首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrogen (N) is taken up by most plant species in the form of nitrate (NO ) or ammonium (NH ). The plant response to continuous ammonium nutrition is species‐dependent. In this study, the effects of the source of N nutrition (NO , NH , or the mixture of NO and NH ) on the response of clover (Trifolium subterraneum L. cv. 45C) plants to prolonged root hypoxia was studied. Under aerobic conditions, plant growth was strongly depressed by NH , compared to NO or mixed N nutrition, as indicated by the significant decrease in root and shoot‐dry‐matter production (DW), root and shoot water contents (WC), leaf chlorophyll concentration, and chlorophyll fluorescence parameters (F0, Fv/Fm). However, the N source had no effect on chlorophyll a–to–chlorophyll b ratio. Under hypoxic conditions, the negative effects of root hypoxia on plant‐growth parameters (DW and WC), leaf chlorophyll concentration, and chlorophyll fluorescence parameters were alleviated by NH rather than NO supply. Concomitantly, shoot DW–to–root DW ratio, and root and leaf NH concentrations were significantly decreased, whereas root and leaf carbohydrate concentrations, glutamine synthetase activities, and protein concentrations were remarkably increased. The present data reveal that the N source (NO or NH ) is a major factor affecting clover responses to hypoxic stress, with plants being more tolerant when NH is the N form used. The different sensitivity is discussed in terms of a competition for energy between nitrogen assimilation and plant growth.  相似文献   

2.
Ammonium (NH ) nutrition causes retardation of growth in many plant species. In Arabidopsis grown with NH as the sole N source, growth retardation occurs already at early stages before photosynthesis has come to its full power. In order to describe the peculiarities of these retarded plants, they were compared with nitrate (NO )‐grown plants of the same age of 15 d. Photosynthetic activity as measured by CO2 uptake per unit chlorophyll is half as high in NH ‐grown seedlings as in NO ‐grown ones. This finding is confirmed by the analysis of chlorophyll fluorescence. Chloroplasts of NO ‐grown, but not of NH ‐grown, seedlings show starch deposits after 5 h of illumination with 40 μmol m–2 s–1. Gene‐expression analysis based on cDNA microarray and on Northern blots provide a clue about the biochemical background. After the first 2 weeks of growth, it seems that NO ‐grown seedlings subsist mainly on normal photosynthesis, whereas NH ‐grown seedlings still use lipids from the seeds stored in oleosomes. Corresponding to this observation, the mRNAs for enzymes of β‐oxidation are more strongly expressed in NH ‐grown seedlings. Different carbohydrate sources for sucrose synthesis are indicated by different gene expression. Higher gene expression of fructose bisphosphate aldolase (cytosolic isoform) in NO ‐grown seedlings indicates the dependence on photosynthesis, whereas a higher gene expression of PEP carboxykinase in NH ‐grown seedlings points to a prominent role of β‐oxidation of storage lipids still present.  相似文献   

3.
Nitrogen (N) is taken up by most plant species in the form of nitrate (NO ) or ammonium (NH ). Plant response to continuous NH nutrition is species‐dependent. In this study, we compare the responses of tomato (Solanum lycopersicum L. cv. Rio Grande) plants to N source (NO or NH ). To this end, early plant growth, photosynthesis, chlorophyll, carbohydrate, and N‐compound concentrations as well as the activities of main enzymes involved in N metabolism (nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate dehydrogenase) were analyzed. Early plant growth was remarkably ameliorated under NH ‐ in comparison to NO ‐based nutrition. Concomitantly, photosynthetic activity, total chlorophyll, and carbohydrate concentrations were significantly increased. With increasing external NH concentration, NH accumulated mainly in roots. In addition, root protein concentration was significantly increased, reflecting high NH incorporation into organic nitrogen. Root glutamine synthetase (GS) activity was enhanced by NH for concentrations below 5 mM, whereas root glutamate dehydrogenase (GDH) activity increased in parallel to NH availability. Together with the positive effect of NH on tomato plant cv. Rio Grande growth, these results reveal that GDH could have, in addition to GS, a possible role in NH detoxification and tolerance of NH ‐based nutrition.  相似文献   

4.
Nitrate (NO$ _3^ - $ ) and ammonium (NH$ _4^+ $ ) are the predominant forms of nitrogen (N) available to plants in agricultural soils. Nitrate concentrations are generally ten times higher than those of NH$ _4^+ $ and this ratio is consistent across a wide range of soil types. The possible contribution of these small concentrations of NH$ _4^+ $ to the overall N budget of crop plants is often overlooked. In this study the importance of this for the growth and nitrogen budget of maize (Zea mays L.) was investigated, using agriculturally relevant concentrations of NH$ _4^+ $ . Maize inbred line B73 was grown hydroponically for 30 d at low (0.5 mM) and sufficient (2.5 mM) levels of NO$ _3^ - $ . Ammonium was added at 0.05 mM and 0.25 mM to both levels of NO$ _3^ - $ . At low NO$ _3^ - $ levels, addition of NH$ _4^+ $ was found to improve the growth of maize plants. This increased plant growth was accompanied by an increase in total N uptake, as well as total phosphorus, sulphur and other micronutrients in the shoot. Ammonium influx was higher than NO$ _3^ - $ influx for all the plants and decreased as the total N in the nutrient medium increased. This study shows that agriculturally relevant proportions of NH$ _4^+ $ supplied in addition to NO$ _3^ - $ can increase growth of maize.  相似文献   

5.
In recent years, interest has grown in cultivating Allium species with enhanced health benefits and/or distinct flavor. Concentrations of phytochemicals determining these desired characteristics may be influenced by nitrogen forms (ammonium or nitrate) and arbuscular mycorrhizal (AM) fungi. We examined these relations with the test plant bunching onion (Allium fistulosum L.). Three different ammonium‐to‐nitrate (NH : NO ) ratios were supplied in combination with or without inoculation with an AM fungus (Glomus mosseae). The plants were evaluated for dry weight, leaf number, and content of nutrients (N, NO , P, S), sugars (glucose, fructose, and sucrose), and organosulfur compounds (measured as pyruvic acid). The experiment was carried out under controlled conditions in a greenhouse. Plants were grown on perlite amended twice a day with nutrient solution. In nonmycorrhizal plants, the application of nutrient solution with predominant NO or NH4NO3 as N source supported adequate growth of Allium fistulosum while predominant NH supply resulted in decreased growth and occurrence of wilting symptoms. Mycorrhizal inoculation significantly increased dry weight and leaf number of predominantly NH ‐fed or NH4NO3‐fed plants. While shoot P concentration increased with higher NH supply, shoot N concentration increased in predominantly NH ‐fed plants only. Nitrogen form and AM colonization had little effect on shoot S or sugar concentrations. The total content in organosulfur compounds was significantly affected by both, N form and AM colonization. The optimal growth condition for a high formation of organosulfur compounds in this experiment was a nutrient solution with predominant NO supply, but when supported by AM fungi, Allium fistulosum produced similar amounts of pyruvic acid in NH4NO3‐fed plants.  相似文献   

6.
Species‐specific uptake and allocation mechanisms for N are scarce, in particular when trees are cultivated in potted soil under more natural conditions than in hydroponic culture. The objective of this study was to compare specific N‐uptake rates for economically and ecologically important tree species in Central European forests: pine (Pinus sylvestris), spruce (Picea abies), oak (Quercus petraea), beech (Fagus sylvatica), lime (Tilia cordata), and ash (Fraxinus excelsior) when they grow in mineral soil from an old fallow site with a pH of 6. We used an 15N‐labeling method to measure tree seedling 15N uptake in potted soils (Humic Cambisol) when both N forms NH$ _4^+ $ and NO$ _3^- $ were simultaneously present in the soil solution for interspecies comparison and assessment of relationships between specific 15N‐uptake rates and amino acid–accumulation rates or relative growth rates (RGR). The results demonstrate that tree species varied significantly in their capacity to take up NH$ _4^+ $ or NO$ _3^- $ into roots, stems, or leaves, but indicate only marginal differences in their preference for NH$ _4^+ $ or NO$ _3^- $ when they grow in mineral soil. The ranking of specific 15N‐uptake rates for NH$ _4^+ $ and NO$ _3^- $ was oak < beech < spruce < pine < lime < ash. Fine roots of all species had the highest specific 15N‐uptake rates for both N forms, followed by total roots, leaves/needles, and stems. As regards tree seedling species, we found negative relationships between glutamine (Gln)‐accumulation rates in leaves/needles and total 15N‐uptake rates in fine roots. Noteworthy was the fact that, at high Gln‐accumulation rates, the N‐uptake system in fine roots of ash was probably lower under feedback inhibition by the amino acid.  相似文献   

7.
Recently nitric oxide (NO) has emerged as a key signal molecule in plants. However, little is known about the role of NO in the salt tolerance of halophytes. Effects of the NO donors sodium nitroprusside (SNP) and nitrate (NO ) on growth and ion accumulation in the euhalophyte Suaeda salsa under salinity were investigated in the present study. The results showed that higher SNP supply increased seedling emergence, but SNP had no effect on shoot growth and the concentrations of Na+, K+, Cl, and NO . Higher NO had no effect on seedling emergence of the species. Shoot Cl decreased, but NO3increased markedly, with a higher NO supply. The decrease in the estimated contribution of Cl to the osmotic potential was compensated for by an increase in that of NO . It appears that NO plays an important osmotic role in S. salsa under high salinity with a higher NO supply, and this trait may increase salt tolerance of the species under high salinity.  相似文献   

8.
Changes of EUF‐extractable nitrogen (N) (nitrate, ammonium, organic N) in 20 arable bare soils, subsequently planted with ryegrass (Lolium multiflorum L.) and cutting three times were investigated in pot experiments. All 20 soils responded qualitatively in the same way. During the period of bare soil, there was a significant increase of EUF‐extractable nitrate (EUF NO ), while extractable ammonium (EUF NH ) remained on the same level and organic N (EUF Norg) decreased. This decrease, however, was not significant. From sowing until the first cutting of the grass, EUF‐NO concentration decreased to almost zero. This low EUF‐NO level was maintained throughout the subsequent experimental period (three cuttings of grass). During the growth of the first cutting, EUF Norg decreased while EUF NH remained constant, however, on a low level. EUF NH fell during the growth of the second and third cutting. In this period, however, the N supply of the grass was insufficient. EUF Norg decreased during the growth of the second cutting, but increased during the growth of the third cutting. This shows that the EUF‐Norg fraction represents a transient pool, which gains and loses N. EUF NO , EUF NH , and EUF Norg correlated with the N uptake of the grass. Strongest correlation for EUF NO was found for the first cutting (p < 0.001), and for EUF NH and EUF Norg for the second and third cutting (p < 0.001). Total soil N was not correlated with the N uptake of the grass. EUF Norg was only about 2% of the total N. This relatively small EUF‐Norg fraction, however, is relevant for the mineralization of organic soil N, and the N quantity indicated by EUF Norg is in the range of the N amount mineralized in arable soils within a growing season.  相似文献   

9.
Recent studies suggest an important role of thermophilic bacterial communities of the Phylum Firmicutes on soil C, N and S cycling, and a positive effect on crop productivity through the production of sulfate (SO $ _4^{2 - } $ ) and ammonium (NH $ _4^+ $ ), essential plant nutrients. Copper (Cu) is commonly supplemented to soils as a fungicide in phytosanitary treatments although its consequences to the bacterial communities is frequently overlooked. Herein, we report on the influence of temperature and Cu on the microbial communities, namely those of the Phylum Firmicutes, from a soil collected at an olive orchard in S Portugal. Community fingerprints and band identification through sequencing was combined with measurement of SO $ _4^{2 - } $ and NH $ _4^+ $ production at different supplemented amounts of Cu and at moderate and high temperatures (30°C and 50°C, respectively). Both temperature and Cu induced changes in these communities, selecting for specific bacteria. Temperature induced the dominance of Brevibacillus, and Cu addition to soil caused a reduction of SO $ _4^{2 - } $ release by soil bacteria. Ammonium production during bacterial growth at moderate and high temperatures was not affected by Cu addition. A Cu‐tolerant thermophilic isolate, belonging to the Bacillus genus, showed significant inhibition by high Cu concentrations and a reduction of NH $ _4^+ $ release during growth; genera Brevibacillus and Bacillus have been previously reported as high NH $ _4^+ $ and SO $ _4^{2 - } $ producers of the Firmicutes phylum. Results indicate that Cu treatments select specific tolerant bacterial strains which could influence natural soil fertilization in Cu‐treated orchards.  相似文献   

10.
Both earthworms and plant growth–promoting rhizobacteria (PGPR) are ubiquitous and important for promoting circulation of plant macronutrients. Two series of laboratory experiments were conducted to investigate the effects of earthworm casts and activities on the growth of PGPR, and the inoculation of earthworms and PGPR on the availability of N, P, and K in soils, respectively. During a short incubation period (0–34 h), the extracts of earthworm (Pheretima guillelmi)‐worked soil significantly (p < 0.05) increased the abundance of the three species of PGPR, including N‐fixing bacteria (NFB) (Azotobacter chroococcum HKN‐5), phosphate‐solubilizing bacteria (PSB) (Bacillus megaterium HKP‐1), and K‐solubilizing bacteria (KSB) (B. mucilaginous HKK‐1), in Luria‐Bertani (LB) broth. There were synergistic effects of dual inoculation of earthworms and PGPR on increasing the concentrations of NH$ _4^+ $ ‐N, (NO$ _3^- $ + NO$ _2^- $ )‐N, NaHCO3‐extractable P, and NH4OAc‐extractable K in the corresponding soils. Bioavailable N (the sum of NH$ _4^+ $ ‐N and [NO$ _3^- $ + NO$ _2^- $ ]‐N) in the dual inoculation was 4 to 24 times those inoculated with earthworms or NFB alone, respectively. The significantly higher concentrations of bioavailable N and P in the dual inoculation of earthworms and NFB or PSB may be due to the higher abundance of PGPR and/or higher activities of urease and acid phosphatase than those of single inoculation of NFB or PSB, respectively. Dual inoculation of earthworms and PGPR would be most effective in reducing the need for chemical fertilizers in agriculture.  相似文献   

11.
There has been a partial shift away from conventional flood irrigation (FI) practices for rice (Oryza stativa L.) production in water‐scarce northern China. Drip irrigation with plastic film mulch (DI‐PFM) can maintain high rice yields with significant water savings. However, rice seedlings often develop chlorosis when grown with DI‐PFM on calcareous soil. Bicarbonate is a concern with regard to chlorosis in calcareous soil. The objective of this simulation experiment was to determine the effect of irrigation method and irrigation water HCO $ _3^ - $ concentration on (1) soil pH and DTPA‐Fe concentration, (2) chlorophyll, total Fe, and active Fe concentrations of rice leaves, and (3) rice root and shoot biomass. The experiment consisted of four treatments: FI with water containing either 2 or 10 mM HCO $ _3^ - $ (referred to as FI‐2 and FI‐10, respectively) and DI‐PFM with water containing 2 or 10 mM HCO $ _3^ - $ (referred to as DI‐2 and DI‐10, respectively). The results show that the HCO $ _3^ - $ concentrations of the soil solution were greater under FI than under DI‐PFM, because more irrigation water was applied in the FI system. Soil pH increased as the HCO $ _3^ - $ concentration of the irrigation water increased. The increase in soil pH was greater in DI‐PFM than in FI. Soil DTPA‐Fe concentration, leaf SPAD values, leaf total Fe concentration, leaf active Fe concentration, shoot biomass, and root biomass decreased as the HCO $ _3^ - $ concentration of the irrigation water increased. The decreases were less under DI‐PFM than under FI. Overall, the results indicate that rice plants are more sensitive to the HCO $ _3^ - $ concentration of irrigation water under FI than under DI‐PFM.  相似文献   

12.
This study investigated the effect of biochar amendments on the retention and availability of plant nutrients and Al in seven acidic tropical soils from Zambia and Indonesia. The experiments carried out investigated whether the adsorption capacity of NH$ _4^+ $ in the soils increased upon the addition of biochar and which effect biochar had on available concentrations of NO$ _3^- $ , K+, Mn2+, Mg2+ , PO$ _4^{3‐} $ , and Al3+. These nutrients were selected as they represent those important to plant growth and soil quality. No significant increases or decreases in aqueous NH$ _4^+ $ ‐N concentration with additions of biochar were detected. The Gaines–Thomas model was used in order to calculate selectivity coefficients for NH$ _4^+ $ exchange (Kgt values). Following the addition of biochar to soil, Kgt values decreased showing a reduction in the selective binding of NH$ _4^+ $ in the biochar amended soil compared to the control. The concentration of NO$ _3^- $ increased following the addition of biochar to the soils. The addition of 5 and 10% biochar to the Indonesian soil did not significantly alter (t‐test confidence level 0.05) the sorption of PO$ _4^{3‐} $ to the soil–biochar mixtures as compared to the soil alone. However, the addition of biochar to the soil from Zambia increased the sorption of PO$ _4^{3‐} $ compared to the soil alone. The concentrations of K+ and Mg2+ were significantly increased for almost all soils (t‐test at the 0.05 confidence level) following the addition of biochar. Addition of biochar to all but two soils significantly decreased (t‐test confidence level 0.05) Mn2+ concentrations. The concentration of Al3+ in the soils decreased exponentially significantly (t‐test confidence level 0.05) following the amendment of biochar in accordance with the increase in pH observed when biochar was added to the soil. These results show that biochar has the ability to release essential plant growth nutrients as well as alleviate Al toxicity in these soils.  相似文献   

13.
Corn (Zea mays L.) producers in the rainfed regions sometimes sidedress fertilizer N according to pre‐plant–nitrate test (PPNT) results based on the assumption that there is a linear relationship between pre‐sidedress nitrate test (PSNT) and the PPNT. There has been no report on such relationship in Ontario (Canada) and elsewhere in the nonirrigated corn‐growing regions. A field study was conducted near Ottawa, Canada for 7 y to (1) determine changes in soil available N from pre‐planting to shortly after the sidedress stage (late June) for corn and (2) establish a quantitative relationship between PPNT and PSNT. In each year, soil samples from fields of three to four plot experiments with different cropping histories, soil textures, and management levels, taken at 7 to 10 d intervals, and from on‐farm trials taken at pre‐planting and pre‐sidedress, were extracted with 2 M KCl. The concentrations of NO ‐N were determined colorimetrically. It was found that soil NO ‐N concentration of PSNT was a linear function of PPNT with an average slope of 1.7. However, the slope of the regression equations differed dramatically among cropping sequences, and to a lesser extent, soil textures. The NO ‐N concentration after planting to pre‐sidedress was influenced by air temperature and precipitation during this period of time. Both PPNT and PSNT positively correlated with corn‐grain yield. Our data suggest that cautions must be taken when deciding the rate of fertilizer N for sidedress application to corn based on PPNT test, especially under more humid northern climate conditions.  相似文献   

14.
Grazing animals highly influence the nutrient cycle by a direct return of 80% of the consumed N in form of dung and urine. In the autumn‐winter period, N uptake by the sward is low and rates of seepage water in sandy soils are high, hence high mineral‐N contents in soil and in seepage water as well as large losses of N2O are expected after cattle grazing in autumn. The objective of this study was the quanitfication of N loss deriving from urine and dung leaching and by N2O emission. Therefore the deposition of urine and dung patches was simulated in maximum rates excreted by cows by application of 15N‐labeled cow urine and dung (equivalent to 1030 kg N ha–1 and 1052 kg N ha–1, respectively) on a sandy pasture soil in N Germany. Leachate was collected in weekly intervals from free‐draining lysimeters, and 15N‐NO , 15N‐NH , and 15N‐DON (dissolved organic N) were monitored over 171 d. Furthermore, the 15N‐N2O emission rates and the dynamics of inorganic 15N in the upper soil layer were monitored in a field trial, adjacent to the lysimeters. After 10 d following the urine application, the urea was completely hydrolyzed, shown by a 100% recovery of urine‐N in the soil NH . The following decrease of 15N‐NH in the soil was higher than the increase of 15N‐NO , and some N loss was explained by leaching. Amounts of 51% and 2.5% of the applied 15N were found in leachate as inorganic N, 2.4% and 0.7% as DON derived from urine and dung, respectively. Release of N2O from urine and dung patches applied to the pasture was low, with losses of 0.05% and 0.33% of the applied 15N, respectively. Overall loss of dung‐derived N was very low, but as the bulk dung N remained in the soil, N loss after mineralization of the dung needs to be investigated.  相似文献   

15.
The effects of intensive banana production with high mineral‐fertilizer application and of extensive pastures were compared regarding water quality in a lowland region of SE Mexico. We monitored NO$ _3^- $ , NO$ _2^- $ , and PO43– concentrations in groundwater (80 m depth), subsurface water (5 m depth), and surface water (open‐ditch drainage) at monthly intervals for a one‐year period. Irrespective of the land use, the NO$ _3^- $ concentrations in all water bodies were lower than the threshold value for drinking water and aquatic life. Particularly in areas with intense banana production, the NO$ _2^- $ contents in water exceeded the safety thresholds for drinking water of 1.0 mg L–1 (WHO, 2006) and aquatic ecosystems of 0.2 mg L–1 (OATA, 2008). Water from pastureland showed significantly higher PO43– concentration than that from the banana plantation, indicating a high risk of eutrophication. There is a need to provide recommendations for optimal time and amount of N application in commercial banana production and for limitation of P inputs in pasturelands to avoid further contamination of water bodies.  相似文献   

16.
Recent studies have documented adverse affects of urea on the establishment and growth of aerobic rice when applied at seeding. The following experiments were conducted to examine the relative importance of ammonia and nitrite (NO$ _2^- $ ) toxicities as mechanisms contributing to poor germination and early growth of aerobic rice. Soil was collected from an experiment in the Philippines where aerobic rice was grown continuously for 7 years. Subsamples of the soil were: (1) pretreated with sulfuric acid (0.5 M H2SO4 added at 75 mL kg–1), (2) oven‐heated at 120°C for 12 h, or (3) left untreated. In a greenhouse study N was applied to the untreated, acidified, and oven‐heated soils as either urea or ammonium sulfate (0.0 or 0.3 g N kg–1). Plant height, root length, total biomass, and number of seminal roots were evaluated after 10 d. Microdiffusion incubations were used to assess the effects of soil pretreatment, N source, and N rate (0, 0.5, 1.0, 1.5 g N kg–1) on ammonia (NH3) volatilization and germination. Nitrite incubations were conducted to establish a critical level for NO$ _2^- $ toxicity and measure the extractable NO$ _2^- $ and germination trends as affected by soil pretreatment, N source, and N rate. On untreated soil, urea reduced early growth and germination while ammonium sulfate caused no adverse effects. Progressively higher rates of urea increased NH3 volatilization and inhibited germination, while oven‐heating and acidification minimized the adverse effects. All treatment combinations (soil pretreatment, N source, N rate) had extractable NO$ _2^- $ levels below the critical level of 0.2 g N kg–1, suggesting that ammonia and not NO$ _2^- $ toxicity was the principal cause of inhibition. Since the risk of NH3 toxicity is highest just following urea hydrolysis, strategies to optimize the timing and placement of urea should be considered.  相似文献   

17.
18.
19.
The quality of green tea is highly dependent on the concentration of free amino acids, whose profile is dominated by the unique amino acid theanine (N5‐ethyl‐glutamine). A high quality is associated with a high amino acid–to–catechin ratio, but previous results indicated that excessive chloride (Cl) supply is detrimental for amino acid accumulation. Several experiments were conducted to investigate the effect of chloride on growth and concentrations of free amino acids in young tea plants. Soil‐grown tea plants supplied with different levels of potassium (K) as K2SO4 or KCl exhibited increased concentrations of free amino acid in young shoots only when supplied with K2SO4, and the negative effect of KCl supply was mainly due to a reduced concentration of theanine. Concentrations of other nutrients in plant tissues were not influenced. The uptake of Cl and its interaction with nitrogen (N) uptake were further investigated in a second experiment, in which soil‐cultivated tea plants were supplied with varying amounts of Cl. Chloride application reduced yield of young shoots, and severity of leaf damage was related to the concentration of Cl in leaves. Nitrogen uptake was reduced by Cl addition. To verify whether the decrease of free amino acids was simply a result of inhibited NO assimilation, a third experiment was conducted, in which tea plants were NH ‐fed in the absence or presence (equivalent to the NH concentration) of Cl. Again, concentrations of theanine and total free amino acids in young shoots were reduced by Cl supply, but changes of the free–amino acid pool did not contribute to the maintenance of charge balance. However, concentration of theanine in roots, where it is synthesized, was not influenced by Cl. Total N concentrations of roots and mature leaves, uptake rate of NH , and activity of glutamine synthetase in fibrous roots and young leaves were all unaffected by Cl as well. It is suggested that translocation of theanine from root to shoot and its catabolism in young shoots might be influenced by Cl.  相似文献   

20.
Sulfur in soils   总被引:4,自引:0,他引:4  
Sulfur (S) deficiency of crops, which has been reported with increasing frequency over the past two decades on a worldwide scale, is a factor that reduces yield and affects the quality of harvested products. Especially in Western European countries, incidence of S deficiency has increasingly been reported in Brassicaceae. For this reason, more attention should be paid to the optimization of S‐fertilizer application, in order to cover plant S requirements whilst minimizing environmental impacts. In soils, S exists in inorganic and organic forms. While sulfate (SO ), which is a direct S source for plants, contributes up to 5% of total soil S, generally more than 95% of soil S are organically bound. Organic S is divided into sulfate ester and carbon‐bonded S. Although not directly plant‐available, organically bound S may potentially contribute to the S supply of plants, especially in deficiency situations. Sulfur turnover involves both biochemical and biological mineralization. Biochemical mineralization, which is the release of SO from the ester sulfate pool through enzymatic hydrolysis, is controlled by S supply, while the biological mineralization is driven by the microbial need for organic C to provide energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号