low rate of CO2 evolution, total amounts of CO2 evolution and percentage of added organic C loss, all of which resulted from inhibition of microbial activity under low pH. For the Pu and Sk soils, the concentration of NH4+-N reached its peak after 7–14 days of incubation, which indicated that ammonification might have occurred in the two soils with low initial pH values. NO3-N rapidly accumulated in the first 7 days of incubation in the Eh soil (pH 7.7). The direction and extent of the soil pH changes were influenced by the N in the SSC and the initial soil pH. Ammonification of organic N in the SSC caused the soil pH to increase, whereas nitrification of mineralized N caused the soil pH to decline. Consequently, the initial soil pH greatly affected the rate of carbon decomposition, ammonification and nitrification of SSC.  相似文献   

5.
不同种类有机肥碳、 氮矿化特性研究   总被引:12,自引:2,他引:12  
本文采用室内培养法研究了陕西关中地区日光温室栽培生产中9个不同有机肥的碳、氮矿化特性。结果表明:不同有机肥碳、氮的矿化量和矿化率(矿化量占总有机碳或氮的比例)的动态变化存在明显差异,其中碳矿化率在22.24%~87.16%之间,变异系数达90.30 %;氮矿化率在29.07%~84.87%之间,变异系数达67.37 %;不同类型有机肥相比,鸡粪平均的碳、氮矿化累积量及矿化率显著高于猪粪和牛粪;猪粪与牛粪平均的碳、氮矿化累积量及矿化率无显著差异。同一种类有机肥,培养期间其碳、氮矿化累积量及矿化率也存在明显差异。供试有机肥碳、氮的矿化量与有机肥全氮含量均呈线性关系,表明有机肥氮含量是影响矿化量的主导因子。  相似文献   

6.
Recycled phosphorus (P) fertilizers from sewage sludge can contribute to the ongoing effort of closing the P cycle. Five recycled P fertilizers (Struvite SSL, Struvite AirPrex®, P‐RoC®, Pyrolysis coal, and Na‐SSA) were tested for their P availability in a two‐year field experiment with maize. The experiment was conducted on an organic certified research station at soil pH 6.5. Other P fertilizer treatments included: phosphate rock (PR), compost, and an unfertilized control. In addition, the rhizobacteria strain Bacillus sp. Proradix (Proradix®) was applied to test its ability to increase P bioavailability. Each year, shoot DM and P offtake of maize was measured and P use efficiency of the tested fertilizers was calculated. No significant differences in shoot DM were found among fertilized treatments and the unfertilized control in both years of experiment. Fertilization with recycled fertilizers increased P offtake by between 0% (Na‐SSA) and 27.5% (Struvite SSL) compared to the unfertilized control. Rhizobacteria application led to an increase in P offtake of maize from 25.9 to 38.7 kg P ha?1 when combined with PR fertilization in the year of fertilizer application, while no significant effect was found for the recycled fertilizers. Some of the tested recycled fertilizers from urban waste water can be considered as effective fertilizers for their use in organic agriculture.  相似文献   

7.
绿肥压青还田是调控现代集约化稻田土壤逆境的重要手段,为评估绿肥压青下粉垄耕作对稻田土壤微生物量碳和土壤有机碳累积矿化量的影响,设置早稻粉垄耕作与常规耕作2种耕作模式,不施肥和同等肥力条件下施化肥、单倍绿肥配施化肥和双倍绿肥配施化肥4种施肥处理,晚稻免耕常规施用化肥,开展双季稻周年大田应用试验。结果表明:单倍绿肥压青下,粉垄耕作能提高稻田土壤微生物量碳含量,可达常规耕作的2倍,能有效增加微生物对土壤碳素的利用率。增加绿肥压青量会提高粉垄耕作稻田土壤有机碳累积矿化量和矿化潜力,与施用化肥相比,单倍绿肥压青下早晚稻分别增加1.6%~32.8%和0.6%~16.6%,双倍绿肥压青下分别增加58.6%~70.9%和29.6%~38.4%。粉垄单倍绿肥压青会降低免耕晚稻齐穗期、收获期土壤呼吸强度,较常规耕作分别降低33.4%和38.7%,较粉垄耕作其他处理降低8.5%~31.4%。单倍绿肥压青下粉垄稻田土壤代谢商较常规耕作累积降低65.5%,与常耕相比,粉垄双倍绿肥压青和粉垄单一化肥的土壤代谢商分别累积增加20.3%和159.2%,粉垄双倍绿肥压青可有效缓解土壤代谢商的提升。微生物量碳含量与有机碳矿化激发效应呈负相关,绿肥压青还田下相关系数达0.44;累积矿化量和代谢商呈极显著正相关,粉垄耕作下相关系数达0.59。可见,绿肥粉垄耦合的模式可作为一种增加稻田土壤微生物量碳含量、减少部分生育时期土壤呼吸强度,增强土壤碳库稳定性及碳固持的重要调控技术措施。  相似文献   

8.
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha?1 (control), 100 kg N fertilizer + 15 Mg manure ha?1 and 200 kg N fertilizer + 30 Mg manure ha?1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.  相似文献   

9.
10.
A sandy soil, Nampong soil(classified as Ustoxic Quartzipsamment), was incubated under controlled condition i) to compare the mineralization of major plant nutrients derived from different types of biochars and other organic soil amendments; ii) to examine their effects on soil properties and plant nutrient availability; and iii) to evaluate the plant nutrient losses in leachate from the rooting zone of soil incorporated with the different amendments. The experiment was arranged in a completely randomized design with 3 replications.Five treatments of soil amendments used were cassava stem base biochar(CSB), rice husk biochar(RHB), chicken manure(CM),compost(CP), and no amendment application(control). The RHB treatment released the highest amounts of mineralized NO-3-N,available P and K(2.30–17.26, 5.50–42.90 and 43.00–187.63 mg kg-1, respectively) while the CM treatment releasing the highest NH+4-N in the range of 1.86–53.67 mg kg-1. The CSB and RHB treatments showed better continuity of mineralization of nutrients than the treatments of CM and CP, particularly in the case of the CSB treatment. In the soil column incubation experiment, the amounts of NH+4-N and NO-3-N in all treatments barely changed on Day 1 to Day 30 of incubation and then the amounts increased markedly on Day 60. On Day 60, the RHB treatment contained a very high amount of NO-3-N( 250 mg kg-1). This suggests that N would become more available 30 d after the incorporation. The CM treatment gave the highest amounts of organic matter and available P in the ranges of 4.64–8.94 g kg-1and 14.41–36.33 mg kg-1, respectively, during the 60-d column incubation. The CSB treatment tended to have higher available K throughout the measuring period. The NO-3-N was leached from the soil column quite quickly on Day 1 of incubation while the loss of NH+4-N decreased slightly from Day 1 until the end of the measurement. The amounts of P and K losses varied with the type of soil amendments, and the pattern of the loss was irregular.  相似文献   

11.
12.
Abstract

Expansion of grain maize to marginally suitable cool climate regions requires a better understanding of the nitrogen (N) economy of the crop. This study was aimed at yield formation in response to different type of fertilizers. Field experiments with short-season maize variety were conducted in Akademija, Lithuania, in 2015 and 2016. In spring, before sowing, ammonium nitrate, pelletized cattle and poultry manures, green waste compost were incorporated at a rate equivalent to 170?kg N ha?1. Crop N status, based on SPAD measurements, started to differ significantly at the end of the vegetative period with higher values in treatments applied with ammonium nitrate and lower with organic fertilizers. Under favorable conditions maize produced more grain per cob and higher yield. Agronomic N use efficiency (AEN) of pelletized organic fertilizers in the unfavorable season (AEN 2015: 0.1–4.9) was poor and significantly lower than in the favorable season of (AEN 2016: 4.9–11.2).  相似文献   

13.
An excess of available nitrogen (N) in vineyard soil is considered detrimental for vine growth, making a thorough assessment of N mineralization dynamics in vineyard soils before the addition of winery waste necessary. This study assesses the changes in N mineralization in acid vineyard soils amended with bentonite winery waste (BW). Non-amended soil (control), BW and soil-waste mixtures (SBWM) with a low (+L) or high (+H) dose of BW were incubated for six weeks. After 7, 14, 21 and 42 days of incubation, the control soils, BW and SBWM were analysed for net ammonified N, net nitrified N and net mineralized N. Parameters related to the kinetics of N mineralization were also determined. The addition of BW increased the potentially mineralizable N (N0) in the amended soils (58–144% for the highest BW dose), although the mineralization rate was governed by the soil characteristics. Mineralizable N was only a small fraction (<4%) of the total organic nitrogen added to the soil through the BW addition, mainly due to the dominance of the nitrification process in the BW amended soils. These experimental results suggest that the addition of BW may be a suitable amendment for nitrogen fertilization in acid vineyard soil.  相似文献   

14.
为揭示不同作物秸秆与污泥堆肥产物对土壤氮素矿化特征的影响,为科学施用城市污泥堆肥提供参考依据,通过室内培养试验研究了城市污泥与4种秸秆(小麦、水稻、玉米和油菜)高温好氧堆肥产物施入酸性紫色土、黄壤、石灰性紫色土后土壤氮矿化的差异。结果表明,4秸秆污泥堆肥均可显著提高3种土壤氮的潜在矿化势(N0)和矿化速度(k),促进土壤氮的矿化,提高土壤NH4+-N、NO3--N质量分数,其中石灰性紫色土以油菜秸秆污泥堆肥和小麦秸秆污泥堆肥处理、黄壤以油菜秸秆污泥堆肥处理、酸性紫色土以小麦秸秆污泥堆肥处理提高幅度最大。作物秸秆与污泥堆肥施入土壤后,黄壤、酸性紫色土在培养60 d和30 d后趋于稳定,石灰性紫色土在培养60 d后仍有增高的趋势,但不同秸秆污泥堆肥对土壤氮矿化速度的影响无明显规律。结果说明秸秆污泥堆肥对土壤氮矿化的效应因土壤及秸秆类型的不同而异,根据研究结果提出了4种作物秸秆与城市污泥堆肥施用的建议。  相似文献   

15.
16.
施用石灰改良酸性土壤是常用的农艺措施之一。施用石灰影响土壤理化性质,进而影响土壤有机碳(Soil Organic Carbon,SOC)矿化。而SOC矿化与土壤肥力保持和有机碳库的大小存在紧密联系。因此,明晰施用石灰对酸性土壤有机碳矿化的影响具有重要的理论和现实意义。该研究以2种母质的酸性水稻土为对象,在50%、90%和130%土壤最大田间持水量(Water Holding Capacity,WHC)条件下添加和不添加白云石,再进行为期45 d的室内培养试验,探讨白云石和水分对SOC矿化的影响。研究结果表明,添加白云石显著影响2种土壤有机碳矿化速率,但白云石添加和水分的交互作用不显著。土壤含水量较低时(50% WHC),2种土壤有机碳矿化均受到抑制。在较高土壤含水量情况下(90%~130% WHC),白云石添加和水分的共同作用对SOC矿化的影响因土壤质地不同而异,淹水条件下(130% WHC)棕红壤有机碳矿化量高于湿润条件(90% WHC),而红壤中的情况正好相反。白云石添加和水分均显著影响SOC累计矿化量,但二者交互作用仅在棕红壤中显著。添加白云石后,2种土壤pH值随着水分含量的增加而提高;土壤含水量较低时(50% WHC),土壤pH值即可达到或接近目标值(pH值6.5)。这些结果表明,在评估施用白云石对SOC矿化的影响时,需要考虑土壤含水量和土壤本身的性质,以便为农业生产实践中合理施用白云石提供指导和建议。  相似文献   

17.
The need to meet rapidly increasing demands for synthetic nitrogen (N) while reducing dependence on fossil fuels has been driving widespread attention to the recuperation and reuse of nutrients present in digestate and animal manure. The N release and mineralization potential of animal manure (AM), digestate (DIG), liquid fraction of digestate (LFDIG) and mineral concentrate (MC) were assessed in comparison with N availability from calcium ammonium nitrate (CAN) as a reference. The release was highly dependent on the product ‐N/Ntotal ratio, while mineralization occurred only for products containing more than 5% of organic N. The magnitude of the released N, on average after 120 days of an incubation experiment, was in the order: CAN > MC > LFDIG > DIG ≥ AM. These results indicate that only the N release from MC exhibited patterns similar to CAN, suggesting that this product will provide plant available N in a similar fashion as synthetic fertilizers. The N release from LFDIG was higher than AM, but did not closely follow the pattern of CAN. The N availability in LFDIG may be increased using substrates richer in N, such as animal manure or waste food and not only plant residues.  相似文献   

18.
Nutrient recycling should be effective at balancing nutrient flows in Japanese animal production. This means replacing imported feed with self-produced feed. The Yakumo Experimental Farm of Kitasato University has produced commercial beef under ‘organic’ management, without the use of agricultural chemicals or imported feed, since 2005. Using a data set obtained from 220 ha of grassland and 250 head of cattle over the 5 years from 2008 to 2012, we estimated nitrogen (N) flow. During 2011 and 2012, we measured grass production, cattle production (selling out), soil parameters and atmospheric deposition (from precipitation and atmospheric ammonia concentrations). To determine N fixation by clover (white clover, Trifolium repens L.), we compared grass + clover plots with grass-only plots. Averaged over the period, N components on the 220 ha of grassland comprised 1952 Mg soil N stock, 3.2 Mg N yr?1 in living livestock, 14.3 Mg N yr?1 uptake by grass growth (including 8.6 Mg yr?1 of N fixed by clover), 15.7 Mg N yr?1 applied in composted manure, 1.7 Mg N yr?1 in imported bedding material, 2.8 Mg N yr?1 in deposition and 1.41 Mg N yr?1 in meat production. N in composted manure equaled about 0.8% of the huge soil N stock; N in grass production equaled about 0.7%, of which clover fixation supplied 60%; N deposition was not negligible; and N export by meat production was minor. These results show that on this organically managed farm, soil N stock increased gradually (by 8.6 Mg N yr?1 [220 ha]?1 = 39 kg N ha?1 yr?1 = 0.02% of the soil N stock) and N export was small. Our findings show that it is possible to balance N inputs with N outputs in a beef cattle enterprise without the need for feed or fertilizer imports.  相似文献   

19.
以甘南尕海4种不同退化程度的湿地(未退化(UD)、轻度退化(LD)、中度退化(MD)及重度退化(HD))为研究对象,采用室内5 ℃、15 ℃、25 ℃、35 ℃ 培养法,测定不同土层 SOC 矿化速率和累积矿化量,运用一级动力学方程对土壤的半矿化分解时间(T1/2)、有机碳矿化潜势(C0)等参数进行拟合,分析温度、土壤深度和退化程度对土壤碳矿化过程的影响。结果表明:(1)在不同土层、不同温度下,各植被退化程度湿地土壤有机碳 CO2 释放量在整个培养期间大致可以分三个阶段,0-4 d快速生成 CO2 阶段,4-27 d缓慢生成 CO2 阶段,27-41 d平稳阶段;0-10 cm 土层各培养温度下,土壤有机碳矿化速率表现为UD>LD>MD>HD。(2)培养期间,不同退化湿地土壤有机碳矿化速率均随土层加深而降低,表层 0-10 cm的矿化速率(1.14~16.23 mg/(g?d))均显著高于10-20 cm(1.05~2.85 mg/(g?d))和20-40 cm(0.94~1.26 mg/(g?d))土层。(3)整个培养期内,不同退化湿地土壤有机碳总累积矿化量排序为5 ℃(34.54 mg/g)、15 ℃(46.67 mg/g)、25 ℃(58.28 mg/g)和35 ℃(86.46 mg/g)。(4)双库一级动力学方程的C0值随退化程度增加呈递减趋势,而C0/SOC随着温度的升高而降低。  相似文献   

20.
A model for nitrogen (N) dynamics in compost‐amended vineyard soils was tested for its predictive power. A soil–mineral N data set from a 3‐year field study on four different vineyard sites was used for model evaluation. The soils were treated with mature bio‐waste compost (30 and 50 Mg ha–1 fresh matter, respectively). The model calculated soil mineral‐N contents at all sites with an overall mean bias error of –2.2 kg N ha–1 for layers of 0.1 m thickness and an overall mean absolute error of 7.4 kg N ha–1 layer–1. Modeling efficiencies for the simulations of the respective treatments ranged from –0.05 to 0.41, and Willmott's Index of Agreement showed values of between 0.41 and 0.81. Acceptable model predictions as defined by the observed variability of mineral‐N contents in the respective soils ranged from 40% to 72%. A strong increase in soil mineral‐N concentration following the compost application at all sites could not be reproduced with the model, thereby reducing the prediction accuracy significantly. The model performance confirms that previously derived N‐mineralization parameters are suitable to describe the N release from soil‐applied mature bio‐waste compost under the environmental conditions of vineyards in Germany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号