首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacillus subtilis CPA-8, a strain with demonstrated ability to control Monilinia spp. in peaches, was studied to elucidate its mechanisms of antifungal activity. Growth inhibition assays using cell-free supernatants and butanolic extracts showed strong antifungal activities against Monilinia laxa and Monilinia fructicola. By comparison with the reference B. subtilis strains UMAF6614 and UMAF6639, fengycin, iturin and surfactin lipopeptides were identified by thin layer chromatography in butanolic extracts from cell-free supernatants, indicating that antibiosis could be a major factor involved in the biological control ability of CPA-8. TLC-bioautography analysis confirmed the presence of fengycin, iturin and surfactin lipopeptides but strong antifungal activity could be associated only with fengycin lipopeptides. These results were definitively supported by mutagenesis analysis targeted to suppress fengycin biosynthesis by disruption of the B. subtilis fenB gene. By TLC-bioautography analysis it was possible to identify transformants from CPA-8 with reduced or suppressed antifungal activity, and this phenotype was associated with the lack of fengycin bands. Fruit trials confirmed that fengycin-defective mutants and their cell-free supernatants lost their ability to control peach brown rot disease in comparison with CPA-8 wild type strain or Serenade Max®, a commercial formulation based on B. subtilis. Furthermore, population dynamics studies determined that CPA-8 fengycin-deficient mutants survived in wounds in peach fruit equally well as the CPA-8 wild type. Taken together our data indicate that fengycin-like lipopeptides play a major role in the biological control potential of B. subtilis CPA-8 against peach brown rot.  相似文献   

2.
Species of Trichoderma offer an eco-friendly and economical solution to the management of plant pathogens in agricultural crops. The secretion and spectrum of different bioactive molecules by Trichoderma spp. is known to follow adaptive and species/strain behavior, depending upon the edaphic conditions. In present study, GITX-Panog (C), an antagonistic isolate of Trichoderma saturnisporum against Fusarium oxysporum was screened for the production of different glycosyl hydrolases and secondary metabolites. The evaluation of antagonistic isolates for lytic enzymes and secondary metabolites revealed their significance as plant probiotics. Profiling of lytic enzymes such as chitinases and β-glucanases secreted by T. saturnisporum GITX-Panog (C) in the presence of autoclaved mycelium of F. oxysporum and colloidal chitin or laminarin showed increased enzyme activities. Production of bioactive secondary metabolites such as siderophore, peptaibols, 6-pentyl-α-pyrone, and the known potential of these compounds in mineral acquisition and suppression of plant F. oxysporum, revealed the potential significance of Trichoderma saturnisporum isolate GITX-Panog C in agricultural application against biotic and abiotic stresses. The antagonistic isolate also showed significant increases in fresh biomass and seed production in Arabidopsis thaliana in the greenhouse compared to controls. Thus, the current study highlights the multiple attributes of an antagonistic isolate of T. saturnisporum for future agricultural applications as a plant probiotic agent.  相似文献   

3.
Fusarium graminearum (teleomorph: Gibberella zeae) is the causal agent of several destructive diseases in cereal crops worldwide. In the present study we have evaluated the potential of two strains of Trichoderma sp. (T23, and T16), a strain of Paecilomyces sp. (PS1), and their secondary metabolites (SMs) in suppressing F. graminearum. Results from dual culture experiments show that in the presence of either Trichoderma sp., or Paecilomyces sp. mycelial growth of F. graminearum is considerably inhibited. Strain T23 causes the greatest inhibition (83.8%), followed by strain T16 (72.2%), and strain PS1 (61.9%). Likewise, mycelial growth of the pathogen is completely inhibited ( 98%) when grown under exposure to volatile metabolites excreted from Trichoderma cultures. Bioautographic analyses using culture filtrates revealed that several antifungal SMs are excreted. Among five metabolites tested, 6-pentyl-alpha-pyrone (6PAP) from strain T23, and PF3 from strain PS1 exhibit pronounced antifungal activity against F. graminearum. A new method for mass production of perithecia of F. graminearum which is simple and more effective than traditional methods was developed, which allows an increase in perithecial formation of more than 5-fold. Using this method, we found, that in the presence of SMs perithecial formation was negatively affected. Perithecial production was suppressed by 81.4% and 76.6% using 200 μg ml?1 of either 6PAP or PF3, respectively. Moreover, ascospore discharge was significantly suppressed (67.0%) when perithecia were exposed to the metabolite F116 produced by T16. Including 6PAP or PF3 in conidial suspensions impeded germination of conidia completely. Similarly, both metabolites strongly inhibited ascospore germination (? 90%).  相似文献   

4.
Entomopathogenic nematodes in the genus Steinernema are associated with Xenorhabdus spp. bacteria. When steinernematid colonise an insect host the nematode-bacterium association overcomes the insect immune system and kills the host within 48 h. Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. The concentrated, or cell-free metabolites of X. szentirmaii exhibit high toxicity against various fungal plant pathogens and show potential as natural bio-fungicides. In the current study, we determined 1) thermo-stability, 2) dose-response, and 3) shelf-life of antifungal metabolites of X. szentirmaii against Monilinia fructicola (cause of brown rot of peach and other stone fruit) and Glomerella cingulata (cause of antharacnose). Thermo-stability was determined by autoclaving bacterial culture broths (121 °C and 15 psi for 15 min) and measuring fungal growth on in potato dextrose agar (PDA) containing 10% of the supernatants. Autoclaving had no impact on the antifungal activity of the secondary metabolites. Over a test period of 9 months, the activity of both extract types did not decline when stored at 4 or 20 °C. A dose-response study (10, 20, 40, 60, 80 and 100% supernatant-containing metabolite) using both phytopathogens demonstrated that a greater dose of supernatant increased antifungal activity. The antifungal-metabolite containing supernatant of X. szentirmaii has potential as a bio-fungicide. These results demonstrate the metabolite(s) are thermo-stable, they have a long shelf-life and require no stabilizing formulation, even at room temperature.  相似文献   

5.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

6.
Alternaria species are common pathogens of fruit and vegetables able to produce secondary metabolites potentially affecting human health. Twenty-nine isolates obtained from cabbage, cauliflower, wild and cultivated rocket were characterized and identified based on sporulation pattern and virulence; the phylogenetic analysis was based on the β-tubulin gene. Isolates were identified as A. alternata, A. tenuissima, A. arborescens, A. brassicicola and A. japonica. Pathogenicity was evaluated on plants under greenhouse conditions. Two isolates showed low level of virulence on cultivated rocket while the other isolates showed medium or high level of virulence. Isolates were also characterized for their mycotoxin production on a modified Czapek-Dox medium. Production of the five Alternaria toxins, tenuazonic acid, alternariol, alternariol monomethyl ether, altenuene and tentoxin were evaluated. Under these conditions, about 80% of the isolates showed the ability to produce at least one mycotoxin.  相似文献   

7.
The purpose of this study was to determine if exogenous cholesterol availability influenced Pythiaceae resistance to antibiosis. Characterisation of an isolate of Phytophthora erythroseptica and Pythium ultimum for tolerance to antibacterial compounds found that 0.05 g.l?1 chloramphenicol inhibited mycelial growth by 96.6 % and 23.5 % respectively. However, the addition of cholesterol (0.01 g l?1) to potato dextrose agar (PDA) containing 0.05 g l?1 chloramphenicol was found to increase mycelial growth of P. erythroseptica, indicating a role for cholesterol in tolerance to inhibitory antibacterial compounds. To determine if this property extended to suppressive effects of a potential biocontrol agent, P. erythroseptica and P. ultimum were then tested against a cell-free filtrate of diffusible metabolites produced by a suppressive Trichoderma harzianum isolate in the presence and absence of cholesterol in PDA. In the absence of cholesterol, diffusible metabolites of the T. harzianum isolate were found to inhibit mycelial growth of P. erythroseptica and P. ultimum on PDA by 98 % and 63.6 % respectively (P?<?0.0001). However, the inhibitory effect of the metabolites was mitigated when 0.005 g l?1 of cholesterol was present in PDA, with mycelial growth of P. ultimum and P. erythroseptica reduced by only 60.4 % and 41.8 %, respectively (P?<?0.0001), much less inhibition than was observed in the absence of cholesterol. These results demonstrated that access to exogenous cholesterol can influence the sensitivity of Pythiaceae species to antibiosis by positively influencing mycelial growth.  相似文献   

8.
Arabidopsis thaliana exhibits a durable resistance called nonhost resistance against nonadapted fungal pathogens. A. thaliana activates preinvasive resistance and terminates entry attempts by nonadapted fungi belonging to the genus Colletotrichum, which cause anthracnose disease in many plants. In the interaction between A. thaliana and nonadapted C. tropicale, the preinvasive resistance involves the PENETRATION 2-related antifungal secondary metabolite pathway and the ENHANCED DISEASE RESISTANCE 1-dependent antifungal peptide pathway. The development of invasive hyphae by C. tropicale owing to the reduction of preinvasive resistance then triggers the blockage of further hyphal expansion via the activation of the second layer of resistance, i.e., postinvasive resistance, which guarantees the robustness of the nonhost resistance of A. thaliana against Colletotrichum pathogens. Both the tryptophan-derived metabolic pathway and glutathione synthesis play critical roles in the postinvasive resistance against C. tropicale, although the molecular mechanism of postinvasive resistance remains to be elucidated. In this review, we describe the current understanding of the molecular background of the Arabidopsis nonhost resistance against Colletotrichum fungi and discuss perspectives for future research on this durable resistance.  相似文献   

9.
Citrus canker, caused by the bacterial pathogen Xanthomonas citri subp. Citri (Xcc), is a serious disease reported in most citrus-producing areas around the world. Although different levels of field resistance to citrus canker have been reported in sweet oranges, they are usually not sufficient to provide adequate control of the disease. Ectopic over-expression of antibacterial genes is one of the potential strategies to increase plant resistance to bacterial diseases. Previous in vitro results showed that sarcotoxin IA, an antimicrobial peptide isolated from the flesh fly (Sarcophaga peregrina), can be efficient to control different plant pathogenic bacteria, including Xcc. Transgenic “Pera” sweet orange (Citrus sinensis [L.] Osbeck) plants constitutively expressing the sarcotoxin IA peptide fused to the PR1a signal peptide from Nicotiana tabacum for secretion in the intercellular space were obtained by Agrobacterium-mediated transformation using thin sections of mature explants. Citrus canker resistance evaluation in leaves of transgenic and non-transgenic plants was performed through inoculations with Xcc by infiltration and spraying. The Xcc population was up to 2 log unit lower in leaves of the transgenic plants compared to those of non-transgenic controls. Incidence of canker lesions was significantly higher in non-transformed controls (>10 lesions/cm2) than in the transgenic plants (<5 lesions/cm2) after injection infiltration or spraying with Xcc inoculum. Accumulation of sarcotoxin IA peptide in sweet orange tissue did not cause any deleterious effects on the growth and development of the transgenic plants, indicating this approach is suitable to provide resistance to citrus canker.  相似文献   

10.
Fungal leaf blast, caused by Pyricularia oryzae, is a devastating disease of rice plants that annually causes severe production losses worldwide and is one of the top 10 fungal diseases that threaten global food security. Thus, a reliable control strategy against this disease is essential. In this study, the antagonistic activity of indigenous phyllosphere actinomycetes was elucidated against P. oryzae in vitro and in planta to develop an efficient, effective and environmental friendly approach to protect rice plants against P. oryzae. Of 75 isolates of actinomycetes isolated from the rice phyllosphere, 18 isolates inhibited P. oryzae by >45%. According to analysis of their 16 S rRNA gene sequences, the majority of the 18 isolates belonged to Streptomyces genera; others were identified as belonging to Saccharothrix, Gordonia, or Lentzea. Isolates that potentially produced a bioactive compound(s) were identified among the 18 isolates: 17 isolates (94.44%) had a domain marker for nonribosomal peptide synthetase (NRPS) gene and 12 (66.67%) had type-I polyketide synthase (PKS) gene in their corresponding genome. Interestingly, isolates JSN1.9, SKB2.14, and SKB2.3 suppressed disease suppression by approximately 88%. To our knowledge, this is the first report on the application of rice-phyllosphere actinomycetes producing bioactive compounds to control leaf blast disease in Indonesia. Thus, these findings have escalated the potential application of phyllosphere actinomycetes as a supreme biocontrol agent against fungal leaf blast disease.  相似文献   

11.
Antifungal activity of plant-derived compounds can be exploited in disease management systems to improve sustainability and replace synthetic molecules. In this study, four crude hydroethanolic extracts of leaves, collected from Italian Solanum spp. landraces, were selected to evaluate their ability to suppress Sclerotinia minor Jagger, a great threat to lettuce production worldwide. In vitro fungal development was inhibited by Solanum melongena L. and S. aethiopicum L. extracts showing a dose-dependent correlation. At the highest concentration tested in the current experiments (45 mg mL?1) antifungal activity caused up to 90% growth reduction. The exposure of the fungus to S. aethiopicum extracts incited pronounced changes in the hyphal morphology as observed under light microscopy. Consistently, under laboratory conditions, in planta application of the active extracts on lettuce significantly reduced Sclerotinia drop disease in comparison to non-treated controls. Phytochemical composition was determined by liquid chromatography/mass spectrometry (LC/MS) analyses. Four secondary metabolites differentially present in the extracts, identified as n-caffeoylputrescine, chlorogenic acid, isoquercitrin and solasodoside A, are hypothesized to play a crucial role in mechanisms underlying biological effects of extracts. PCA analysis showed positive correlations of these compounds with the overall control ability of the extracts. The results indicated that foliar material from cultivated eggplant could be suitable to produce biological-based remedies for controlling plant diseases.  相似文献   

12.
With three plant pathogens,Botrytis cinerea, Venturia inaequalis and Puccinia graminis f. sp.tritici, the time course of sterol biosynthesis during spore germination was examined by labeling experiments along with the question whether this pathway could be inhibited by triazole fungicides. Conidia ofB. cinerea andV. inaequalis are able to synthesize sterols immediately after the beginning of the germination process when the germ tubes have not yet emerged. On the contrary uredospores ofP. graminis start sterol biosynthesis after 6 to 8 h germination time almost at the end of the germ tube phase, indicating that sterol reserves of the spores are likely to be used for the germ tube growth.The sterol C-14 demethylation appeared to be the rate limiting step within the sterol biosynthetic pathway: the half life of 24-methylenedihydrolanosterol was less than 1 h forB. cinerea. It was more than 1 h forV. inaequalis and 3 h forP. graminis. Independent of these differences in the time course of sterol biosynthesis and in the C-14 demethylation rate, the synthesis of sterols in germinating spores was strongly inhibited by triazole fungicides in all three pathogens examined. In contrast toP. graminis, this inhibition could be demonstrated withB. cinerea andV. inaequalis even in ungerminated conidia, indicating that the fungicides were rapidly taken up and reached their target within 1 or 2 h. These results are discussed along with the question whether spore germination can be used as a bioassay for the estimation of sensitivities of triazole fungicides.  相似文献   

13.
Tomato severe rugose virus (ToSRV) is a serious and prevalent begomovirus that causes severe mosaic and yield loss of tomato plants in Brazil. The virus is transmitted by Bemisia tabaci bitotype B (MEAM1) in a persistent circulative manner. This study evaluated the efficacy of cyantraniliprole foliar spray, cyantraniliprole root drenching, spiromesifen, thiamethoxam, and cartap on the mortality of Bemisia tabaci byotipe B and simulated primary and secondary transmission of ToSRV. None of the insecticides were effective in controlling primary transmission of ToSRV by B. tabaci. Cyantraniliprole root drenching, cartap, and cyantraniliprole foliar spray were effective in controlling secondary transmission of the virus, and infections were reduced by 94.5, 89.6, and 81%, respectively, compared to each of their controls. Thiamethoxam and spiromesifen did not provide effective control of secondary infection. Elimination of external sources of inoculum before starting new plantings and rational use of insecticides to reduce secondary infection may contribute to better disease management of tomato crops.  相似文献   

14.
Nilaparvata lugens (Stål) is one of the major pests of rice throughout tropical and temperate Asia. Indiscriminate use of insecticides for suppressing N. lugens has resulted in the development of resistance to multiple insecticide classes, causing frequent control failures in the field. Analysis of gut bacterial diversity within an insect host is the initial step towards understanding the ecological roles of the symbionts. Present study aimed to survey the bacterial diversity associated with laboratory-reared (insecticide-susceptible) and field-collected (insecticide-resistant) populations of N. lugens by culture-dependent and PCR-Denaturing Gradient Gel Electrophoresis (DGGE) methods. Seventeen bacterial isolates were obtained by the culture-dependent method. Molecular characterization using the 16S rRNA gene and phylogenetic analysis revealed that the isolates belonged to Firmicutes and Proteobacteria. Taxonomic assignment placed these isolates into seven families representing 10 genera. Enterobacteriaceae was the most dominant family with its occurrence in four out of the five populations studied. The DGGE profiles indicated a low complex gut bacteria associated with N. lugens with limited number of bands. The Shannon-Wiener index ranged from 0.898 in insecticide-susceptible population to 0.946–1.035 in resistant populations. Sequencing and phylogenetic analysis revealed that the DGGE bands belonged to Firmicutes, Proteobacteria and Bacteriodetes. Results of this study illustrated that gut bacterial community associated with N. lugens is dominated by Proteobacteria and Firmicutes. Present findings could provide the basis for future work on the possible role of the bacterial symbionts in insecticide resistance and to formulate potential resistance management strategies.  相似文献   

15.
Blackleg disease, caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, is one of the most devastating disease of Brassica species worldwide. To date, a total of 20 race-specific blackleg resistance (R) genes have been reported and all of those loci are located in either the A or B genomes of various Brassica species. The B. oleracea genome (CC) shares a high ancestral synteny with the A genome of B. rapa, suggesting the presence of qualitative (race specific) resistance to blackleg disease is also possible in B. oleracea germplasm. In the present study the C genome of Korean B. oleracea germplasm was screened for the presence of blackleg R genes. Thirty-two inbred cabbage lines with unknown resistance profiles, along with five control B. napus lines with well-characterised race-specific R genes, were assessed for cotyledon resistance against two L. maculans isolates with known and highly-contrasting avirulence gene (Avr) profiles. Two cabbage accessions were identified which produced a strong resistance when challenged with either isolate, demonstrating the presence of effective blackleg R genes in the cabbage C genome. Additionally, 16 microsatellite markers linked to seven different R genes of the B. napus A genome were converted into markers for their homologous regions on the B. oleracea C genome. These markers were used to screen all B. oleracea lines to assess if the novel C genome R genes were syntenous to known R gene-homologous regions of the A genome. The resistant cabbage lines offer C genome R genes for the protection of B. oleracea varieties against incursion of blackleg disease, as well as novel additional resistance sources for introgression into B. napus and B. carinata breeding material.  相似文献   

16.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum species complex (FGSC) and also by other species of this genus, is one of the most destructive cereal diseases with high yield losses and mycotoxin contamination worldwide. The aim of this study was to identify Fusarium species, characterize their virulence factors such as trichothecene genotypes and cell wall degrading enzymes (CWDEs), and also investigate virulence of the isolates obtained from wheat plants with FHB symptoms in Golestan province of Iran. Among 41 isolates tested, 24 were F. graminearum sensu stricto (s.s.), six were F. proliferatum, four were F. culmorum, three isolates belonged to each of F. subglutinans and F. meridionale species and one isolate of F. asiaticum was identified. Among Fusarium isolates, the nivalenol (NIV) genotype could be found more frequently, followed by 3-acetyl deoxynivalenol (3-ADON) and 15-acetyl deoxynivalenol (15-ADON) genotypes. Production of trichothecenes in autoclaved rice cultures was analyzed by gas chromatography (GC) and confirmed by GC–MS. The mean levels of NIV, 3-ADON and 15-ADON produced by Fusarium spp. were 824, 665 and 622 μg kg?1, respectively. All Fusarium isolates were capable of producing CWDEs, mainly cellulase and xylanase. Lipase and pectinase activities appeared later and at less quantities. In overall, the isolates FH1 of F. graminearum and FH8 of F. proliferatum showed the maximum activity of CWDEs, which was correlated with high level of their virulence and aggressiveness on wheat. On the other hand, correlation was observed between the level and type of trichothecene produced by each isolate and its virulence on wheat. Virulence of trichothecene producing isolates was higher than that of non-trichothecene producing isolates. Our results suggested that CWDEs and trichothecenes, as virulence factors, have considerable roles on virulence and aggressiveness of the pathogen. This is the first report on the effect of trichothecenes and CWDEs on virulence and aggressiveness of Fusarium spp. associated with FHB disease in wheat growing regions of Iran.  相似文献   

17.
Acetylated glyceride (Bemidetach?EC)—a food additive—repels adult sweet potato whiteflies (Bemisia tabaci) and inhibits their mating behavior. We evaluated the effects of acetylated glyceride spraying of greenhouse-grown tomato plants on infestation with B. tabaci and the occurrence of Tomato yellow leaf curl virus (TYLCV) disease under commercial-like conditions. The abundance of adult B. tabaci was significantly reduced by three sprayings of acetylated glyceride, and the TYLCV incidence was significantly suppressed to less than 30% of that in the untreated control. These results suggest that acetylated glyceride sprays suppress the secondary spread of TYLCV in greenhouse-grown tomatoes by lessening B. tabaci adult density.  相似文献   

18.
In this study a survey for determining the parasitoid complex of Planococcus ficus (Signoret) (Hemiptera: Coccomorpha: Pseudococcidae) was conducted in Adana and Mersin Provinces, Turkey. Five primary, two primary/secondary, two secondary parasitoid species associated with P. ficus, were found. Clausenia josefi Rosen and Chartocerus kurdjumovi (Nikol’skaya) are new records for Turkish fauna.  相似文献   

19.
Parasitoids are characterized by a defined range of hosts, either more specialist or generalist. Under natural conditions, females may encounter different host species on the same plant or in the same location. In this case, their preference for one host could influence their choice. However, the presence of less suitable hosts may also affect their choice and, in some cases, may reduce their interest in a patch where both preferred and less preferred hosts are available. The aim of the present study was to test the consequences of the simultaneous presence of three cereal aphids (Sitobion avenae Fabricius, Metopolophium dirhodum Walker, and Rhopalosiphum padi Linnaeus) on the parasitism by two of their parasitoids, Aphidius ervi Haliday and Praon volucre Haliday. Firstly, in the no-choice experiment, A. ervi parasitized on S. avenae at a significantly higher rate as compared to M. dirhodum, whereas no parasitism on R. padi was observed. P. volucre parasitized the three species of cereal aphids with a significant preference for S. avenae. Interestingly, when two or three host species were offered simultaneously in the same quantity to pairs of parasitoids, the level of parasitism was less than that observed for one host species alone. This observation exhibits a distractive effect on non-host species, from the defense mechanism of a non-suitable host or from the perception of bad quality patches. These results raise the question of the practical application of inundative release of parasitoids for biocontrol when several hosts are available simultaneously.  相似文献   

20.
The toxins produced by Rhizoctonia solani are important causal agents of rice sheath blight. Effective detection of such toxins could improve the determination of the virulence of this agronomically important fungal pathogen. As such, the objective of the current study was to investigate the use of a variety of plant species [annual sowthistle (Sonchus oleraceus L.), Chinese cabbage (Brassica chinensis), spinach (Spinacia oleracea L.), lettuce (Lactuca sativa L. var. sativa), long leaf lettuce (Lactuca sativa var. ramosa Hort) and tobacco (Nicotiana tabacum)] for qualitative detection of R. solani crude toxins (RHCT) to replace the current rice leaf sheath based assay. This is constrained as rice plant takes long time to grow before the leaf sheath can be harvested From the initial screen, it was found that detached lettuce leaves provided the best alternative to rice material. Quantitative determination of RHCT activity by the phosphorus extravasation method was then performed on both rice (Oryza sativa L.) and lettuce. The results demonstrated that the detached lettuce leaves had the advantages of fast onset of symptoms, high sensitivity and non-perishability after inoculation. The quantity of phosphorus exosmosis observed in both lettuce leaves and rice leaf sheaths were significantly positively correlated. These data indicate that lettuce leaves can be used as a substitute material for rice leaf sheaths, with which to study the RHCT both qualitatively and quantitatively. The current study provides a new way to qualitatively and quantitatively detect RHCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号