首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
【目的】提出了一种改进的YOLOv4模型,为自然环境下3种常见茶叶病害(茶白星病、茶云纹叶枯病和茶轮斑病)的快速精准识别提供支持。【方法】使用MobileNetv2和深度可分离卷积来降低YOLOv4模型的参数量,并引入卷积注意力模块对YOLOv4模型进行识别精度改进。采用平均精度、平均精度均值、图像检测速度和模型大小作为模型性能评价指标,在相同的茶叶病害数据集和试验平台中,对改进YOLOv4模型与原始YOLOv4模型、其他目标检测模型(YOLOv3、SSD和Faster R CNN)的病害识别效果进行对比试验。【结果】与原始YOLOv4模型相比,改进YOLOv4模型的大小减少了83.2%,对茶白星病、茶云纹叶枯病和茶轮斑病识别的平均精度分别提高了6.2%,1.7%和1.6%,平均精度均值达到93.85%,图像检测速度为26.6帧/s。与YOLOv3、SSD和Faster R-CNN模型相比,改进YOLOv4模型的平均精度均值分别提高了6.0%,13.7%和3.4%,图像检测速度分别提高了5.5,7.3和11.7帧/s。【结论】对YOLOv4模型所使用的改进方法具备有效性,所提出的改进YOLOv4模型可以实现对自然环境下3种常见茶叶病害的快速精准识别。  相似文献   

2.
目的 针对传统奶牛养殖中采用人工识别奶牛个体的方法效率低且主观性强的问题,提出一种基于改进Mask R-CNN的奶牛个体识别方法。方法 该方法对Mask R-CNN中的特征提取网络结构进行优化,采用嵌入SE block的ResNet-50网络作为Backbone,通过加权策略对图像通道进行筛选以提高特征利用率;针对实例分割时目标边缘定位不准确的问题,引入IoU boundary loss构建新的Mask损失函数,以提高边界检测的精度;对3000张奶牛图像进行训练、验证和测试。结果 改进Mask R-CNN模型的精度均值(AP)达100%,IoUMask达91.34%;与原始Mask R-CNN模型相比,AP提高了3.28%,IoUMask提高了5.92%。结论 本文所提方法具备良好的目标检测能力,可为复杂农场环境下的奶牛个体精准识别提供参考。  相似文献   

3.
【目的】针对在复杂环境背景中难以识别分割多只肉鸡的问题,探讨基于深度学习实现对多只肉鸡深度图像分割的方法。【方法】利用深度相机,通过不同的拍摄角度(俯视、正视、侧视)在自然环境下采集肉鸡不同姿势(站立、俯卧、抬头、低头等)形态的深度图像,并使用CVAT标注软件对深度图像进行精确标注,建立肉鸡深度图数据集(含4 058张深度图像)。利用FCN、U-Net、PSPNet、DeepLab和Mask R-CNN等5种神经网络实现肉鸡深度图像的识别与分割,根据测试集得到预测结果,比较与评估不同模型的性能,实现对肉鸡深度图像的识别与分割。【结果】基于Mask R-CNN神经网络模型的识别分割准确率为98.96%,召回率为97.78%,调和平均数为95.03%,交并比为94.69%,4个指标值均为5个模型中的最优值。【结论】基于Mask R-CNN神经网络的算法简单快速,且能准确实现肉鸡的自动识别与分割,对肉鸡遮挡有较佳的鲁棒性,基本可以满足养殖场鸡群均匀度预测的识别分割要求。促进了计算机视觉在现代农业的应用,可为鸡群计数、鸡群均匀度预测以及肉鸡福利饲养等鸡场作业提供理论和实践基础。  相似文献   

4.
针对多种树形果园环境下,由于树冠背景复杂导致的树冠分割、检测及树形识别困难的问题,本研究提出了1种改进Mask R-CNN的B-Mask R-CNN检测模型,实现自然复杂环境下的果树树冠检测与树形识别。该模型引入了IoU(Intersection over Union)平衡采样,提高了模型的训练效果;其次,在边界框损失中引入平衡L1损失,使得多分类损失与边界框损失更快地收敛;另外,在区域推荐网络中调整锚框比例适应数据集中的目标,提升了模型准确率。该研究搜集矮化密植形、小冠疏层形、自然开心形、自然圆头形以及Y形5种常见修剪树形制作数据集,应用5个检测模型进行对比试验。试验结果表明,B-Mask R-CNN检测模型平均检测精度达到98.7%,与Mask R-CNN、Faster R-CNN、U-Net以及K-means模型相比检测精度更高,对复杂背景下的树形识别具有更好的鲁棒性,能够为后续精准喷施中喷施模式和控制参数的分析及应用奠定基础。  相似文献   

5.
小麦叶片和株高性状对功能基因解析、育种工作以及小麦生长状态分析都具有重要意义,而传统的人工检测提取性状的方法存在主观性强、效率低、提取性状不多的缺点,甚至还会影响小麦后续生长.为实现小麦叶长和株高性状的自动测量,提出了一种基于Mask R-CNN的小麦叶长和株高性状提取方法.Mask R-CNN是一种目标实例分割模型,主要是由Faster R-CNN、RoIAlign和FCN组成.基于高通量表型系统采集小麦幼苗图片,对小麦幼苗图片中茎秆进行标注,将标注图作为训练集投入Mask R-CNN网络进行训练,用已训练好的模型分割出mIoU达到72%的小麦茎秆图之后,结合相关的图像处理方法将叶片和茎秆进行分离,获取单片叶长和株高性状,然后将叶长和株高性状与人工测量数据进行对比分析.结果 表明:叶长性状的相关系数R2为0.8735,株高性状的相关系数R2为0.9828.研究基于Mask R-CNN实现盆栽小麦单片叶长和株高智能分析和精准提取,为小麦遗传改良育种提供了一种表型高通量智能分析方法.  相似文献   

6.
【目的】研究基于改进Mask R-CNN的玉米苗冠层分割算法,满足精准作业中对靶施肥的识别要求,提高化肥的使用效率,减少环境污染。【方法】采集田间玉米苗图片并增强数据,生成田间数据集;使用ResNeXt50/101-FPN作为特征提取网络对分割算法进行训练,并与原始ResNet50/101-FPN的训练精度结果作对比;采用不同光照强度及有伴生杂草的玉米苗图片对比验证冠层识别算法效果。【结果】在不同光照强度下,无伴生杂草的目标平均识别精度高于95.5%,分割精度达98.1%;在有伴生杂草与玉米苗有交叉重合情况下,目标平均识别精度高于94.7%,分割精度达97.9%。检测一帧图像的平均时间为0.11 s。【结论】Mask R-CNN的玉米苗及株芯检测算法有更高的准确率和分割精度,更能适应不同光照强度及有伴生杂草的苗草交叉重合情况的目标检测。  相似文献   

7.
为构建田间杂交大豆胚轴颜色检测模型,以大田场景下的大豆植株为研究对象,利用自走式大豆表型信息采集平台获取图像数据并构建杂交大豆胚轴颜色数据集,使用不同目标检测模型(SSD、Faster R-CNN、YOLOv3、YOLOv4、YOLOv5、YOLOX和YOLOv7)对杂交大豆胚轴颜色数据集进行检测,将模型分数(F1)、平均精度均值(mAP)及检测速度3个指标用于评估不同模型在杂交大豆胚轴颜色检测中的性能。在YOLOv7网络中添加CARAFE特征上采样算子、SE注意力机制模块和WIoU位置损失函数,建立杂交大豆胚轴颜色检测模型YOLOv7-CSW,并利用改进模型对杂交大豆胚轴颜色数据集进行消融试验。结果表明:1)YOLOv7模型的F1(0.92)与mAP(94.3%)均显著高于其他模型;2)YOLOv7模型的检测速度为58帧/s,低于YOLOv5和YOLOX,检测速度可以满足田间实时检测任务需求;3)YOLOv7-CSW模型比YOLOv7模型的F1和mAP分别升高0.04和2.6%;4)YOLOv7-CSW模型比YOLOv7模型检测速度升高了5帧/s,可以实现杂交大豆胚轴颜色实时检测。综...  相似文献   

8.
[目的]小麦麦穗表型获取涉及麦穗到籽粒不同几何尺度的参数精确测量,本文针对麦穗籽粒图像分割粘连现象,研究达到像素级别的精准分割算法,并基于该方法给出籽粒的基本几何参数。[方法]田间随机采集小麦麦穗,对采集的麦穗标本获取表型信息并采集图像,进行数据增广和标注,构建1个包括深度残差网络(deep residual network,Res Net)、区域建议网络(region proposal networks,RPN)和全卷积网络(fully convolutional networks,FCN)的实例分割算法Mask R-CNN,对训练集图片进行迭代训练获得模型。[结果]测试集测量结果表明,在测试麦粒上获得的籽粒像素测量平均精度(averageprecision,AP)值为0.85,F_1(F_1-measure)值为0. 830,对麦穗长度测量穗长的平均绝对误差为3. 30 mm,平均相对误差为3.40%,宽度测量的平均绝对误差为0.72 mm,平均相对误差为4.10%,综合测量误差为3.75%,试验结果显著优于最大类间方差法(OTSU)以及全卷积网络。通过对特征提取网络层数的修改在处理速度上达到4.26 FPS(frames per second),对比FCN处理速度提升了8.5倍。[结论]利用Mask R-CNN分割方法得到1个对整株麦穗和单个籽粒进行目标定位、目标检测和实例分割为一体的端到端、像素级的分割模型,可以对麦穗及部分籽粒进行精确的几何表型测量。  相似文献   

9.
为在田间复杂环境中实现对杂草和玉米植株准确实例分割和叶龄识别获取,提出一种基于改进掩码区域卷积神经网络(Mask Regions with convolutional neural network features,Mask R-CNN)的植物叶龄获取方法.具体实施为构建包含不同天气(晴天、阴天、雨后)和不同采集角度(...  相似文献   

10.
基于循环残差注意力的群养生猪实例分割   总被引:4,自引:0,他引:4  
目的 在群养环境下,实现生猪粘连、杂物遮挡等不同条件下生猪个体的高精度分割。方法 对真实养殖场景下的8栏日龄20~105 d共45头群养生猪进行研究,以移动相机拍摄图像为数据源,并执行改变亮度、加入高斯噪声等数据增强操作获取标注图片3 834张。探究基于2个骨干网络ResNet50、ResNet101与2个任务网络Mask R-CNN、Cascade mask R-CNN交叉结合的多种模型,并将循环残差注意力(RRA)思想引入2个任务网络模型中,在不显著增加计算量的前提下提升模型特征提取能力、提高分割精度。结果 选用Mask R-CNN-ResNet50比Cascade mask R-CNN-ResNet50在AP0.5、AP0.75、AP0.5-0.95和AP0.5-0.95-large指标上分别提升4.3%、3.5%、2.2%和2.2%;加入不同数量的RRA模块以探究其对各个任务模型预测性能影响,试验表明加入2个RRA模块后对各个任务模型的提升效果最为明显。结论 加入2个RRA模块的Mask R-CNN-ResNet50模型可以更精确、有效地对不同场景群养生猪进行分割,为后续生猪身份识别与行为分析提供模型支撑。  相似文献   

11.
复杂环境下香蕉多目标特征快速识别研究   总被引:1,自引:0,他引:1  
【目的】针对野外环境下断蕾机器人对多特征的变量目标快速识别难题,以及目标受到树叶、遮挡及光照影响精度的问题,提出多特征目标的快速识别方法。【方法】提出对香蕉果实、果轴和花蕾这3个目标进行多尺度特征提取及模型分类,融合聚类算法设计新的目标候选框参数,提出改进YOLOv3模型及网络结构参数的YOLO-Banana模型;为了平衡速度和准确度,用YOLO-Banana和Faster R-CNN分别对变化尺寸的香蕉多目标进行试验,研究算法对识别精度与速度的影响。【结果】YOLO-Banana和Faster R-CNN这2种算法识别香蕉、花蕾和果轴的总平均精度分别为91.03%和95.16%,平均每张图像识别所需时间分别为0.237和0.434 s。2种算法精度均高于90%,YOLO-Banana的速度相对快1.83倍,更符合实时作业的需求。【结论】野外蕉园环境下,采用YOLO-Banana模型进行香蕉多目标识别,可满足断蕾机器人视觉识别的速度及精度要求。  相似文献   

12.
小麦是重要的粮食作物之一,针对人工田间麦穗计数及产量预测效率低的问题,基于深度学习提出了一种高分辨率的小密集麦穗实时检测方法。对麦穗图像数据集进行图像分割、标注、增强预处理,基于Tensorflow搭建YOLOv4网络模型,调整改进后对其进行迁移学习;与YOLOv3、YOLOv4-tiny、Faster R-CNN训练模型进行对比,对改进模型的实用性与局限性进行分析;重点分析影响麦穗检测模型性能的关键因素。通过图像分割的方式,证明了通过改变图像分辨率确定麦穗所占图像最优像素比,可以提高前景与背景差异,对小密集麦穗有显著效果。通过对改进模型的测试,表明该模型检测精度高,鲁棒性强。不同分辨率、不同品种、不同时期的麦穗图像均类平均精度(mAP)为93.7%,单张图片的检测速度为52帧·s-1,满足了麦穗的高精度实时检测。该研究结果为田间麦穗计数以及产量预测提供技术支持。  相似文献   

13.
【目的】 果树冠层信息是反映果树生长状况的重要参数,准确提取果树的冠层信息对于果园的精细管理十分必要。【方法】 文章以苹果树和桃树为研究对象,利用无人机遥感获取果园影像数据,首先通过Mask R-CNN实例分割算法对果园果树冠层进行逐一分割,同时提取果树冠幅和冠层面积信息。然后利用果园正射影像结合QGIS软件,对果树冠层位置信息进行提取和可视化并通过目视解译对果树冠层参数信息提取结果进行评估。【结果】 当交并比为0.5时,模型检测分割结果最优,测试集语义分割精确度为66.3%,目标检测精确度达到63.9%。总体冠层面积实测值与模型预测面积之间的平均相对误差为12.44%,均方根误差为0.5 m2。冠幅实测值与模型预测的面积之间的平均相对误差为16.39%,均方根误差为0.39 m,在一定范围内验证了模型对冠层面积和冠幅信息提取的可靠性。【结论】 结合无人机遥感数据和Mask R-CNN实例分割算法可有效地将果树冠层分割出来,并且能够较为准确地提取果树冠层的相关参数信息,可为果园的精细管理提供一定的技术支撑。  相似文献   

14.
为快速准确识别自然环境下的番茄叶片病害,提出一种基于改进YOLOv4算法的轻量化番茄叶部病害识别方法。该方法根据番茄病害特征采用K均值聚类算法调整先验框的维度,并使用宽度因子为0.25的MobileNetv1代替YOLOv4原有的主干网络CSPDarknet53进行特征提取,并在特征融合网络PANet中引入深度可分离卷积代替原有的3×3标准卷积,同时在主干网络的2个输出特征层和空间金字塔池化输出层分别嵌入卷积块注意力模块(CBAM),提高模型识别精度。试验结果表明,改进后的模型对8类番茄叶片整体检测精准性(mAP)为98.76%,参数量为12.64 M,传输帧数为1 s 101.76帧,相较于原YOLOv4模型,模型参数量减少80%,每秒传输帧数比原始YOLOv4模型提高了130%。  相似文献   

15.
【目的】成熟草莓的快速、准确识别是高效机械采摘的关键技术,针对草莓生长环境中果实堆叠、叶片遮挡和小目标等问题,提出一种改进YOLOv7-Tiny的成熟草莓识别模型。【方法】该模型在YOLOv7-Tiny模型的基础上,将骨干网络中CBL卷积块的LeakeyReLU激活函数替换为SiLU函数,提高模型的非线性拟合程度与特征学习能力。为降低模型的参数量和计算量,实现模型轻量化,提高识别速度,引入轻量化RepGhost网络。在YOLOv7-Tiny模型的小目标层加入C3模块,降低模型参数量,增加网络深度,增强模型对小目标的信息提取能力,从而提高被遮挡草莓以及小目标草莓的识别准确度,进一步提高模型的识别速度。以设施草莓为试验样本对改进YOLOv7-Tiny模型进行对比试验。【结果】相较于YOLOv7-Tiny模型,改进YOLOv7-Tiny模型训练的收敛速度快,模型拟合后损失曲线的波动幅度小且稳定,训练的损失值小,模型的鲁棒性好。与原模型的对比试验结果表明,改进YOLOv7-Tiny模型的参数量降低26.9%,计算量降低55.4%,识别速度提高26.3%,识别平均准确率(mAP)为89.8%。消...  相似文献   

16.
针对现有的卷积神经网络模型过于依赖设备的计算和存储能力、水稻病虫害形状大小不一、遮挡造成的病害特征显著性弱、漏检率高等问题,采用轻量化、易部署的YOLOv4-tiny模型检测和识别水稻病虫害。首先收集831张4种不同的水稻病害叶片图像样本,为了使模型具有更好的泛化能力,对已有数据进行数据增强,将样本数量扩增到了5 320张。然后构建YOLOv4-tiny轻量化模型,与经典的YOLOv4算法模型相比,其主干特征提取网络CSPDarkNet53模块替换为CSPDarkNet53_tiny,使用CPSnet进行通道的分割,实现了网络模型的压缩并提高了训练速度;添加了FPN结构,对有效特征层进行特征融合;依据模型评价指标,通过试验将YOLOv4-tiny轻量化网络与经典的YOLOv4网络、Faster-RCNN网络、YOLOv4-MobileNet系列轻量化网络、YOLOv4-GhostNet轻量化网络和SSD轻量化网络进行对比。结果表明,YOLOv4-tiny的平均准确率可以达到81.79%,检测速度可以达到90.03帧/s,模型权重大小为22.4 MB,能够比较精准地识别水稻胡麻斑病、白叶...  相似文献   

17.
针对规模化肉鸡养殖生产中,传统肉鸡称重方法易造成应激问题,设计一种基于神经网络和机器视觉技术的非接触式肉鸡体重估测方法。应用深度相机采集白羽肉鸡的红外图像和深度信息,以目标识别算法YOLOv3和卷积网络分割算法FCN(Fully convolutional networks)为基础构建肉鸡区域提取模型,YOLOv3和FCN模型的查准率分别为98.1%和97.8%,查全率100%;结合肉鸡的深度信息,提取肉鸡投影面积等相关特征,构建多种回归算法,训练并调整优化肉鸡体重估测模型,ABR(Adaboost regressor)模型在测试集上达到最优的估测效果,该模型的决定系数R2为0.95,绝对误差为0.01~0.32kg。本研究的非接触式的肉鸡体重估测模型能较好的预测肉鸡体重,为实际生产环境中肉鸡自动称重提供了技术支持。  相似文献   

18.
自然场景下苹果采摘对目标的精准识别和三维定位是苹果智能采摘设备的关键技术.融合YOLOv3算法和双目视觉技术,通过YOLOv3算法对多种自然场景下的样本进行训练,构建识别模型,利用双目视觉获取苹果图像,运用YOLOv3模型得到图像中目标苹果的二维坐标,再利用双目视觉视差原理得到深度坐标信息,从而实现对目标苹果的三维空间...  相似文献   

19.
小样本目标检测旨在通过少量样本实现对图像中目标的识别和定位。目前针对柑橘缺陷的小样本数据集进行的检测较少,本文提出了使用数据增强和迁移学习来对小样本柑橘的缺陷类型进行检测的方法,采用旋转、裁剪和高斯模糊进行数据增强来扩充数据集,与使用迁移学习方法进行对比。实验表明:迁移学习方法中最优算法是FRCN ft-full,基于该算法的20-shot任务的mAP值为67.823%;在基于数据增强的方法中使用Faster R-CNN算法的mAP值达到了84.7%,使用YOLOv8算法的mAP是85.3%,YOLOv8算法略优于Faster R-CNN算法。迁移学习方法增强了检测模型的泛化能力,加快了模型的收敛速度;数据增强方法有效扩充了数据集,提升了小样本柑橘缺陷检测模型的准确性。  相似文献   

20.
针对当前柑橘果实目标检测模型多数需在服务器上运行,难以直接在果园部署且识别实时性较差等问题,设计了基于边缘计算设备的便携式柑橘果实识别系统。该系统由优化的目标检测模型和嵌入式智能平台组成;通过扩展YOLOv4–Tiny目标检测算法,将所有批量归一化层合并到卷积层,加快模型前向推理速度;采用多尺度结构并使用K–means聚类方法获得柑橘数据集的先验框大小,使网络模型对柑橘果实识别具有更强的鲁棒性;使用GIOU距离度量损失函数,使网络模型更加关注柑橘图像中重叠遮挡的区域。将改进算法部署到嵌入式平台Jetson nano,试验结果表明,识别系统对柑橘果实的识别平均准确率达93.01%,单幅图片的推断时间约为150 ms,对视频的识别速率为16帧/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号