首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 764 毫秒
1.
为了研究养猪舍不同发酵床垫料及发酵床底部表层土壤中重金属Zn的累积特征与活性大小,以节约经济成本和适宜猪生长发育为前提选取3种发酵床垫料组合:FJ(40%稻壳+60%菌糠)、FD(40%稻壳+60%锯木屑)、FW(40%稻壳+60%酒糟),采用物质流分析(MFA)和潜在生态危害评价的方法进行研究。结果表明,一个在养猪周期过后,重金属Zn在垫料FD中累积量较大;而不同垫料对Zn活性大小的影响不同,FD中有效态Zn活性显著高于其他2种,所占比例高达25.01%,其次是FJFW(P0.05);表层土壤中,有效态Zn活性高低差异不显著(P0.05)。所选取的3种垫料中,尽管Zn在FJ中累积量最小,渗漏到土壤中的全量Zn与有效态活性与其他2种垫料无明显差异,然而其潜在生态风险最小,因此从控制Zn污染角度出发,该配比垫料优于FD与FW。经过潜在生态危害评价分析,3种垫料在养殖结束后其潜在生态危害均未超过轻微生态危害临界值(Ei r≤40),在不断补充垫料的前提下发酵床可以使用约10年。  相似文献   

2.
【目的】 氨挥发和氧化亚氮排放是氮素损失的重要途径。内蒙古阴山北麓滴灌马铃薯田种植面积大,普遍存在过量施肥的问题。研究适宜的氮肥用量,利用脲酶抑制剂来抑制氨挥发和氧化亚氮排放,对提高当地氮肥利用率和减缓环境压力具有重要意义。 【方法】 田间试验分两年在内蒙古武川县两个村庄进行,供试地块种植马铃薯,采用滴灌技术。2015年设置4个处理,分别为:不施氮 (CK);优化施氮模式,施N 180 kg/hm2 (Opt);优化施氮减半模式,施N 90 kg/hm2 (OptR);农民传统施肥量,施N 270 kg/hm2 (Con)。2016年试验处理根据2015年的结果进行调整,设置4个处理:不施氮 (CK);优化施氮添加脲酶抑制剂模式,施N 162.6 kg/hm2 (OptI);优化施氮模式, 施N 162.6 kg/hm2 (Opt);农民传统施肥量,施N 320 kg/hm2 (Con)。分别采用静态暗箱法和通气法采集氧化亚氮和氨气,每次施肥后,两天采集一次气体样品,氧化亚氮连续取样三次,氨气持续取样直至气体含量低于仪器检测值下限。 【结果】 氨挥发速率在施入尿素后第1~5 d出现峰值。Con处理2015和2016年氨挥发的最大峰值分别是13.2 mg/(m2·d) 和5.3 mg/(m2·d),氨挥发累积量分别为N 3.61和3.96 kg/hm2;Opt处理的最大峰值分别为8.69 mg/(m2·d) 和3.19 mg/(m2·d),累积挥发量分别为N 3.11和2.72 kg/hm2;OptR处理氨挥发速率最大峰值为5.63 mg/(m2·d),氨挥发累积量为2.66 kg/hm2,OptI处理氨挥发速率最大峰值为3.67 mg/(m2·d),氨挥发累积量为2.50 kg/hm2。氨挥发累积量随着氮肥用量的增加而增多,Con处理的氨挥发量显著高于其他处理;氧化亚氮排放量在施入尿素后第3 d达到峰值,Con处理2015和2016年的氧化亚氮排放峰值分别达到0.3 mg/(m2·d) 和0.2 mg/(m2·d),氧化亚氮累积排放量分别为N 1.96和1.18 kg/hm2,显著高于其他处理;Opt处理两年的排放最大峰值均为0.11 mg/(m2·d),氧化亚氮累积排放量为N 0.95、0.69 kg/hm2;OptR的氧化亚氮排放量最大峰值为0.09 mg/(m2·d),累积量为0.90 kg/hm2。OptI的氧化亚氮排放量最大峰值为0.12 mg/(m2·d),氧化亚氮累积量为0.66 kg/hm2。相比Opt,OptI处理的氨挥发和氧化亚氮累积排放量分别降低了11.8%和16.7%,但未达到显著水平。氨挥发速率与土壤温度呈显著正相关,土壤温度的升高会显著增加氨挥发速率,土壤湿度的增加会抑制氨挥发速率,影响不显著。氧化亚氮的排放与土壤湿度呈显著正相关,土壤中水分增加会显著增加氧化亚氮的排放量,土壤温度与氧化亚氮排放成负相关,影响未达到显著水平。 【结论】 与农民传统施肥模式相比,优化施氮模式可显著降低氨挥发和氧化亚氮排放量,添加脲酶抑制剂未达到显著降低尿素氨挥发量和氧化亚氮排放的效果。土壤湿度和土壤温度在一定程度上影响着氨挥发速率和氧化亚氮的排放通量。在供试地区马铃薯田的施肥管理中,推荐可有效地降低氨挥发和氧化亚氮排放量的优化施氮模式。   相似文献   

3.
为研究在发酵床养猪过程中不同组成垫料的As、Hg累积规律,本文以木屑、稻壳和秸秆为原料,配制成3种垫料处理,分别为木屑(S)、木屑+稻壳(SR)和木屑+稻壳+秸秆段(SRS),在一年半的时间里,测定了4批育肥猪养殖结束时不同层次垫料中As、Hg含量,分析了长期使用后不同发酵床垫料中As、Hg累积情况,为发酵床废弃垫料的后续农用提供理论依据。结果表明,随着猪养殖批次的延长,3种处理及其不同层次垫料As、Hg含量均存在不同程度增加。4批猪养殖结束时,As累积量最大的是SRS处理的发酵床,为1921.7 mg·栏-1,Hg累积量最大的也是SRS处理的发酵床,为21.1 mg·栏-1。S、SR、SRS处理的As、Hg含量分别为2.921、2.190、2.621 mg·kg-1和0.048、0.036、0.042 mg·kg-1,均符合《农业行业标准有机肥料》(NY 525—2012)、《食用农产品产地环境质量评价标准》(HJ/T 332—2006)的标准限值。  相似文献   

4.
  目的  探讨液体肥滴灌施肥模式和常规施肥模式对设施生菜产量和氮损失(氨挥发、氧化亚氮排放、硝态氮淋洗)的影响。  方法  采用田间小区试验,以日光温室生菜为对象,共设3个处理,分别为液体肥优化施肥模式(LF,170 kg hm?2 N,基肥不施氮肥 + 3次追肥)、固体水溶肥常规施肥模式(CF,200 kg hm?2 N,基肥 + 2次追肥),以及不施氮对照(CK,0 kg hm?2 N,磷钾做基肥+清水滴灌)。安装水肥一体化设施进行追肥灌水,采用通气法和静态箱法收集并测定生菜生长季内氨挥发和氧化亚氮的排放。  结果  结果表明,与常规施肥处理(CF)相比,液体肥料处理(LF)在生长前期可以延迟氨挥发和氧化亚氮的排放高峰3 ~ 5 d,且在生长季内显著降低土壤氨挥发和氧化亚氮的排放量,减排率分别为24.6%和21.6%;应用液体肥料可以减少0 ~ 100 cm土层硝态氮残留21.0%,降低了氮素淋洗风险;与CF模式相比,LF模式在减氮15.0%的基础上,产量没有下降,氮肥利用率提高了32.4%。  结论  新型液体肥料优化施肥模式(LF)可以显著降低设施菜田氨挥发和氧化亚氮排放量,减轻土壤硝态氮淋洗风险,维持产量不降低并提高肥料利用效率,是一种节氮减排的绿色生产方式。  相似文献   

5.
日光温室栽培下土面及整棚氨挥发比较   总被引:1,自引:0,他引:1  
日光温室氮素投入量高,氨挥发损失是值得关注的问题之一。但目前对温室系统氨挥发排放测定多以土面氨挥发为主,而日光温室是一种半封闭式种植系统,由土面挥发出的部分NH3会被植物冠层吸收或溶解于棚膜水中回流于土壤,因此土面氨挥发难以准确反映日光温室排放到大气中氨的量,从而难以准确估计日光温室栽培系统NH3的实际排放量。为此,采用间歇式密闭室通气法连续测定了三季作物(番茄、西瓜、番茄)生长期间不同施肥处理(包括:不施氮+常规灌溉(N0+FI)、常规施氮+常规灌溉(FT+FI)、优化施氮+常规灌溉(OPT+OI)及优化施氮+优化灌溉(OPT+OI)4个处理)土面氨挥发损失量;同时连续两季采用风量罩测定通风口处气体流量,采用抽气法对通风口处氨浓度进行连续监测,以估算监测整棚(通风口处)氨挥发损失速率及损失量。结果表明,温室施肥后当天土面氨挥发速率出现峰值,7 d后施肥与未施肥对照无显著差异,三季种植期间各施氮处理其氨挥发排放量分别为N 2.82~4.97、6.59~9.97和15.77~21.83 kg hm-2,相应的氨挥发系数分别为0.64%~1.50%、3.11%~4.21%和2.59%~3.90%;整棚氨挥发速率趋势与土面氨挥发基本一致,整棚氨挥发量第二季及第三季分别为N 2.22 kg hm-2和N 2.92 kg hm-2,仅占土面表氨挥发的13.38%~33.69%,氨挥发系数仅为0.46%~1.48%,显著低于土面氨挥发量。可见若以土面氨挥发来估算日光温室氨挥发会显著高估了我国日光温室系统氨挥发损失量,建议采用整棚观测的方法估算日光温室体系氨排放损失。  相似文献   

6.
为研究在发酵床养猪过程中不同组成垫料的As、Hg累积规律,本文以木屑、稻壳和秸秆为原料,配制成3种垫料处理,分别为木屑(S)、木屑+稻壳(SR)和木屑+稻壳+秸秆段(SRS),在一年半的时间里,测定了4批育肥猪养殖结束时不同层次垫料中As、Hg含量,分析了长期使用后不同发酵床垫料中As、Hg累积情况,为发酵床废弃垫料的后续农用提供理论依据。结果表明,随着猪养殖批次的延长,3种处理及其不同层次垫料As、Hg含量均存在不同程度增加。4批猪养殖结束时,As累积量最大的是SRS处理的发酵床,为1 921.7 mg·栏~(-1),Hg累积量最大的也是SRS处理的发酵床,为21.1 mg·栏~(-1)。S、SR、SRS处理的As、Hg含量分别为2.921、2.190、2.621 mg·kg~(-1)和0.048、0.036、0.042 mg·kg~(-1),均符合《农业行业标准有机肥料》(NY 525—2012)、《食用农产品产地环境质量评价标准》(HJ/T 332—2006)的标准限值。  相似文献   

7.
典型双季稻田基施碳酸氢铵和尿素的氨挥发损失研究   总被引:2,自引:0,他引:2  
采用密闭室连续抽气法研究了湖南典型双季稻田,尿素和碳酸氢铵基施后的氨挥发特征。结果表明,基施碳酸氢铵(NC)稻田初始氨挥发强度和氨挥发总量大于基施尿素(UR)稻田。早稻季NC处理稻田氨挥发排放量为45.19 kg·hm-2,损失率达30.12%,UR处理氨挥发排放量为32.93 kg·hm-2,损失率达21.95%;晚稻季NC处理稻田氨挥发排放量为70.91 kg·hm-2,损失率达31.93%,UR处理氨挥发排放量为61.78 kg·hm-2,损失率达27.04%。基施尿素能够显著降低稻田氨挥发排放,减少氮素损失。  相似文献   

8.
湖南典型双季稻田氨挥发对施氮量的响应研究   总被引:6,自引:2,他引:4  
选择湖南典型双季稻田为对象,采用密闭室连续抽气法研究了不同施氮量下的氨挥发损失。结果表明,稻田氨挥发总量随施氮量增加而显著增加,在当地农民习惯施肥水平(早稻150 kg/hm2、晚稻180 kg/hm2)下,早稻氨挥发损失氮量占施氮量的39.8%,晚稻则达46.9%,双季稻平均氨挥发损失率达43.7%。氨挥发通量与田面水的NH+4-N浓度和 pH 之间均存在极显著的正相关关系。可见,氨挥发是该区域稻田氮素损失的最主要途径之一。  相似文献   

9.
太行山前平原农田生态系统氮素循环与平衡研究   总被引:17,自引:0,他引:17  
在中国科学院栾城生态农业试验站1公顷小麦玉米轮作农田,运用乙炔抑制原状土柱培育法、微气象学法和陶土头多孔杯水量平衡法分别定量测定了氮素硝化反硝化损失、氨挥发、NO3--N淋溶损失等氮素循环转化途径。研究结果表明,每年因氨挥发而造成的肥料氮损失量为N.60.kg/hm2,占施入肥料氮的15%;NO3--N淋溶损失量为N.68~4.kg/hm2,占肥料施用量的1.4%2~0.3%;每年因硝化反硝化过程造成的肥料损失量为N.2.021~0.49.kg/hm2,占肥料施入量的0.51%1~.37%。氨挥发、NO3--N淋溶和硝化反硝化损失主要发生在施肥灌溉/降雨之后,玉米季肥料损失明显高于小麦生长季节。氨挥发和NO3--N淋溶损失是本区域农田氮素损失的主要途径,是氮肥利用率低的重要原因。在当地农民所采用的常规农业管理措施下,小麦玉米轮作农田氮素平衡处于盈余状态,小麦季盈余N+115.5~+124.5.kg/hm2,明显高于玉米季;由于玉米季氮素损失严重,氮素盈余较少,甚至出现亏缺,玉米季氮素平衡状况为-54.6~+14.3.kg/hm2。  相似文献   

10.
不同施氮量下双季稻连作体系土壤氨挥发损失研究   总被引:11,自引:2,他引:9  
采用密闭室间歇通气法研究双季稻连作体系不同施氮量下土壤氨挥发损失。结果表明,早稻氨挥发损失主要发生在施肥后的15d内,第3~5d出现峰值,损失总量为N 22.60~162.0 kg /hm2,损失率为 29.29%~52.32%;晚稻氨挥发主要发生在施肥后的11d内,第3 d出现峰值,损失总量为N 22.35~141.4 kg /hm2,损失率为35.75%~46.82%。早、晚稻各生育期连作周期的氨挥发量均与施氮量呈显著线性关系。  相似文献   

11.
Abstract

Both nitrogen (N) deposition and biochar can affect the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and ammonia (NH3) from different soils. Here, we have established a simulated wet N deposition experiment to investigate the effects of N deposition and biochar addition on N2O and CO2 emissions and NH3 volatilization from agricultural and forest soils. Repacked soil columns were subjected to six N deposition events over a 1-year period. N was applied at rates of 0 (N0), 60 (N60), and 120 (N120) kg Nh a?1 yr?1 without or with biochar (0 and 30 t ha?1 yr?1). For agricultural soil, adding N increased cumulative N2O emissions by 29.8% and 99.1% (< 0.05) from the N60 and N120 treatments, respectively as compared to without N treatments, and N120 emitted 53.4% more (< 0.05) N2O than the N60 treatment; NH3 volatilization increased by 33.6% and 91.9% (< 0.05) from the N60 and N120 treatments, respectively, as compared to without N treatments, and N120 emitted 43.6% more (< 0.05) NH3 than N60; cumulative CO2 emissions were not influenced by N addition. For forest soil, adding N significantly increased cumulative N2O emissions by 141.2% (< 0.05) and 323.0% (< 0.05) from N60 and N120 treatments, respectively, as compared to without N treatments, and N120 emitted 75.4% more (< 0.05) N2O than N60; NH3 volatilization increased by 39.0% (< 0.05) and 56.1% (< 0.05) from the N60 and N120 treatments, respectively, as compared to without N treatments, and there was no obvious difference between N120 and N60 treatments; cumulative CO2 emissions were not influenced by N addition. Biochar amendment significantly (< 0.05) decreased cumulative N2O emissions by 20.2% and 25.5% from agricultural and forest soils, respectively, and increased CO2 emissions slightly by 7.2% and NH3 volatilization obviously by 21.0% in the agricultural soil, while significantly decreasing CO2 emissions by 31.5% and NH3 volatilization by 22.5% in the forest soil. These results suggest that N deposition would strengthen N2O and NH3 emissions and have no effect on CO2 emissions in both soils, and treatments receiving the higher N rate at N120 emitted obviously more N2O and NH3 than the lower rate at N60. Under the simulated N deposition circumstances, biochar incorporation suppressed N2O emissions in both soils, and produced contrasting effects on CO2 and NH3 emissions, being enhanced in the agricultural soil while suppressed in the forest soil.  相似文献   

12.
Nitrogen (N) gas losses can be reduced by using enhanced-efficiency N (EEN) fertilizers such as urease inhibitors and coating technologies. In this work, we assessed the potential of EEN fertilizers to reduce winter losses of nitrous oxide (N2O-N) and ammonia (NH3-N) from a subtropical field experiment on a clayey Inceptisol under no-till in Southern Brazil. The EEN sources used included urea containing N-(n-butyl) thiophosphoric triamide (UR+NBPT), polymer-coated urea (P-CU) and copper-and-boron-coated urea (CuB-CU) in addition to common urea (UR) and a control treatment without N fertilizer application. N2O-N and NH3-N losses were assessed by using the static chamber method and semi-open static collectors, respectively. Both N2O-N and NH3-N exhibited two large peaks with an intervening period of low soil moisture and air temperature. Although the short-term effect was limited to the first few days after application, UR + NBPT urea decreased soil N2O-N emissions by 38% relative to UR. In contrast, urease inhibitor technology had no effect on NH3-N volatilization. Both coating technologies (CuB-CU and P-CU) were ineffective in reducing N losses via N2O production or NH3 volatilization. The N2O emission factor (% N applied released as N2O) was unaffected by all N sources and amounted to only 0.48% of N applied—roughly one-half the default factor of IPCC Tier 1 (1%). Based on our findings, using NBPT-treated urea in the cold winter season in subtropical agroecosystems provides environmental benefits in the form of reduced soil N2O emissions; however, fertilizer coating technologies provide no agronomic (NH3) or environmental (N2O) advantages.  相似文献   

13.
不同水分模式对山东茶园土壤氮素动态的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
以山东茶园土壤为研究对象,采用室内好气培养法,分析了恒定湿润和干湿交替模式下土壤氮素转化特征。结果表明:(1)至培养结束时,恒湿模式下60%WHC处理土壤净矿化量和净硝化量较高;脲酶和亚硝酸还原酶活性较强。20%WHC处理下土壤净矿化速率、净硝化速率严重受到抑制。(2)干湿交替模式下复水后土壤净矿化量、净硝化量以及酶活性得到增强,并出现"脉冲"式变化。(3)2种模式下氮素损失均为N_2O排放量大于NH_3挥发量。N_2O排放量与土壤含水量呈正比,NH_3挥发量与土壤含水量呈反比。干湿交替均增强土壤N_2O和NH_3排放量。(4)结构方程模型(SEM)揭示土壤含水量通过直接或间接作用影响土壤氮素转化(p0.001),脲酶显著影响恒湿模式下土壤氮素转化(p0.001),而亚硝酸还原酶在2种模式下均显著负影响氮素转化(p0.001)。研究结果有助于更好地调节茶园生态系统中土壤管理及氮肥的使用。  相似文献   

14.
Applications of dairy farm effluents to land may lead to ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. Nitrogen (N) transformation process inhibitors, such as urease inhibitors (UIs) and nitrification inhibitors (NIs), have been used to reduce NH3 and N2O losses derived from agricultural N sources. The objective of this study was to examine the effects of amending dairy effluents with UI (N-(n-butyl) thiophosphoric triamide (NBTPT)) and NI (dicyandiamide (DCD)) on NH3 and N2O emissions. Treatments included either fresh or stored manure and either fresh or stored farm dairy effluent (FDE), with and without NBTPT (0.25 g kg?1 N) or DCD (10 kg ha?1), applied to a pasture on a free-draining volcanic parent material soil. The nutrient loading rate of FDE and manure, which had different dry matter contents (about 2 and 11 %, respectively) was 100 kg N ha?1. Application of manure and FDE led to NH3 volatilization (15, 1, 17 and 0.4 % of applied N in fresh manure, fresh FDE, stored manure and stored FDE, respectively). With UI (NBTPT), NH3 volatilization from fresh manure was significantly (P?<?0.05) decreased to 8 % from 15 % of applied N, but the UI did not significantly reduce NH3 volatilization from fresh FDE. The N2O emission factors (amount of N2O–N emitted as a percentage of applied N) for fresh manure, fresh FDE and stored FDE were 0.13?±?0.02, 0.14?±?0.03 and 0.03?±?0.01 %, respectively. The NI (DCD) was effective in decreasing N2O emissions from stored FDE, fresh FDE and fresh manure by 90, 51 and 46 % (P?<?0.05), respectively. All types of effluent increased pasture production over the first 21 days after application (P?<?0.05). The addition of DCD resulted in an increase in pasture production at first harvest on day 21 (P?<?0.05). This study illustrates that UIs and NIs can be effective in mitigating NH3 and N2O emissions from land-applied dairy effluents.  相似文献   

15.
南京郊区番茄地中氮肥的气态氮损失   总被引:13,自引:0,他引:13       下载免费PDF全文
采用田间试验研究了番茄地施用化学氮肥后的氨挥发、反硝化损失和N2O排放及其影响因素。氨挥发采用通气密闭室法测定,反硝化损失(N2+N2O)采用乙炔抑制-土柱培养法测定,不加乙炔测定N2O排放。结果表明,番茄生长期间全部处理均未检测到氨挥发,其原因是土表氨分压低于检测灵敏度,较低的氨分压是由于表层土壤的铵态氮浓度和pH都不高所致。在番茄生长期间,对照区即来自有机肥和土壤本身的反硝化损失和N2O℃排放量相当高,反硝化损失总量高达N29.6kghm^-2,N2O排放量为N7.76kghm^-2。施用化学氮肥显著增加了反硝化损失和N2O排放,3个施用化学氮肥处理的反硝化损失变化在N40.8~46.1kghm^-2之间,占施入化肥氮量的5.50%~6.01%;N2O排放量为N13.6~17.6kghm^-2,占施入化肥氮量的2.62%~4.92%;与尿素相比,包衣尿素未能显著减低反硝化损失和N2O排放。施用尿素的处理在每次追肥后,耕层土壤均会出现NO3^--N高峰,继之的反硝化和N2O排放高峰。反硝化速率与土壤含水量呈极显著正相关。总的看来,番茄生长期间没有氨挥发,而硝化反硝化是氮素损失的重要途径之一。  相似文献   

16.
The gaseous losses of fertilizer nitrogen (N) applied to agroecosystems are a major contributor to a host of environmental problems, inefficient production systems, and decreased N-use efficiency. These losses lead to the wastage of resources, increasing the greenhouse effect and harming human health. The red soil hilly region of Southeast China houses the biggest orchard area of the world, and nitrogen fertilizers are usually heavily applied to the orchard systems in China. Therefore, this study aimed to measure the gaseous losses of the fertilizer N by ammonia (NH3) volatilization and denitrification losses using the venting method and acetylene inhibition method respectively, and to assess the potential environmental risk of NH3 and nitrous oxide (N2O) emission from this orchard system based on the recent orchard management practices. An experiment was conducted in an Ougan citrus (Citrus reticulata Blanco ‘Suavissima’) orchard in the red soil hilly region of Southeast China. Three fertilization treatments, including the control (no N fertilizer, CK), poultry manure (at a rate of 6.3 t/ha, OM), and conventional fertilization (OM 6.3 t/ha + chemical fertilizer 393 kg N/ha, CF), were used. In all treatments, the fertilizers were incorporated into the soil after application. The test results, which were continuously determined within one year, indicated that the NH3 volatilization losses accounted for 4.5% of the OM nitrogen (OM-N) and 2.9% of the CF nitrogen (CF-N), whereas the denitrification N losses accounted for 2.1% of the OM-N and 2.9% of the CF-N. Overall, the total gaseous N losses (including NH3 volatilization losses and denitrification N losses) were 5.8% in the CF treatment. A relatively higher N2O flux, accounting for 1.8% of the CF-N, emitted from the CF treatment.  相似文献   

17.
We examined the influence of various urea granule sizes (< 2, 7.0, 9.9 and 12.7 mm) applied into a silt loam soil (experiment 1) and soil types (sandy, silt and clay loam) treated with the largest granule (experiment 2) on gaseous N loss (except N2) at field capacity. The prilled urea (PU) was mixed into the soil whereas the urea granules were point-placed at a 5.0-cm depth. For experiment 1, N2O emission was enhanced with increasing granule size, ranging from 0.17–0.50% of the added N during the 45-day incubation period. In the case of experiment 2, the sandy loam soil (0.59%) behaved similarly with the silt loam (0.53%) but both showed remarkably lower emissions than were found for the clay loam soil (2.61%). Both nitrification and N2O emissions were delayed by several days with increasing granule size, and the latter was influenced by mineral N, soil water and pH. By contrast, the NH3 volatilization decreased with increasing granule size, implying the inhibition of urease activity by urea concentration gradients. Considering both experimental results, the NH3 loss was highest for the PU-treated (1.73%) and the larger granules regardless of soil type did not emit more than 0.27% of the added N over 22 days, possibly because the high concentrations of either mineral N or NH4 + in the soil surface layer (0–2.5 cm) and the high H+ buffering capacity might regulate the NH3 emission. Similar to the pattern of NH3 loss, NOx emission was noticeably higher for the PU-treated soil (0.97%) than for the larger granule sizes (0.09–0.29%), which were the highest for the sandy and clay loam soils. Positional differences in the concentration of mineral N and nitrification also influenced the NOx emission. As such, total NH3 loss was proportional to total NOx emission, indicating similar influence of soil and environmental conditions on both. Pooled total N2O, NH3 and NOx emission data suggest that the PU-treated soil could induce greater gaseous N loss over larger urea granules, largely in the form of NH3 and NOx emissions, whereas a similar increase with the largest granule size was mainly due to the total N2O flux.  相似文献   

18.
Abstract

In many poultry producing areas, the amounts of poultry litter generated exceeds the amounts needed for application to soil, as fertilizer, at environmentally safe rates. To reduce the amounts of litter produced, Ndegwa et al. (1991) proposed fractionating the litter to generate a fine fraction that could be used as fertilizer, and a coarser fraction that could be recycled into poultry houses as bedding material. Because the fine fraction may need to be stored for several months before land application, knowledge of the changes that occur during storage would be important from the point of view of litter utilization. The objective of this study was to monitor water and inorganic nitrogen (N) contents, as well as potential ammonia (NH3) volatilization and carbon dioxide (CO2) emission in samples of whole litter and fine fraction stored in an unheated building for 16 weeks. Potential NH3 volatilization and CO2 emission were measured at unamended water contents and at a water content of 0.5 kg kg‐1. Water and inorganic N contents of the whole litter and fine fractions showed some fluctuations during the first 4 weeks, but remained relatively stable from weeks 4 to 16. At unamended water contents, potential NH3 volatilization and CO2 emission were relatively low and similar for the whole litter and the fine fraction. Also, potential NH3 volatilization remained stable whereas CO2 emission decreased with time. Increasing the water content to 0.5 kg kg‐1significantly increased potential NH3 volatilization and CO2 emission in the whole litters and fine fractions, with larger increases usually observed in the fine fractions. At 0.5 kg kg‐1, both potential NH3 volatilization and CO2emission decreased with time. These results suggest that the fine fraction and the whole litter should be stored at relatively low water contents to prevent N losses through NH3 volatilization and possibly denitrification.  相似文献   

19.
On irrigated agricultural soils from semi-arid and arid regions, ammonia (NH3) volatilization and nitrous oxide (N2O) emission can be a considerable source of N losses. This study was designed to test the capture of 15N loss as NH3 and N2O from previous and recent manure application using a sandy, calcareous soil from Oman amended one or two times with 15N labeled manure to elucidate microbial turnover processes under laboratory conditions. The system allowed to detect 15N enrichments in evolved N2O-N and NH3-N of up to 17% and 9%, respectively, and total N, K2SO4 extractable N and microbial N pools from previous and recent 15N labeled manure applications of up to 7%, 8%, and 15%. One time manured soil had higher cumulative N2O-N emissions (141 µg kg?1) than repeatedly manured soil with 43 µg kg?1 of which only 22% derived from recent manure application indicating a priming effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号