首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmacokinetics of phenobarbital in the horse   总被引:2,自引:0,他引:2  
Pharmacokinetics of phenobarbital was examined in 6 mature horses after 12 mg of phenobarbital/kg of body weight was infused over 20 minutes. Biexponential decrease in serum phenobarbital concentrations was observed with a distribution-phase half-life of 0.101 +/- 0.086 hour (mean +/- SD) and a terminal-phase elimination half-life of 18.3 +/- 3.65 hours. The volume of distribution at steady state was 0.803 +/- 0.070 L/kg. Total body clearance of phenobarbital was 30.8 +/- 6.2 ml/h/kg. The high clearance in the horse seems to explain the markedly shorter half-life of phenobarbital in this species. Seemingly, 6.65 mg of phenobarbital/kg as a 20-minute infusion given every 12 hours would provide approximate peaks of 29 micrograms/ml and troughs of 15 micrograms/ml. A loading dose of 12 mg of phenobarbital/kg would be appropriate for this regimen.  相似文献   

2.
Gentamicin sulfate (2.2 mg/kg of body weight, IV) was given to anesthetized horses. Jejunal and large colon tissue samples (1 g), serum, and urine were collected over a 4-hour period. Maximum gentamicin concentrations in serum (10.06 +/- 2.85 micrograms/ml) occurred at 0.25 hours after injection. Maximum gentamicin concentrations in the large colon (4.13 +/- 1.80 micrograms/ml) and jejunum (2.26 +/- 1.35 micrograms/ml) occurred in horses at 0.5 and 0.33 hours, respectively. Tissue concentrations decreased in parallel with serum concentrations and were still detectable at the end of the 4-hour period. During the time that samples were collected, the total amount of gentamicin excreted in the urine ranged from 7.21 +/- 3.11 mg to 11.91 +/- 7.12 mg, with a mean urinary concentration of 57.01 +/- 5.37 micrograms/ml. Over the 4-hour collection period, the fraction of dose that was excreted unchanged in the urine was 4.8 +/- 1.9%. Pharmacokinetic analyses of the serum concentration-time data gave a serum half-life of 2.52 +/- 1.29 hours, volume of distribution of 227 +/- 83 ml/kg, and body clearance of 1.12 +/- 0.26 ml/min/kg. The half-lives of the antibiotic in the jejunum and large colon were 1.32 and 1.33 hours, respectively.  相似文献   

3.
Pharmacokinetics of flunixin meglumine in donkeys, mules, and horses   总被引:6,自引:0,他引:6  
OBJECTIVE: To compare serum disposition of flunixin meglumine after i.v. administration of a bolus to horses, donkeys, and mules. ANIMALS: 3 clinically normal horses, 5 clinically normal donkeys, and 5 clinically normal mules. PROCEDURE: Blood samples were collected at time zero (before) and 5, 10, 15, 30, and 45 minutes, and at 1, 1.25, 1.5, 1.75, 2, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, and 8 hours after i.v. administration of a bolus of flunixin meglumine (1.1 mg/kg of body weight). Serum was analyzed in duplicate by the use of high-performance liquid chromatography for determination of flunixin meglumine concentrations. The serum concentration-time curve for each horse, donkey, and mule were analyzed separately to estimate noncompartmental pharmacokinetic variables RESULTS: Mean (+/-SD) area under the curve for donkeys (646 +/- 148 minute x microg/ml) was significantly less than for horses (976 +/- 168 minute x microg/ml) or for mules (860 +/- 343 minute x microg/ml). Mean residence time for donkeys (54.6 +/- 7 minutes) was significantly less than for horses (110 +/- 24 minutes) or for mules (93 +/- 30 minutes). Mean total body clearance for donkeys (1.78 +/- 0.5 ml/kg/h) was significantly different from that for horses (1.14 +/- 0.18 ml/kg/h) but not from that for mules (1.4 +/- 0.5 ml/kg/h). Significant differences were not found between horses and mules for any pharmacokinetic variable. CONCLUSION AND CLINICAL RELEVANCE: Significant differences exist with regard to serum disposition of flunixin meglumine in donkeys, compared with that for horses and mules. Consequently, flunixin meglumine dosing regimens used in horses may be inappropriate for use in donkeys.  相似文献   

4.
OBJECTIVE: To determine pharmacokinetics of single and multiple doses of rimantadine hydrochloride in horses and to evaluate prophylactic efficacy of rimantadine in influenza virus-infected horses. ANIMALS: 5 clinically normal horses and 8 horses seronegative to influenza A. PROCEDURE: Horses were given rimantadine (7 mg/kg of body weight, i.v., once; 15 mg/kg, p.o., once; 30 mg/kg, p.o., once; and 30 mg/kg, p.o., q 12 h for 4 days) to determine disposition kinetics. Efficacy in induced infections was determined in horses seronegative to influenza virus A2. Rimantadine was administered (30 mg/kg, p.o., q 12 h for 7 days) beginning 12 hours before challenge-exposure to the virus. RESULTS: Estimated mean peak plasma concentration of rimantadine after i.v. administration was 2.0 micrograms/ml, volume of distribution (mean +/- SD) at steady-state (Vdss) was 7.1 +/- 1.7 L/kg, plasma clearance after i.v. administration was 51 +/- 7 ml/min/kg, and beta-phase half-life was 2.0 +/- 0.4 hours. Oral administration of 15 mg of rimantadine/kg yielded peak plasma concentrations of < 50 ng/ml after 3 hours; a single oral administration of 30 mg/kg yielded mean peak plasma concentrations of 500 ng/ml with mean bioavailability (F) of 25%, beta-phase half-life of 2.2 +/- 0.3 hours, and clearance of 340 +/- 255 ml/min/kg. Multiple doses of rimantadine provided steady-state concentrations in plasma with peak and trough concentrations (mean +/- SEM) of 811 +/- 97 and 161 +/- 12 ng/ml, respectively. Rimantadine used prophylactically for induced influenza virus A2 infection was associated with significant decreases in rectal temperature and lung sounds. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of rimantadine to horses can safely ameliorate clinical signs of influenza virus infection.  相似文献   

5.
Six healthy mature horses were orally administered a single dose of phenobarbital (26 mg/kg of body weight), then multiple doses (13 mg/kg) orally for 42 consecutive days. Seventeen venous blood samples were collected from each horse after the single dose study and again after the last dose on day 42. Plasma phenobarbital concentration was determined by use of a fluorescence assay validated for horses. Additional blood samples (n = 11) were collected on days 8 and 25 to determine peak and trough concentrations, as well as total body clearance. Phenobarbital disposition followed a one-compartment model. Mean kinetic variables after single and repeated orally administered doses (42 days) were: elimination half-life = 24.2 +/- 4.7 and 11.2 +/- 2.3 hours, volume of distribution = 0.960 +/- 0.060 and 0.914 +/- 0.119 L/kg, and clearance = 28.2 +/- 5.1 and 57.3 +/- 9.6 ml/h/kg, respectively. Results indicated that significant (P less than 0.05) difference in half-life and oral clearance existed between single and repeated dosing. The significant decrease in half-life after repeated dosing with phenobarbital may be indicative of enzyme induction. Significant difference was not observed between baseline serum enzyme concentration and concentration measured on day 42, except for gamma-glutamyltransferase activity, which was significantly increased on day 42 in 3 of the 6 horses. On the basis of increases in oral clearance observed over 42 days, dose adjustments may be required.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effect of an oral dose of probenecid on the disposition kinetics of ampicillin was determined in four horses. An intravenous bolus dose (10 mg/kg) of ampicillin sodium was administered to the horses on two occasions. On the first occasion the antibiotic was administered on its own, and on the second occasion it was administered one hour after an oral dose of 75 mg/kg probenecid. The plasma concentration of probenecid reached a mean (+/- se) maximum concentration (Cmax) of 188-6 +/- 19.3 micrograms/ml after 120.0 +/- 21.2 minutes and concentrations greater than 15 micrograms/ml were present 25 hours after it was administered. The disposition kinetics of ampicillin were altered by the presence of probenecid and as a result the antibiotic had a slower body clearance (ClB; 109.4 +/- 6.71 ml/kg hours compared with 208.9 +/- 26.2 ml/kg hours) a longer elimination half-life (t1/2 beta 1.198 hours compared with 0.701 hours) and consequently a larger area under the plasma concentration versus time curve (AUC 92.3 +/- 5.09 mg/ml hours compared with 35.95 +/- 3.45 mg/ml hours) when compared with animals to which ampicillin was administered alone. The ampicillin concentrations observed suggest that the dosing interval for horses may be increased from between six and eight hours to 12 hours when probenecid is administered in conjunction with the ampicillin.  相似文献   

8.
OBJECTIVE: To determine the disposition of a bolus of meloxicam (administered IV) in horses and donkeys (Equus asinus) and compare the relative pharmacokinetic variables between the species. ANIMALS: 5 clinically normal horses and 5 clinically normal donkeys. PROCEDURES: Blood samples were collected before and after IV administration of a bolus of meloxicam (0.6 mg/kg). Serum meloxicam concentrations were determined in triplicate via high-performance liquid chromatography. The serum concentration-time curve for each horse and donkey was analyzed separately to estimate standard noncompartmental pharmacokinetic variables. RESULTS: In horses and donkeys, mean +/- SD area under the curve was 18.8 +/- 7.31 microg/mL/h and 4.6 +/- 2.55 microg/mL/h, respectively; mean residence time (MRT) was 9.6 +/- 9.24 hours and 0.6 +/- 0.36 hours, respectively. Total body clearance (CL(T)) was 34.7 +/- 9.21 mL/kg/h in horses and 187.9 +/- 147.26 mL/kg/h in donkeys. Volume of distribution at steady state (VD(SS)) was 270 +/- 160.5 mL/kg in horses and 93.2 +/- 33.74 mL/kg in donkeys. All values, except VD(SS), were significantly different between donkeys and horses. CONCLUSIONS AND CLINICAL RELEVANCE: The small VD(SS) of meloxicam in horses and donkeys (attributed to high protein binding) was similar to values determined for other nonsteroidal anti-inflammatory drugs. Compared with other species, horses had a much shorter MRT and greater CL(T) for meloxicam, indicating a rapid elimination of the drug from plasma; the even shorter MRT and greater CL(T) of meloxicam in donkeys, compared with horses, may make the use of the drug in this species impractical.  相似文献   

9.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

10.
OBJECTIVE: To evaluate pharmacokinetics of once daily i.v. administration of gentamicin sulfate to adult horses that had abdominal surgery. DESIGN: Prospective study. ANIMALS: 28 adult horses that underwent abdominal surgery for colic. PROCEDURE: 14 horses were treated with each dosage of gentamicin (i.e., 6.6 or 4 mg/kg, i.v., q 24 h) and blood samples were collected for pharmacokinetic analysis. Plasma gentamicin concentrations were measured by use of a fluorescence polarization immunoassay. Pharmacokinetic analysis measured the elimination half-life, volume of distribution, and gentamicin total systemic clearance. Treatment outcome, CBC, and serum creatinine concentrations were recorded. RESULTS: 1 horse in the high-dosage group died. All other horses successfully recovered, and did not develop bacterial infection or have evidence of drug toxicosis resulting in renal injury. Mean pharmacokinetic variables for gentamicin administration at a high or low dosage (i.e., 6.6 or 4 mg/kg, i.v., q 24 h) were half-life of 1.47 and 1.61 hours, volume of distribution of 0.17 and 0.17 L/kg, and systemic clearance of 1.27 and 1.2 ml/kg/min, respectively. Mean serum creatinine concentration was 1.74 and 1.71 for the high and low dosages, respectively, and serum creatinine concentration was not correlated with gentamicin clearance. CONCLUSIONS AND CLINICAL RELEVANCE: Gentamicin administration at a dosage of 4 mg/kg, i.v., every 24 hours, will result in plasma concentrations that are adequate against susceptible bacteria with a minimum inhibitory concentration (MIC) of < or = 2.0 micrograms/ml. Gentamicin administration at a calculated dosage of 6.8 mg/kg, i.v., every 24 hours will result in optimum plasma concentrations against susceptible bacteria with a MIC of < or = 4.0 micrograms/ml.  相似文献   

11.
Healthy mature roosters (n = 10) were given gentamicin (5 mg/kg of body weight, IV) and, 30 days later, another dose IM. Serum concentrations of gentamicin were determined over 60 hours after each drug dosing, using a radioimmunoassay. Using nonlinear least-square regression methods, the combined data of IV and IM treatments were best fitted by a 2-compartment open model. The mean distribution phase half-life was 0.203 +/- 0.075 hours (mean +/- SD) and the terminal half-life was 3.38 +/- 0.62 hours. The volume of the central compartment was 0.0993 +/- 0.0097 L/kg, volume of distribution at steady state was 0.209 +/- 0.013 L/kg, and the total body clearance was 46.5 +/- 7.9 ml/h/kg. Intramuscular absorption was rapid, with a half-life for absorption of 0.281 +/- 0.081 hours. The extent of IM absorption was 95 +/- 18%. Maximal serum concentration of 20.68 +/- 2.10 micrograms/ml was detected at 0.62 +/- 0.18 hours after the dose. Kinetic calculations predicted that IM injection of gentamicin at a dosage of 4 mg/kg, q 12 h, and 1.5 mg/kg, q 8 h, would provide average steady-state serum concentrations of 6.82 and 3.83 micrograms/ml, with minimal steady-state serum concentrations of 1.54 and 1.50 micrograms/ml and maximal steady-state serum concentrations of 18.34 and 7.70 micrograms/ml, respectively.  相似文献   

12.
Serum and peritoneal fluid concentrations of metronidazole were determined in 6 healthy adult horses given the drug (25 mg/kg) by IV or oral routes. The disposition of metronidazole in horses given the drug by the IV route conformed to a 2-compartment model with a distribution half-life of 0.16 hours, an elimination half-life of 2.9 hours, and a body clearance of 0.40 +/- 0.05 L/kg/hr. The oral absorption half-life was 0.40 hours, and the bioavailability, 85.0 +/- 18.6%. Peritoneal fluid concentrations were approximately equal to serum concentrations at all times, regardless of the route of administration. On the basis of reported minimal inhibitory concentrations for anaerobic bacteria, a dosage of 15 to 25 mg/kg given orally 4 times daily was recommended.  相似文献   

13.
OBJECTIVE: To determine the pharmacokinetics of fluconazole in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Fluconazole (10 mg/kg of body weight) was administered intravenously or orally with 2 weeks between treatments. Plasma fluconazole concentrations were determined prior to and 10, 20, 30, 40, and 60 minutes and 2, 4, 6, 8, 10, 12, 24, 36, 48, 60, and 72 hours after administration. A long-term oral dosing regimen was designed in which all horses received a loading dose of fluconazole (14 mg/kg) followed by 5 mg/kg every 24 hours for 10 days. Fluconazole concentrations were determined in aqueous humor, plasma, CSF, synovial fluid, and urine after administration of the final dose. RESULTS: Mean (+/- SD) apparent volume of distribution of fluconazole at steady state was 1.21+/-0.01 L/kg. Systemic availability and time to maximum plasma concentration following oral administration were 101.24+/-27.50% and 1.97+/-1.68 hours, respectively. Maximum plasma concentrations and terminal half-lives after IV and oral administration were similar. Plasma, CSF, synovial fluid, aqueous humor, and urine concentrations of fluconazole after long-term oral administration of fluconazole were 30.50+/-23.88, 14.99+/-1.86, 14.19+/-5.07, 11.39+/-2.83, and 56.99+/-32.87 microg/ml, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Bioavailability of fluconazole was high after oral administration to horses. Long-term oral administration maintained plasma and body fluid concentrations of fluconazole above the mean inhibitory concentration (8.0 mg/ml) reported for fungal pathogens in horses. Fluconazole may be an appropriate agent for treatment of fungal infections in horses.  相似文献   

14.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

15.
The pharmacokinetics of theophylline and dyphylline were determined after IV administration in horses. In a preliminary experiment, the usual human dosage (milligram per kilogram) of each drug was given to 1 horse. Results were used to calculate dosages for a cross-over study, using 6 horses for each drug. Theophylline plasma concentrations decreased triexponentially in 5 of 6 healthy horses after IV infusion of 10 mg of aminophylline/kg of body weight for 16 to 32 minutes. In the 6 horses, total body elimination rate constants were variable, and the half-life of theophylline was 9.7 to 19.3 hours. Clearance was 42.3 to 69.2 ml/hr/kg. The initial distribution phase was rapid (t1/2 approx 3.5 to 4 minutes); a 2nd distribution phase was slower (t1/2 approx 1.5 to 2 hours). Plasma concentrations of theophylline were in the assumed effective range (10 to 20 micrograms/ml) from 15 minutes until 40 minutes after time zero. The mean apparent volume of distribution was 1.02 L/kg. After bolus IV injection of dyphylline (20 mg/kg), pharmacokinetics were best described by a 2-compartment open model in 2 horses and by a 3-compartment open model in 4 horses. In the 6 horses, elimination half-life of dyphylline was 1.9 to 2.9 hours, and clearance was 200 to 320 ml/hr/kg. Plasma concentrations (approx 50 micrograms/ml) were observed at 10 minutes after injection without adverse effects. Concentrations greater than 10 micrograms/ml were observed from time zero to about 1.5 hours after injection. Theophylline induced significant increases in heart rate, but dyphylline did not affect heart rate significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Pharmacokinetic studies on tobramycin in horses   总被引:1,自引:0,他引:1  
The objective of the study was to evaluate the pharmacokinetics of tobramycin in plasma and urine in the horse (n = 7) after intravenous administration of a dose of 4 mg/kg b.w. Plasma tobramycin concentrations were assayed microbiologically and by means of HPLC analyses. Pharmacokinetic parameters, calculated on the basis of concentrations determined with the microbiological assay were not statistically different from those obtained when data from HPLC analysis were used, but the microbiological assay was more sensitive in the detection of low plasma and urine values. The values of the total body clearance (Cl(B)) were 101.4 +/- 30.1 and 130.0 +/- 49.9 mL/kg/h, respectively. The overall extraction ratio was 2.9%. The determined capacity of elimination of tobramycin in horses was similar to those for other aminoglycosides. Within 24 h after treatment, 57.6 +/- 12.2% of injected antibiotic was excreted in the urine.  相似文献   

17.
The pharmacokinetics of theophylline were determined in 6 healthy horses after a single IV administration of 12 mg of aminophylline/kg of body weight (equivalent to 9.44 mg of theophylline/kg). Serum theophylline was measured after the IV dose at 0.25, 0.5, 1, 2, 4, 6, 8, 12, and 15 hours. Serum concentration plotted against time on semilogarithmic coordinates, indicated that theophylline in 5 horses was best described by a 2-compartment open model and in 1 horse by a 1-compartment open model. The following mean pharmacokinetic values were determined; elimination half-life = 11.9 hours, distribution half-life = 0.495 hours, apparent specific volume of distribution = 0.885 +/- 0.075 L/kg, apparent specific volume of central compartment = 0.080 L/kg, and clearance = 51.7 +/- 11.2 ml/kg/hr. Three horses with reversible chronic obstructive pulmonary disease were serially given 1, 3, 6, 9, 12, and 15 mg of aminophylline/kg in single IV doses (equivalent to 0.8, 2.4, 4.7, 7.1, 9.44, and 11.8 mg of theophylline/kg, respectively). The horses were exposed to a dusty barn until they developed clinical signs of respiratory distress and were then given the aminophylline. Effects of increasing doses on different days were correlated with clinical signs, blood pH, and blood gases. The 3 horses had a decrease in the severity of clinical signs after the 9, 12, or 15 mg doses of aminophylline/kg. The horses at 0.5 hour after dosing had a significant decrease in PaCO2 (43.6 +/- 5.5 to 39.4 +/- 6.7 mm of Hg, P less than 0.001) and a significant increase in blood pH (7.38 +/- 0.017 to 7.41 +/- 0.023, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Gentamicin sulfate-induced nephrotoxicosis was compared in 2 groups of horses fed different rations. Four horses were fed only alfalfa hay, and 4 other horses were fed only whole oats. Seven days after initiation of the diet, all horses were given gentamicin IV (5 mg/kg of body weight) every 12 hours for 22 days. Urinary gamma-glutamyl-transferase to urinary creatinine (UGGT:UCr) ratio was calculated daily, and serum concentration of gentamicin was measured at 1 and 12 hours after drug administration. Results indicated that horses fed oats had greater renal tubular damage than did horses fed alfalfa. Mean UGGT:UCr for horses fed alfalfa was 47.1 +/- 18.8 and was 100.0 +/- 19.0 for horses fed oats (P = 0.007). The UGGT:UCr in horses fed oats was greater than 100 for a total of 54 days; horses fed alfalfa had UGGT:UCr greater than 100 for only 7 days. Two horses not given gentamicin were fed only oats and 2 were fed only alfalfa. These horses had mean UGGT:UCr of 17.6 +/- 2.2 and 30.5 +/- 3.0, respectively. Mean peak and trough concentrations of gentamicin were statistically different for horses fed oats and those fed alfalfa (peak 23.16 +/- 1.87 and 14.07 +/- 1.79 micrograms/ml, respectively [P = 0.0001], and trough, 1.81 +/- 0.69 and 0.71 +/- 0.70 micrograms/ml, respectively [P = 0.0270]). Mean half-lives of gentamicin (estimated from peak and trough concentrations) for horses fed alfalfa (2.58 +/- 0.26 hours) and horses fed oats (2.88 +/- 0.27 hours) were not significantly different. Horses fed only oats had greater degree of gentamicin-induced nephrotoxicosis than did those fed only alfalfa.  相似文献   

19.
The purpose of this study was to describe the pharmacokinetics of bromide in horses and to evaluate the corrected bromide space as an indicator of extracellular fluid volume (ECFV) in horses after the administration of a single dose of bromide by intravenous infusion. Sodium bromide (30 mg/kg of body weight, IV) was administered to 6 clinically healthy mares over a period of 3 minutes. Blood samples were collected before infusion and at intervals between 0.5 hours and 53 days after infusion. Mean elimination half-life (harmonic mean) was 126 hours (5.2 days), clearance was 1.4 +/- 0.09 mL/(kg x h), area under the curve was 17,520 +/- 1,100 microg x h/mL. and volume of distribution (steady state) was 0.255 +/- 0.015 L/kg. The mean corrected bromide space was determined from the volume of distribution (steady state) and the serum concentrations of bromide at equilibration. Corrected bromide space, an estimate of ECFV, was 0.218 +/- 0.01 L/kg. The conclusion was made that ECFV of horses can be estimated by measuring bromide concentrations in a preinfusion serum sample and a sample obtained 5 hours after the administration of bromide.  相似文献   

20.
OBJECTIVE: To develop a method for continuous infusion of gentamicin into the tarsocrural joint of horses, to determine pharmacokinetics of gentamicin in synovial fluid of the tarsocrural joint during continuous infusion, and to evaluate effects of continuous infusion of gentamicin on characteristics of the synovial fluid. ANIMALS: 12 healthy adult horses. PROCEDURE: An infusion catheter consisting of flow control tubing connected to a balloon infuser was used. Gentamicin solution (100 mg/ml) was infused in the right tarsocrural joint and balanced electrolyte solution was infused in the left tarsocrural joint for 5 days. Synovial fluid and serum gentamicin concentrations were measured by use of a fluorescence polarization immunoassay. RESULTS: 17 of the 24 (71%) infusion catheters initially placed functioned without complications for the entire 5-day infusion period. Median gentamicin concentration in synovial fluid from treated joints during the 5-day infusion period ranged from 2875 to 982 microg/ml. Median serum gentamicin concentration during this period ranged from 2.31 to 2.59 microg/ml. Mean (+/- SD) elimination half-life and total clearance of gentamicin from the synovial fluid were 6.25+/-1.01 hours and 1.52+/-0.96 ml/min, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: An infusion catheter can be used for continuous infusion of gentamicin into the tarsocrural joints of horses for up to 5 days. At a gentamicin dosage of 0.17+/-0.02 mg/kg/h, continuous intra-articular infusion results in synovial fluid gentamicin concentrations greater than 100 times the minimal inhibitory concentration reported for common equine pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号