首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
As the various components of the cadmium (Cd) root sink have not been clearly described, there is a need to precisely measure the respective contributions of apoplast and symplast to short‐term root Cd uptake and to explain the linear component of the absorption isotherms. A new method of fractionating Cd in roots was applied to two plant species with contrasting abilities to accumulate Cd: maize (Zea mays) and a Cd‐hyperaccumulating ecotype of alpine pennycress (Noccaea caerulescens). Their roots were exposed for 1 h to increasing concentrations of labeled Cd. Series of desorption baths were used to obtain the root apoplastic Cd in combination with a brief freezing step in liquid nitrogen to separate the intracellular metal from the apoplastic one. The apoplastic uptake accounted for 15% to 82% and for 48% to 96% of the total Cd uptake of maize and of alpine pennycress roots, respectively. In the case of maize, the concentration‐dependent symplastic net flux fitted a biphasic Michaelis‐Menten function, while in the case of alpine pennycress, a Michaelis‐Menten‐plus‐linear function proved a better fit. The second component of the symplastic net flux may reflect absorption through a low‐affinity transport system. Short‐term Cd uptake by roots is dominated by the high‐affinity transport system for exposure concentrations below 1 μM for maize and 0.2 μM for alpine pennycress, while cell‐wall binding prevailed for higher exposure concentrations.  相似文献   

2.
Phosphorus (P) fluxes from forest soils are not well understood. For temperate zone forests, there is some evidence from watershed studies that P export occurs mainly in preferential flow pathways during storm events after dry periods. Therefore, we tested the practical applicability of a sampling approach, which should allow for quantifying P concentrations and fluxes. We used zero‐tension lysimeters, which were installed beneath the topsoil and in the subsoil at plots in the Tharandt Forest (Saxony, East Germany). Two storm events after dry periods were simulated by means of experimental sprinkler irrigation. Preferential flow water collected with the zero‐tension lysimeters was analyzed for total P (TP), particulate P (PP), dissolved organic P (DOP) and dissolved inorganic P (DIP), and the respective P fluxes were calculated. The results indicate that the experimental approach is applicable to estimate fluxes of different P fractions in preferential flow. Measured data point toward a distinct flushing of P in the first hours of heavy rainfall events with PP fraction playing a dominant role. In general, P concentrations decreased quickly during the first 2 h of irrigation and then remained constant. Initial concentrations and cumulative fluxes were highest in the subsoil samplers. For a better understanding of underlying processes, further research with a special focus on the PP fraction is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号