首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同光谱植被指数反演冬小麦叶氮含量的敏感性研究   总被引:6,自引:0,他引:6  
【目的】氮素是作物生长发育过程中最重要的营养元素之一,研究叶氮含量反演的有效光谱指标设置,为应用高光谱植被指数反演作物叶氮含量,以及作物的实时监测与精确诊断提供重要依据。【方法】以冬小麦为例,选取涵盖冬小麦全生育期不同覆盖程度225组冠层光谱与叶氮含量数据,通过遥感方法建立模型,模拟了不同光谱指标,即中心波长、信噪比和波段宽度对定量模型的影响,通过模型精度评价指标决定系数(coefficient of determination,R~2)、根均方差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均相对误差(mean relative error,MRE)和显著性检验水平(P0.01)确定最优模型及最佳指标,分析光谱指标对叶氮含量定量模型反演的敏感性和有效性。【结果】反演冬小麦叶氮含量的最佳植被指数为MTCI_B,与实测叶氮含量的相关性最好(R~2=0.7674,RMSE=0.5511%,MAE=0.4625%,MRE=11.11个百分点,且P0.01),对应的最佳指标为中心波长420 nm、508 nm和405 nm,波段宽度1 nm,信噪比大于70 DB;高覆盖状况反演的最优指数为RVIinf_r(R~2=0.6739,RMSE=0.2964%,MAE=0.2851%,MRE=6.44个百分点,且P0.01),最优中心波长为826 nm和760 nm;低覆盖状况反演的最优指数为MTCI(R~2=0.8252,RMSE=0.4032%,MAE=0.4408%,MRE=12.22个百分点,且P0.01),最优中心波长为750 nm、693 nm和680 nm;应用最适于高低覆盖的植被指数RVIinf_r和MTCI构建的联合反演模型(R~2=0.9286,RMSE=0.3416%,MAE=0.2988%,MRE=7.16个百分点,且P0.01),明显优于最佳单一指数MTCI_B;模拟Hyperion和HJ1A-HSI传感器数据,联合反演模型精度(R~2为0.92—0.93,RMSE在0.37%—0.39%,MAE为0.285%左右,MRE约为7.00个百分点)明显优于单一植被指数反演精度(R~2为0.79—0.81,RMSE为0.63%—0.66%,MAE为0.455%左右,MRE约为10.90个百分点)。【结论】利用高光谱植被指数可有效实现作物叶氮含量反演,作物叶氮含量定量反演对不同光谱指标—中心波长、信噪比和波段宽度,具有较强敏感性。应用多指数联合反演模型,可显著提高反演精度,并且联合反演模型在不同高光谱传感器下有一定普适性。  相似文献   

2.
博斯腾湖西岸湖滨带土壤盐分高光谱反演   总被引:3,自引:0,他引:3  
选取博斯腾湖西岸湖滨带为研究区,沿垂直湖岸线方向采集14个土壤剖面70个样本,利用ASD FieldSpec3地物光谱仪获取高光谱数据,基于Q型聚类分析研究不同含盐量土壤光谱特征,对土壤光谱反射率与含盐量做逐波段相关分析和显著性检验,筛选不同光谱变换下的敏感波段,通过多元逐步回归和偏最小二乘回归方法,分别以敏感波段和全波段光谱构建12个土壤含盐量反演模型,优选最佳反演模型。结果表明:17种高光谱变换中, 4种最优光谱变换使土壤含盐量与Savitzky-Golay平滑后的反射率极显著相关波段数明显增多,分别是反射率的一阶微分、平方根一阶微分、对数倒数一阶微分、倒数对数一阶微分,综合确定盐分敏感波段聚集在749、1 024、1 083、1 230、1 677和2 387 nm处;以对数倒数一阶微分光谱全波段建立的偏最小二乘回归模型更适合该区0~50 cm土壤含盐量的高光谱反演,其建模和验证决定系数R~2分别为0.93和0.85,均方根误差RMSE分别为0.37和0.42,相对预测偏差RPD为3.57。  相似文献   

3.
基于高光谱遥感的棉花叶片叶绿素含量估算   总被引:2,自引:0,他引:2  
为提高高光谱植被指数对棉花叶绿素含量的估算精度,以陕西省关中地区棉花花铃期叶片高光谱反射率为数据源,分析了13种植被指数与棉花叶片叶绿素相对含量(SPAD)的相关关系;同时采用降精细采样法,详细分析400~2 000nm波段范围内原始光谱反射率的任意两两波段组合而成的优化光谱指数RSI与SPAD值的定量关系,构建线性及非线性回归监测模型,并对模型进行验证。结果表明:1)所提取的13种植被指数中NIR/NIR与SPAD值的相关系数最大(r=0.914),并且基于NIR/NIR(R780/R740)构建的回归方程模型优于其他植被指数,其构建的二次曲线方程回归模型建模与验模R2分别为0.900和0.785,RMSE为4.762,RE为7.86%,为基于提取的12种植被指数构建SPAD值估算模型中最佳模型;2)优化后的比值光谱指数RSI(Ration spectral index)的敏感波段为500和563nm,RSI(500,563)与SPAD值的相关系数r=0.999,与棉花叶片SPAD含量在0.01水平下呈显著相关,其构建的二次曲线方程模型效果最优,建模和验模R2分别为0.912和1.000,RMSE为2.848,RE为4.38%。与提取的13种植被指数相比,基于RSI指数二次曲线回归模型为估算叶绿素含量的最佳模型,并且模型预测值和实测值之间的符合度较高R2=0.843,表明基于波段优化算法的优化光谱指数RSI能更好的预测棉花叶片叶绿素含量。  相似文献   

4.
东北水稻叶片SPAD遥感光谱估算模型   总被引:1,自引:0,他引:1  
为通过构建高精度SPAD遥感估算模型,实现对水稻叶片叶绿素含量进行实时无损的监测,以东北地区多时期不同施氮水平下水稻叶片光谱反射率为研究对象,采用回归模型与BP神经网络算法构建不同输入量的SPAD高光谱估算模型,通过模型精度评价指标决定系数R~2、均方根误差RMSE,确定最优输入量和最优模型。结果表明:1)不同品种水稻成熟时期不同导致在孕穗期和抽穗期之间光谱反射率出现差异;2)回归模型中以DVI(D755,D930)为变量建立多项式模型估算精度最高;3)与回归模型相比,不同波长处单波段反射率作为输入量的BP神经网络模型估算精度显著提高,R~2为0.98。BP神经网络模型在隐藏节点数为7时估算精度达到稳定,在可见光和近红外处经过不同波段反射率作为输入量的尝试说明神经网络模型较为稳定,可以用来反演叶绿素相对含量。  相似文献   

5.
针对传统叶绿素分析方法具有破坏性且耗费人力、时间长、成本高的弊端,依据LOPEX’93数据集中双子叶植物的高光谱数据和叶绿素值,构建了双子叶植物基于高光谱的叶绿素含量最佳估算模型,利用Pearson相关性分析一阶微分光谱、高光谱特征参数与叶绿素的相关关系,发现724nm波段处一阶导数与双子叶植物叶绿素值的相关性最大,其相关性为0.509;高光谱特征参数RVI、NDVI、TCAR与叶绿素的相关性达到0.7以上,构建基于一阶微分光谱、高光谱特征参数和BP神经网络的叶绿素估算模型,并对模型进行验证;再结合一元线性模型、指数模型、对数模型和幂函数模型与BP神经网络模型进行比较。结果表明:叶绿素值与一阶微分光谱在724nm处的光谱数据作为自变量建立的传统回归模型可用于双子叶植物叶绿素的估算,最优建模样本R~2和最优验证样本R_V~2分别为0.541和0.745,RMSE为6.16;基于高光谱特征参数RVI、NDVI、TCAR建立的叶绿素估算回归模型,最优建模样本R~2和最优验证样本R_V~2分别为0.618,0.708;0.632,0.866;0.594,0.654,RMSE分别为6.65,5.61,7.07,将基于高光谱特征参数变量构建传统回归模型时筛选到的光谱参数作为输入,实测叶绿素值作为输出,构建BP神经网络模型,其最优建模R2与最优验模R_V~2分别为0.692和0.874,最优验证样本RMSE为5.23,与其他回归模型相比,BP神经网络模型预测精度最高。研究表明基于高光谱数据的模型具有较好的预测能力,是估算双子叶植物叶绿素值的一种高效的方法。  相似文献   

6.
基于Hyperion数据的耕地土壤有机质含量遥感反演   总被引:2,自引:0,他引:2  
为了探究耕地土壤有机质含量与卫星影像光谱间的关系,确定土壤有机质的光谱特征,构建土壤有机质含量反演模型.利用Hyperion高光谱卫星影像和福建省三明市80个土壤调查样点分析数据,对土壤有机质与光谱指数相关性进行了分析;在提取特征光谱指数的基础上,分别基于敏感波段和特征指数建立线性模型和多元逐步回归模型.结果表明:土壤有机质含量在Hyperion高光谱782.95~813.48 nm波段具有良好的响应能力;反射率的一阶导数所建立的模型拟合效果最优,其R2为0.777,RMSE为5.31,验证模型有机质实测值与预测值的R2为0.809,表明它能够用于区域有机质含量的快速测定.  相似文献   

7.
基于冠层高光谱的南方丘陵地区晚稻氮素营养诊断   总被引:2,自引:0,他引:2  
为研究水稻氮素营养诊断的快速方法、初步构建基于高光谱的水稻氮素营养诊断模型,以南方丘陵区晚稻氮肥试验为例,利用分别测定不同施氮水平及水稻不同生育期水稻冠层叶片的高光谱反射特征,应用一阶微分光谱以及植被指数分别构建基于高光谱的晚稻氮素营养诊断模型。结果表明:不同氮素水平下冠层叶片光谱反射率的差异主要集中在400~650 nm可见光处和730~1350 nm近红外处,随着冠层氮素含量增加可见光处光谱反射率降低,而在近红外范围内反射率增加。随着水稻生长发育,冠层叶片光谱反射率降低,而且反射峰值由519 nm向554 nm移动。应用738 nm处的光谱反射率与叶片氮素含量建模,用一阶微分反射率得到的最优模型为指数模型Y=1.591 4e~(88.794X)(R~2=0.736 2),用比值植被指数(RVI)和归一化植被指数(NDVI)得到的最优模型分别为指数模型Y=18.658e~(-1.040 9X)(R~2=0.630 4)和二次多项式Y=-17.454X~2+0.733 1X+4.130 2(R~2=0.652 3),所有模型中以一阶微分反射率得到的模型最佳,最适合于在供试条件下的水稻氮素营养诊断。  相似文献   

8.
以兴国县稻田土高光谱反射率为研究对象,对比分析了同一种光谱反射率变换形式下土壤全钾、速效钾与高光谱反射率的相关性,提取了全钾和速效钾的高光谱敏感波段,建立了基于反射光谱特征的南方丘陵稻田土全钾、速效钾高光谱反演模型.经分析可知,在355~620 nm波段,土壤全钾、速效钾含量与光谱反射率相关性同增同减,而在621~2 250 nm波段内,土壤全钾含量与光谱反射率相关性要大于土壤速效钾;通过分析兴国县稻田土全钾、速效钾含量与光谱反射率18种数学变换的相关系数,提取全钾的敏感波段为602、804 nm,速效钾的敏感波段为602、1 058、1 638、2 214 nm;采用偏最小二乘回归,利用高光谱指数构建的反演模型能较好地预测全钾、速效钾含量,模型建模的相关系数和验证系数都较高,基于速效钾含量建立的南方丘陵稻田土高光谱反演模型预测能力较好.  相似文献   

9.
基于最优模型的荒地土壤有机质含量空间反演   总被引:1,自引:0,他引:1  
本研究采用Landsat OLI多光谱遥感影像数据,结合实测土壤有机质含量,利用原始影像反射率(A)、反射率一阶微分(A')、反射率二阶微分(A″)建立单波段和多波段回归模型,估算研究区土壤有机质含量,反演其空间格局。结果显示,经微分处理后的影像反射率,与土壤有机质含量相关系数增大。其中A'处理后的遥感影像反射率与土壤有机质含量的相关系数达到-0.850,比原始的提高了0.401,增强了有机质的光谱信息。多波段回归建模效果优于单波段建模。且A'的多波段回归模型预测精度最好,其建模集R~2为0.80,RMSE为3.66,预测集R~2为0.79,RMSE为3.65,RPD为1.96,表明该模型精度高,误差最小,预测效果最优,可以很好地估算该区域的土壤有机质含量。基于一阶微分的多波段回归模型:SOM=23.12-470.94B3-24.35B4-43.06B6,对研究区的SOM含量空间分布格局进行反演,发现反演结果与实际情况吻合,因此,利用多波段回归模型能很好反演研究区SOM含量空间分布格局,表达其不同有机质含量的土壤空间分布与其对应的空间位置,这为土壤有机质面状参数的获取提供了快速而有效的方法。  相似文献   

10.
基于次生盐渍土修复过程中硝酸盐含量和同步实测光谱数据,针对原始光谱数据及其不同变换后7种光谱数据集,分别以相关系数极值和间隔偏最小二乘2种方法分析其最佳敏感波段范围。在此基础上,运用偏最小二乘回归(partial least squares regression,PLSR)方法,分别基于全波段(400~1 650nm)和分析获得的最佳敏感波段建立了次生盐渍土壤NO-3含量的光谱反演模型。结果表明,采用2种方法提取的土壤最佳敏感波段,均集中在844.5和846.18nm;基于全波段与最佳敏感波段的土壤NO-3含量光谱反演模型,均以原始反射光谱经一阶微分处理的结果更为显著;其中,基于间隔偏最小二乘法提取的775~899和1 025~1 149nm为最佳敏感波段的预测模型,其决定系数R2p与标准差(root mean standard error of prediction,RMSEP)分别为0.962和0.057。该研究结果可为今后次生盐渍土中硝酸盐含量的快速无损检测提供重要的科学参考。  相似文献   

11.
大豆叶面积的高光谱模型   总被引:4,自引:0,他引:4  
以ASD FieldSpec-Vnir光谱仪实测不同生长季大豆的冠层反射率,同期采集对应大豆LAI,然后逐波段分析冠层光谱反射率、导数光谱与大豆LAI的相关关系;并采用单变量线性回归逐波段分析了冠层光谱反射率、导数光谱与大豆LAI确定性系数随波长的变化趋势,建立了以近红外与可见光波段冠层光谱反射率的比值植被指数RVI与大豆LAI的高光谱遥感估算模型。结果表明,冠层光谱反射率在350 ̄680nm、760 ̄1050nm波谱区与大豆LAI相关性较大,而在红边区680 ̄760nm的相关性变化较大;导数光谱在红边区与大豆LAI相关程度高。通RVI方式建立的遥感估算模型能较为准确估算大豆LAI,通过对红外与蓝波段建立的RVI指数与大豆LAI的回归模型,表明其预测大豆LAI的能力较好,有进一步研究的必要;通过对比发现,神经网络模型可以大大提升高光谱反演大豆LAI的水平,模型的确定系数R2为0.9661,而总均方根误差RMSE仅为0.446m2.m-2。  相似文献   

12.
为快速准确地获取烟草叶片镉含量,本研究模拟了4个镉污染水平,用美国ASD光谱仪获取每个污染水平的烟草叶片光谱反射率,并测定不同时期烟草叶片的镉含量,筛选出与镉含量相关性最好的敏感波段,并建立光谱参数,将光谱参数作为输入因子建立烟草叶片镉含量的BP神经网络模型。结果表明:随着镉含量增加,在可见光和近红外范围(400~910 nm)内反射率先降低后增加,在930~1 000 nm波段范围内,叶片反射率与烟叶中镉含量呈正相关,在1 000~2 500 nm波段范围内反射率先增加后降低。经筛选,比值植被指数(RVI)和归一化植被指数(NDVI)的光谱指数分别为RVI (520,710)和NDVI (530,710); BP神经网络模型的决定系数(R2)为0.681,均方根误差(RMSE)为8.001,并对模型进行检验,R2为0.801,RMSE为4.430。研究表明,BP神经网络模型对烟草叶片镉含量具有良好的预测效果。  相似文献   

13.
【目的】研究猕猴桃叶片叶绿素含量的高光谱估算方法,为猕猴桃长势的遥感监测提供理论依据。【方法】以陕西杨凌蒋家寨村2018年不同生育期(初花期、幼果期、膨果期、壮果期、果实成熟期)的猕猴桃叶片为研究对象,分别测定其高光谱反射率和叶绿素含量(SPAD值),分析原始光谱和5个常见的植被指数(归一化植被指数、归一化叶绿素指数、改进的叶绿素吸收反射率指数、MERIS地面叶绿素指数、土壤调整指数)与叶绿素含量之间的相关关系,提取各生育期的特征波段,分别建立基于特征波段和植被指数的单波段叶绿素含量一元线性估算模型。利用主成分分析对原始光谱数据进行降维,将得到的主成分得分作为随机森林模型的输入变量,建立基于多波段信息的叶绿素含量多元估算模型,并对模型进行精度验证和分析。【结果】不同生育期猕猴桃叶片光谱反射率变化趋势基本一致,整体趋势为可见光波段反射率低,近红外波段反射率高;在可见光波段,光谱反射率随着叶绿素含量的升高而降低;在近红外波段,光谱反射率则随着叶绿素含量的增加而升高。通过相关性分析可知,初花期、幼果期、膨果期、壮果期、果实成熟期原始光谱的特征波段分别为729,548,707,707和712 nm,估算模型决定系数(R~2)分别为0.18,0.85,0.54,0.85和0.82,其中初花期估算模型未通过显著性检验,其余生育期均通过极显著性检验。在5个常用植被指数中,初花期与叶绿素含量相关性最高的是归一化叶绿素指数(NPCI),但是估算模型决定系数R~2只有0.1,未通过显著性检验;其他生育期与叶绿素含量相关性最高的是MERIS地面叶绿素指数(MTCI),所建立的估算模型拟合效果好,预测精度高。基于主成分分析和随机森林回归建立的不同生育期猕猴桃叶片叶绿素含量估算模型的R~2在0.91~0.98,均通过极显著性检验,其拟合效果和预测精度远高于单波段一元线性回归和基于植被指数的一元线性回归模型,是估算猕猴桃叶片叶绿素含量的最优模型。【结论】基于主成分分析的随机森林模型包含了更完整的波段信息,对不同生育期猕猴桃叶片叶绿素含量具有较好的预测能力。  相似文献   

14.
博斯腾湖西岸湖滨绿洲芦苇地土壤盐分特征高光谱分析   总被引:2,自引:0,他引:2  
以博斯腾湖西岸湖滨绿洲为研究区,统计分析芦苇地土壤盐分特征,通过多元线性回归分析建立芦苇地土壤盐分含量、Na~++K~+和Ca~(2+)的高光谱反射率估算模型。结果表明:1芦苇地土壤盐分含量平均值为4.21g·kg~(-1),为轻度盐渍化水平,不同株高下土壤盐分含量差异较大,标准误为9.37,方差为87.75;2不同芦苇株高下土壤高光谱反射率曲线特征表现为形态相似,基本平行,光谱的形状特征大致可以由910、1 200、1 450、1 910nm 4处的吸收带控制;3基于土壤高光谱反射率对土壤盐分含量、Na~++K~+和Ca~(2+)建立高光谱反射率估算模型进行定量反演具有良好精度:盐分含量高光谱反射率估算模型均方根误差(RMSE)为0.32,回归分析决定系数(R2)为0.88;Na~++K~+高光谱反射率估算模型RMSE为0.34,R~2为0.90;Ca~(2+)高光谱反射率估算模型RMSE为0.25,R2为0.93(F95%)。  相似文献   

15.
不同灌溉条件下冬小麦叶面积指数的高光谱监测   总被引:1,自引:1,他引:0  
LAI是作物长势监测的一个重要指标,实时、无损和准确地估测冬小麦LAI具有重要的实践意义。通过对冬小麦进行不同的灌溉处理试验,研究LAI与冠层光谱反射率的关系,计算350~2 450 nm不同波段组合的原始光谱指数和导数光谱指数,筛选最优波段组合光谱指数,并建立LAI的监测模型。结果表明,冬小麦LAI与冠层光谱反射率和不同波段组合光谱指数相关性较好;冬小麦LAI监测的最优光谱指数为DVI(435,447),以此为自变量建立的指数模型y=10.669e~(-701.9x)表现最优,模型最稳定。  相似文献   

16.
基于土壤优化光谱参数估测太湖地区土壤全氮含量   总被引:1,自引:0,他引:1  
为明确太湖地区土壤全氮的高光谱特征,构建定量分析模型,以江苏省无锡市滨湖区为研究区域,选取地理位置跨度大、土壤质地相似的93个样品,进行土壤风干样品全氮含量测定和光谱数据采集,对光谱反射率进行一阶微分,运用相关系数峰谷值法筛选敏感波长,将敏感波长两两结合进行土壤调节光谱指数(MSASI)运算。将两两结合后敏感波段分别采用多元线性回归分析、人工神经网络分析和偏最小二乘法构建土壤全氮含量的定量高光谱分析模型。结果表明,研究区内土壤全氮含量与光谱反射率呈正相关,敏感波段包括420~444 nm和480~537 nm。基于土壤调节光谱指数的多元线性回归分析对敏感波段诊断的效果最佳(R2=0.98、RMSE=0.04),其精度高、可靠性强,是筛选出的最佳土壤全氮含量估测模型。偏最小二乘法模型(R2=0.70、RMSE=0.13)次之,而人工神经网络模型(R2=0.69、RMSE=0.15)精度最低。该研究结果为太湖地区土壤全氮水平的高光谱快速估测提供了方法借鉴,可为土壤养分精准管理提供技术参考。  相似文献   

17.
设置了5个施肥水平田间试验,获取甘蔗分蘖期叶片的全氮含量和光谱反射率,分析氮含量与光谱反射率的相关性,并构建基于敏感波段的氮含量估算模型。结果显示,甘蔗叶片氮含量与光谱反射率在401~1 000 nm波段区间呈显著负相关关系,在402~953 nm波段区间呈极显著负相关关系,相关系数在550、741 nm出现了两个峰值,说明这两个波段附近的光谱反射率对叶片氮含量较为敏感;R550、R741构建的模型决定系数(R~2)较大,NDVI(550,741)、RVI(550,741)、NDVI(730,835)、RVI(730,835)构建的模型决定系数较小,R550、R741相比NDVI(550,741)、RVI(550,741)、NDVI(730,835)、RVI(730,835)更适用于甘蔗叶片氮含量估算;由R741构建的二次函数模型(y=-119.1x~2+61.53x+3.851)决定系数为0.681,氮含量估算值均方根差(RMSE)为1.13 g/kg,平均相对误差为8.92%,相比于其他模型综合效果较好。推荐由R741构建的二次函数模型作为甘蔗分蘖期叶片氮含量估算模型。  相似文献   

18.
基于高光谱的小麦冠层叶绿素(SPAD值)估测模型   总被引:2,自引:0,他引:2  
选择山东省泰安市山东农业大学试验田为研究区,分别采用ASD FieldSpec 3光谱仪和SPAD-502叶绿素仪测量小麦冠层的近地高光谱反射率和SPAD值,通过分析小麦冠层光谱特征,进行光谱反射率及其一阶导数与SPAD值的相关分析,筛选敏感波段,进而分别构建基于敏感波段和植被指数的小麦冠层SPAD值估测模型,并优选确定最佳模型。结果表明,光谱反射率经一阶导数变换能更好突出光谱特征,用来筛选敏感波段,将6个敏感波段分别建立单波段及多波段组合估测模型,进而优选出最佳估测模型为R′_(871),R_(1 349),R_(725),R′_(1 995)多元线性回归模型,决定系数R~2=0.668;基于4种植被指数构建的小麦叶绿素最佳估测模型为NDVI的二次模型,方程为y=61.978 x~2-34.426 x+54.089,决定系数R~2为0.845。基于植被指数的估测模型可较好实现小麦冠层叶绿素信息的无损和快速获取,为小麦生产的实时监测提供了有效手段。  相似文献   

19.
精确、快速估算冬小麦叶片氮含量,对冬小麦长势监测及田间管理指导具有重要的研究意义。为精确反演冬小麦叶片氮含量(leaf nitrogen content , LNC),该文利用遥感方法,依托不同氮处理水平冬小麦试验,基于获取的高光谱遥感数据和LNC地面实测数据,对比分析光谱指数与随机森林算法(random forest , RF)反演冬小麦叶片氮含量的精度和稳健性。结果表明,以敏感波段496 nm、604 nm为自变量,利用随机森林算法构建的LNC回归模型精度较光谱指数法有了大幅提高,模型的建模精度为R2=0.922,RMSE=0.290,验证精度为R2=0.873,RMSE=0.397,并且相对分析误差RPD值为2.22,表明将敏感波段与随机森林算法组合构建的反演模型能较好反演对冬小麦LNC。  相似文献   

20.
【目的】面向现代农业生产和管理的数据需求,基于ACRM 冠层反射率模型,探索适 于冬小麦叶面积指数(LAI)和叶片叶绿素含量(LCC)反演的波段选择方案。【方法】文章 考虑高光谱数据降维和CR 模型模拟误差,选出覆盖蓝、绿、红与近红外的5 个波段(波段 选择方案B1),开展LAI 与LCC 同步反演。然后分别选择LAI 和LCC 的敏感波段,开展对 应参数的反演试验。【结果】(1)基于B1,能够在多数田块实现较为准确的LAI 与LCC 同 步反演(LAI 反演值与实测值间决定系数(R2)为0.860 4,均方根误差(RMSE)为0.963; LCC 反演的R2 为0.814 1,RMSE 为0.069)。(2)仅利用LAI 或LCC 敏感波段反演结果的R2 与RMSE 同时略有升高,但与基于B1 的反演结果相比,无明显差异。【结论】通过该研究与 利用相同数据的前期研究对比发现,旨在高光谱数据降维与限制CR 模型模拟误差的波段选 择,对LAI 反演精度改进作用较为显著。相较而言,仅选用单一目标参数(LAI 或LCC)的 敏感波段,对反演精度改进并不明显。由此,一方面证实了常规反演方法与面向对象反演法 不强调选用单一目标参数敏感波段的合理性;另一方面,并不否定多阶段目标决策(MSDT) 反演法以及一些相关研究提出的,仅采用单一目标参数敏感波段来开展反演的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号