首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《Plant Production Science》2013,16(3):381-389
Abstract

Scarcity of water and N fertilizer are major constraints to rice production, particularly in developing countries where rainfed upland condition dominates. Improvement of genetic adaptability to inadequate water and N fertilizer is one option to maintain productivity in these regions. NERICAs are expected to yield higher under low input conditions, but growth and yield responses of the cultivars to different ecosystems and N levels remain unknown. The objectives of this study were to characterize the growth and yield performance of NERICAs, in comparison with selected Japanese rice cultivars. The two NERICAs (NERICA 1 and NERICA 5), two Japanese upland cultivars (Toyohatamochi and Yumenohatamochi), and a Japanese lowland cultivar Hitomebore were grown under two ecosystems (irrigated lowland (IL) and rainfed upland (RU)) with two N levels (high (H) and low (L)) for two years. The cultivar difference in the aboveground dry weight and grain yield was the largest in the in RU × L plot, where the values of NERICAs were similar to those in the other plots, but the values of other cultivars were substantially reduced. Regardless of cultivar, N contents of the plants at maturity correlated significantly with the aboveground dry weight at maturity, spikelet number and grain yield per area. These results indicate that NERICAs, compared with the selected Japanese upland cultivars that were bred for drought tolerance, have a higher ability to absorb N under upland conditions, which may contribute to higher biomass production and sink formation, resulting in increased gain yield.  相似文献   

2.
Much of the rapidly growing demand for rice in West Africa will be met from increased production in irrigated lowlands, which cover about 12% of the regional rice-growing area. A large potential for expansion of irrigated areas exists particularly in the inland valleys of the humid forest zone. Current production is characterized by large variability in productivity, management practices and production constraints. Quantifying the variability in rice yield and identifying the determining factors are prerequisites to the development of site-specific recommendations and to improved targeting of technologies. Diagnostic on-farm trials were conducted on 64 irrigated lowland fields in the humid forest zone of southern Côte d'Ivoire, in 1995–1996. This was a part of the regional gradient study of irrigated systems from the desert margin to the humid forest zone. Cropping calendars, field operations and input use were monitored. Weed biomass, rice N uptake, and grain yield were determined in farmers' fields as well as in super-imposed, researcher-managed subplots (clean weeding, no N control, and mineral fertilizer N application). Rice yield potential was simulated by using the Oryza-S crop growth model. Yield losses were attributed to management factors based on performance of rice in researcher-managed subplots (management-related yield gap) and by multiple regression with management options. Grain yields varied between 0.2 and 7.3 Mg ha−1 with mean yields of 3.2 in partially and 4.2 Mg ha−1 in fully irrigated systems, 44% and 57% of the potential yield of 7.3 Mg ha−1, respectively. Age of seedlings at transplanting, timeliness of operations and application of P fertilizer were correlated to yield and explained 60% of the observed variability. Grain yield was correlated with N uptake (r2 = 0.93***) but not with N application rate. Split application of mineral fertilizer N was associated with a 0.48 Mg ha−1 yield increase (p = 0.002), regardless of the quantity applied. Additional weeding increased yield only in systems with imperfect irrigation. Weed biomass was reduced with improved water control and it increased with age of seedlings at transplanting, and was higher in direct-seeded than in transplanted rice. Echinochloa spp. were the most common weeds in fully irrigated systems and Panicum laxum was more common in the imperfectly irrigated fields. While improved water management was associated with substantial rice yield increases (1.16 Mg ha−1), the timeliness of transplanting, weeding and N fertilization appears to be the key to increased rice yields in the forest zone of West Africa.  相似文献   

3.
Yield constraints of rainfed lowland rice in Central Java, Indonesia   总被引:1,自引:0,他引:1  
The low and unstable yields of rainfed lowland rice in Central Java can be attributed to drought, nutrient stress, pest infestation or a combination of these factors. Field experiments were conducted in six crop seasons from 1997 to 2000 at Jakenan Experiment Station to quantify the yield loss due to these factors. Experimental treatments—two water supply levels (well-watered, rainfed) in the main plots and five fertilizer levels (0-22-90, 120-0-90, 120-22-0, 120-22-90, 144-27-108 kg NPK ha−1) in the subplots—were laid out in a split-plot design with four replications. Crop, soil, and water parameters were recorded and pest infestations were assessed.

In all seasons, rice yield was significantly influenced by fertilizer treatments. Average yield reduction due to N omission was 42%, to K omission 33–36%, and to P omission 3–4%. Water by nutrient interactions did not affect rice yield and biomass production. In two of the three dry seasons, an average of 20% of the panicles were damaged by pests and estimated yield loss from pests was 56–59% in well-watered and well-fertilized treatments. In one out of six seasons, yields under rainfed conditions were 20–23% lower than under well-watered conditions. Drought, N and K deficiencies, and pest infestation are the major determinants for high yields in rainfed environments in Jakenan. Supplying adequate nutrient and good pest control are at least as important as drought management for increasing crop productivity of rainfed rice-growing areas in Central Java. The relative importance of drought, nutrient and pest management may vary in other rainfed areas. Yield constraints analysis should be systematically carried out to identify appropriate management strategies.  相似文献   


4.
A large proportion of rainfed lowland rice in Southeast Asia is grown in gently sloping areas along toposequences with differences in elevation of a few meters. These small differences in elevation can lead to differentiation in soil properties and hydrological conditions, which in turn may affect crop performance and yield. It may be appropriate to replace blanket crop management recommendations in rainfed areas with toposequence-specific management recommendations. However, thorough statistical analyses of the relationships between toposequence position and field and crop conditions are lacking. In this paper, we statistically analysed the effect of toposequence position on soil properties, hydrological conditions, yield, and yield increase due to weed control and/or fertilizer management in rainfed areas in four villages in Indonesia and Thailand each in 2000–2002.  相似文献   

5.
Research on crop establishment methods may improve green manure performance, reduce costs, and increase the adaptability of pre-rice green manure technology in lowland rice-based cropping systems. A two-season field experiment was conducted at the International Rice Research Institute (IRRI) in Los Baños, Philippines in 1991–1992 to compare four establishment practices of Sesbania rostrata green manure (zero tillage, with tillage, relay cropping in rice for 2 or 4 weeks) with four mineral N fertilizer levels (0, 30, 60, and 90 kg urea N/ha) in an intensive irrigated lowland system with three rice crops per year. S. rostrata was grown twice a year during the 43-day dry-wet and wet-dry transition periods between the wet and dry season rice crops.

Grain yield potential and fertilizer responsiveness of rice was generally highest in the dry season. On the other hand, S. rostrata growth was more vigorous in the wet season (long-day period) than in the dry season, regardless of establishment method. Green manure N accumulation was lowest with zero tillage (30 and 90 kg N/ha in dry and wet season, respectively) and highest when it was relay-cropped for two weeks (60 and 180 kg N/ha in dry and wet season, respectively). Land preparation for Sesbania ensured best green manure stand (> 100 plants/m2 vs 20–40 plants/m2 at no-till establishments) but increased costs of green manuring by US$16/ha compared with other establishment methods. A quadratic response function between mineral fertilizer equivalence and green manure N indicated that up to 75 kg N/ha, lowland rice uses green manure N more efficiently than urea. Depending on season and establishment method, S. rostrata substituted for 35 to 90 kg of split-applied urea N. Benefit-cost ratios indicated that pre-rice green manure use in the wet season under the current fertilizer and labor prices in the Philippines was a less attractive economic option than mineral N fertilizer. This was true for all establishment methods. In the dry season, S. rostrata established by relay cropping gave the highest rate of return. The 2-week relay cropping of green manure with irrigated rice gave highest green manure N accumulation and rice grain yield, and may be economically viable where fertilizer prices are higher or labor costs are lower than in the Philippines.  相似文献   


6.
Weeds cause substantive yield losses in rainfed rice, particularly direct-seeded rice (DSR). Two field experiments were conducted in 2005 in north-east Thailand to examine the effects of cutting date and timing of fertilizer application on suppressed weed, growth and yield of DSR. Treatments consisted of two fertilizer applications to the main plots (top-dressing at the date of cutting and 15 days after cutting; DAC) and four cutting dates of the sub-plots. Rice and weed cutting was performed at 30, 45, 60 and 75 days after seeding (DAS), compared with an untreated control. Cutting resulted in a higher growth rate and improved grain yield of rice compared to the untreated control. Weed cutting at 60 DAS resulted in the greatest leaf area index, which contributed to the maximum number of tiller as well as maximum plant dry mass when observed at 30 DAC. Lower densities and dry weights of weeds at 30 DAC were observed when cutting was done 60 DAS, resulting in a higher grain yield than the other cutting dates. Timing of fertilizer application had no significant effect on the density and dry weight of grasses and broad-leaved weeds, but did have a significant affected on, resulting in the lowest density of sedges at 45 DAC was observed with fertilizer applied at cutting date. Rice grain yield was higher with top-dressing of fertilizer at 15 DAC than with fertilizer applied at cutting date. The cutting treatments resulted in higher net incomes than the untreated control. These results indicate that rice and weed cutting at an appropriate growth stage is an alternative method to chemical weed control for DSR in rainfed riceland.  相似文献   

7.
Expansion of the facultative parasitic plant Rhamphicarpa fistulosa as a weed of rain-fed lowland rice was studied in 2007 on a national level (Benin) by repeating a survey from 1998. Wider species’ distribution was investigated in 2008. Current and potential impact and management strategies were investigated through farmer surveys and pot experiments. Out of 36 cultivated inland valleys visited across Benin, eight were found to be infested with Rhamphicarpa. Out of nine inland valleys inspected in 1998, Rhamphicarpa was found in five in 2007, compared with only three in 1998. Farmers estimated Rhamphicarpa-inflicted yield losses could exceed 60% and indicated that heavily infested fields are abandoned. In a pot experiment with a wide infestation range, the popular cultivar Gambiaka, combining resistance with sensitivity, showed a mean relative yield loss (RYL) of 63%. Parasitic Rhamphicarpa biomass (PRB), the difference between the above-ground biomass produced with and without a host, was suggested as indicator for infection level of this facultative parasite and hence as a practical measure for host resistance. Genetic variation in resistance and tolerance levels was observed among rice cultivars, but fertilizer applications significantly reduced parasite numbers, biomass and effects, cancelling out such genotypic differences. Depending on the tolerance level of the cultivars, the PRB only accounted for 3.7-38.8% of the average parasite-inflicted host biomass reductions, indicating phytotoxic effects of Rhamphicarpa infection.R. fistulosa is an apparently increasing constraint to rain-fed lowland rice in Benin, threatening rice production in the wider region. The use of resistant and tolerant cultivars, combined with fertilizer applications could reduce Rhamphicarpa infections and mitigate negative effects on rice yields.  相似文献   

8.
Abstract

Information on the dynamics of nitrogen as influenced by crop establishment method and N management strategy is meager, but such information is necessary in optimizing nitrogen input for lowland rice (Oryza sativa L.). A field experiment was conducted at the experimental farm of the International Rice Research Institute (IRRI), Philippines, during the wet and dry seasons of 2003 and 2004 to evaluate the effects of crop establishment and nitrogen management strategies for lowland rice on the dynamics of mineral N. The experiment was laid out in a split-plot design with four crop establishment methods as main plots and two N management techniques as subplots with three replications. Zero-N fertilizer (N-omission) micro-plots were embedded in each plot. Crop establishment method did not significantly influence uptake of indigenous mineral N during the wet (44-55 kg ha-1) and dry (43-50 kg ha-1) seasons. Apparently, NH4+-N and NO3~-N accumulated in the top 20-cm layer of the soil during the wet season, resulting in relatively high initial N during the dry season. Crop establishment and N management strategies did not influence crop removal of N during a one-year period. Actual N balance across crop establishment methods during the one-year period ranged from 10 to 16 kg ha-1, whereas the apparent N balance ranged from 45 to 99 kg ha-1. A fertilizer recommendation should be developed based on the actual N balance along with the assessment of crop N requirement for a given yield potential.  相似文献   

9.
Summary

Drought is a major production constraint of rainfed lowland rice grown in Thailand and Laos. Adverse soil conditions also reduce yield. In an attempt to increase rainfed lowland rice production in these countries, a major collaborative international project was conducted during a 6-year period in the region. The objectives of the project were to quantify production constraints, determine genotypic variation in yield, and identify an effective breeding strategy. A rice simulation model was developed also and used to investigate the potential impact of strategies for genetic improvement and agronomic management.

Four major physical or biological constraints to higher production levels of rainfed lowland rice were identified, (1) the lack of standing water at the appropriate time of transplanting, (2) severe water stress that often develops at the end of the growing season, (3) low yield potential of the present cultivars, particularly in Thailand, and (4) adverse soil conditions including low pH and low soil fertility. The results of the field experiments and simulation modelling exercises showed that the influence of these constraints can be reduced and yield increased by several methods : in particular, choice of appropriate cultivars and time of sowing to match crop phenology with water availability, application of appropriate fertilizer, adoption of high yielding cultivars, adoption of direct seeding in place of the traditional transplanting system, and reduction of percolation water loss from the paddies.

A technology package currendy being investigated for the rainfed lowland rice is direct seeding early in the season, using cultivars that flower by the end of the rainy season, with application of organic or chemical fertilizer. The appropriate cultivars are early flowering and short-intermediate statured, possess high yield potential and ability to maintain favourable plant water status at flowering, and have the ability to establish well and compete against weed under direct seeding.  相似文献   

10.
《Field Crops Research》2005,92(1):17-33
The inclusion of grain legumes in rainfed lowland rice farming systems provides an opportunity to increase food production, household income, and human nutrition of impoverished rice farmers in Asia. We examined the effect of rice establishment method on the performance of wet season rice (Oryza sativa L.) and post-rice crops of either chickpea (Cicer arietinum L.) or moong [Vigna radiata (L.) Wilczek] on an Udic Haplustalf in the drought-prone, rainfed lowlands of eastern India. Rice was either direct seeded in lines on moist soil immediately after the onset of wet season rain or transplanted after sufficient rainwater accumulated for soil submergence. Crop establishment method had no effect on rice performance in a season (2001) with normal rainfall. In a drought season (2002), direct seeding resulted in mean rice grain yield of 2.3 t ha−1, whereas the transplanted rice crop failed. The agronomic efficiency of N fertilizer applied to direct-seeded rice was comparable for the 2 years (18 and 24 kg grain per kg N applied). Topsoil inorganic N was markedly higher following chickpea and moong than following a post-rice fallow. Direct-seeded rice had higher yield and accumulation of N following a post-rice legume than following fallow, but transplanted rice derived no such benefit from the legume. Direct-seeded rice was established 1–2 months before transplanted rice, and direct-seeded rice matured before transplanted rice by 8 days in the favorable season and by 26 days in the drought season. The soil nitrate present after legumes and fallow rapidly disappeared, presumably by denitrification, following the onset of rains and soil flooding prior to transplanting. A portion of this accumulated soil nitrate was taken up by the direct-seeded rice before it could be lost. But transplanted rice did not benefit from this inorganic N derived from legumes because virtually all soil nitrate was lost before transplanting. Direct seeding of rice ensured better use of residual and applied N, reduced risk due to drought, and favored intensification with post-rice legumes in drought-prone lowland systems.  相似文献   

11.
An experiment was conducted to examine integrated weed-control techniques for machine-transplanted lowland rice in Korea. Six treatments combining tillage, water and herbicide regimes were compared in a single field trial in 1981. The dissimilarity coefficient (reflecting dissimilarity in botanical composition between two communities) based on weed species present was generally high when comparing herbicide-treated and untreated plots when assessed at the tillering stage of rice. At rice maturity, the highest dissimilarity value was shown between the minimum tillage plot (one rotavation and one harrowing) and the improved treatments which included other cultivations and herbicides. Broad-leaved weeds became dominant in the plots that did not receive any herbicide application whereas sedge weeds became dominant when herbicides were applied. The lowest weed number and weed weights throughout the whole season were recorded on the plot that received the herbicides butachlor and benthiocarb as part of the seedbed preparation with a subsequent application of piperophos/dimethametryn mixture 10 days after transplanting. The highest grain yield, 6·8 t/ha, was harvested from this plot. This was significantly higher than yields from the conventional weeding treatments of single applications of either butachlor (5·8 t/ha) 5 days after transplanting or piperophos/dimethametryn (4·4 t/ha) 10 days after transplanting.  相似文献   

12.
Large within-field variation in rice growth often causes production loss in broadcast-seeded (BC) rainfed lowland rice. The spatial variability of direct-seeded rainfed lowland rice was evaluated in 2004, 2005, and 2007 in on-station experiments at Ubon Ratchathani, northeast Thailand, in relation to soil water content and weed infestation, by adopting semivariogram and block kriging, including comparisons among BC with harrowing (BCH; no weeding), BC with no harrowing (BCNH; no weeding), and row-seeded (RS; interrow weeding once) fields. BCH and BCNH were also compared in 11 farmers’ fields in 2006 and 2007, to assess the effect of harrowing on rice growth and weed infestation. During most of the rice growing periods, flooded and non-flooded portions existed simultaneously in the fields, with different proportions among years and among seeding methods in the on-station experiment. BCH and BCNH rice had large within-field variation in seedling density, heading date, shoot dry matter, grain yield, harvest index, panicle density, and filled spikelet per panicle, as well as in weed infestation, measured by a quick visual estimation. Many of the measured variables (except mean soil water content in RS in 2007, seedling density in BCH in 2005 and 2007, shoot dry matter in BCH and BCNH in 2007, and panicle density in BCH in 2007) were spatially dependent (i.e., data from nearby locations were most similar) by geostatistical analysis. Analysis of correlations using the 420 data sets of BCH plots in 2005 and BCH, BCNH, and RS plots in 2007 revealed a positive correlation between soil water content and grain yield and negative correlations between weed infestation and soil water content and grain yield. Compared with BCH, in 2007 BCNH had much lower grain yield because of lower soil water content after establishment and more weed infestation. BCH had higher grain yield than BCNH in weedy fields in the farmers’ fields experiment. RS with interrow weeding resulted in a smaller coefficient of variation, smaller sill value, and higher grain yield than BCH, due to less weed infestation and a higher proportion of flooded water. These results indicated that reducing the spatial variability in rice growth requires careful field preparation, such as harrowing to level the soil surface and to reduce the uneven distribution of standing water and the variability in soil water content, combined with effective crop and weed management (i.e., harrowing and row-seeding). This is the first study that examined spatial variability in the growth of direct-seeded rice as a function of soil water content and weed infestation in a rainfed lowland environment.  相似文献   

13.
ABSTRACT

In sub-Saharan Africa (SSA), rice production from smallholder farms is challenged because of a lack of fertilizer inputs and nutrient-poor soils. Therefore, improving nutrient efficiency is particularly important for increasing both fertilizer use and rice yield. This review discusses how to improve the return from fertilizer input in terms of agronomic N use efficiency (AEN), that is, the increase in grain yield per kg of applied N, for rice production in SSA. The AEN values we summarized here revealed large spatial variations even within small areas and a certain gap between researcher-led trials and smallholder-managed farms. Experimental results suggest AEN can be improved by addressing spatial variations in soil-related factors such as P, S, Zn, and Si deficiencies and Fe toxicity in both irrigated and rainfed production systems. In rainfed production systems, differences in small-scale topography are also important which affects AEN through dynamic changes in hydrology and variations in the contents of soil organic carbon and clay. Although empirical evidence is further needed regarding the relationship between soil properties and responses to fertilizer inputs, recent agricultural advances have generated opportunities for integrating these micro-topographical and soil-related variables into field-specific fertilizer management. These opportunities include UAV (unmanned aerial vehicle) technology to capture microtopography at low cost, database on soil nutrient characteristics at high resolution and more numbers of fertilizer blending facilities across SSA, and interactive decision support tools by use of smartphones on site. Small-dose nursery fertilization can be also alternative approach for improving AEN in adverse field conditions in SSA.

ABBREVIATIONS: AEN: agronomic nitrogen use efficiency; FISP: farm input subsidy program; VCR: value cost ratio; SOC: soil organic carbon; SSA: sub-Saharan Africa; UAV: unmanned aerial vehicle  相似文献   

14.
Water and nutrient availability are two major constraints in most rice-based rainfed shallow lowland systems of Asia. Both stresses interact and contribute to the low productivity and widespread poverty in this environment. The objective of this study was to improve the understanding of interaction between the two factors and to identify varietal characteristics beneficial for productivity in a water- and nutrient-limited rice environment. For this purpose, we screened 19 rice genotypes adapted to different rice environments under two water and two nutrient treatments during the wet season of 2004 and 2005 in southern Luzon, Philippines. Across all genotypes tested and in comparison with the irrigated control, rainfed conditions reduced grain yield of the treatment without N application by 69% in 2004 and by 59% in 2005. The mean nitrogen fertilizer response was highest in the dryer season of 2004 and the rainfed treatment, indicating that water stress had no effect on fertilizer response. Nitrogen application reduced the relative yield loss to 49% of the irrigated treatment in 2004 and to 52% of the irrigated treatment in 2005. Internal efficiency of N (IEN) and recovery efficiency of applied N (REN) were significantly different between genotypes, but were not affected by water availability (REN) or by water and nutrient availability (IEN). In contrast, grain yield and total N uptake were affected by cultivar, N and water availability. Therefore, germplasm for rainfed environments should be screened under conditions of limited and good nitrogen and water supplies. The four best cultivars, CT6510-24-1-2, IR55423-01, IR72, and IR57514-PMI5-B-1-2, performed well across all treatments and both years. Except for IR72, they were all characterized by medium height, medium duration, high early vigor, and a moderate level of drought tolerance. This combination of characteristics seems to enable the optimal use of limited water and nutrient resources occurring in many shallow rainfed lowlands. We also concluded that moderate drought stress does not necessarily affect the response to moderate N rates, provided that drought does not induce high spikelet sterility and that fertilizer N is properly managed.  相似文献   

15.
《Plant Production Science》2013,16(2):147-153
Abstract

Mini-watersheds called Nongin Thai are geographical components of rainfed lowland rice culture in Northeast Thailand, and constitute distinct units in understanding environmental constraints for low and unstable rainfed rice production there. The toposequential variation of soil fertility and its relation to rice productivity within mini-watersheds, was examined by phytometry of sampled soils and field measurements of rice growth and yield. The phytometry experiment with irrigated potted rice using soils sampled from various rice fields within each mini-watershed, revealed that soil fertility as evaluated by rice dry matter production showed a 5 times difference among the fields at most. The difference in the soil fertility was ascribed primarily to that in nitrogen (N) supply capacity, which itself had a strong correlation with soil organic carbon (SOC) content. Accordingly, the biomass production of pot-grown rice was proportional to SOC. content, which suggested the usefulness of SOC as an index for soil fertility evaluation. The effect of clay on the soil fertility was much less than that of SOC. The actual rice yield in each field also showed quite large field-to-field variation, most of which was explained by the SOC content, rice growth duration and fertilizer application rate even though water availability also affected the yield. The yield positively correlated with growth duration and hence with earlier transplanting. Both SOC and clay contents of fields showed steep gradients with ascending field elevation within mini-watersheds, resulting in a marked toposequential distribution of rice yield. The toposequential distributions of SOC and clay contents imply that rice culture after deforestation accelerated soil erosion from upper to lower fields. The large toposequential gradient in soil fertility requires different resource and crop management for each toposequential position, in order to improve rice productivity of the mini-watershed as a whole.  相似文献   

16.
Significant areas of rain-fed rice in the Sahel, savannah and derived savannah zones of sub-Saharan Africa (SSA), Madagascar and other Indian Ocean Islands are infested by parasitic weeds. The affected area accommodates some of the poorest farmers of the world. Without appropriate management parasitic weeds in rice are expected to increase in importance in SSA due to their general invasive nature and their abilities to adapt to changing conditions such as imposed by predicted climate changes. The most important parasitic weeds in rice are: Striga hermonthica, Striga asiatica, Striga aspera and Rhamphicarpa fistulosa. The first two are primarily found in free-draining uplands while S. aspera is also found on hydromorphic soils and R. fistulosa is restricted to unimproved lowlands including inland valleys. As parasitic weeds are typical production constraints in subsistence rice production, targeting them would directly contribute to poverty alleviation and food security. This paper provides an overview of the problems caused by parasitic weeds in rice and discusses management options and opportunities for research for development.  相似文献   

17.
Failures in agricultural development in parts of West Africa may have been caused by the inability of the farmers to develop the abundant inland valleys for cultivation of such crops like rice, using appropriate water management systems. An inland valley in southeastern Nigeria was used to evaluate the influence of sawah and non-sawah water management using inorganic and organic soil amendments on the soil chemical properties and rice grain yield. Soil chemical properties tested were soil organic carbon, total nitrogen, pH, exchangeable K+, Ca2+ and Mg2+. Others were CEC, percent base saturation and exchangeable acidity while the grain yield of rice was also measured. The soils are loose, low in pH and poor in plant nutrient elements. In spite of that, the sawah-managed system was able to improve the pH of the soil by raising it slightly both in the first and second year of planting. Generally, essential plant nutrients such as exchangeable K+, Ca2+ and Mg2+, including fertility index like the CEC, were improved within sawah management within the period. Also, rice grain yield increased significantly (5.62 and 6.25 tons/ha in the first year and 5.32 and 6.53 tons/ha in the second year for non-sawah and sawah, respectively) with sawah system such that about 11 and 23% yield increases were obtained in sawah over the non-sawah in the two years, respectively. Although organic carbon can be used to explain the variation in total grain yield in the first year, it was the CEC that explained the total grain yield in the second year. The study revealed the superiority of sawah over non-sawah in the production of lowland rice in an inland valley in southeastern Nigeria.  相似文献   

18.
Summary

Allelopathy is well known as an interaction among plants (including microbes) through chemicals produced by plants. Recently, many investigations have evaluated the possibility of the use of allelo-pathic substances as a natural herbicide. Alfalfa (Medicago sativa L.) is reported to contain allelopathic chemicals that inhibit the growth of weeds. Experiments were conducted in Laboratory of Crop Science, Experimental Farm of Miyazaki University and Kobayashi city in Miyazaki Prefecture, Japan to determine the allelopathic impact of alfalfa pellet (commercial forage fodder) on germination and growth of lowland weeds, and its potential as a natural herbicide in paddy field. The results indicated that alfalfa pellet significantly inhibited germination and growth of 4 weed species, viz., Echinochloa orygicola, Digitaria ciliaris, Cyperus difformis and Monocholia vaginalis in rice paddies. Among the 4 tested weeds, the maximum inhibitory effect of alfalfa pellet was seen against Cyperus difformis. The degree of inhibition of weed growth by alfalfa pellet became stronger as the application of concentration increased. The results showed that alfalfa pellet might be used as a natural herbicide in rice paddies and might reduce the amount of herbicide used in paddy fields.  相似文献   

19.
《Field Crops Research》1999,64(3):237-247
An experiment, over 3 years, studied the effects of mineral fertilizers and organic manures on potassium (K) balances in rainfed lowland rice on a light-textured Tropaqualf. Two rice crops were grown each year: the first direct seeded (DS) in moist soil that was later flooded by monsoon rain; the second transplanted (TP) into flooded soil towards the end of the wet season. A soybean crop followed the TP rice in the first year. In all the fertilizer and manure combinations studied, removal of K in the crop exceeded K additions and the soil K balance was negative unless crop residues were incorporated. For DS rice the relations between grain yield and K uptake fell within the limits of maximum K dilution and maximum K accumulation expected for well-managed irrigated rice. But those for TP rice tended to fall below the limit of maximum accumulation, yield being constrained by factors other than mineral nutrition, especially water deficit. In the DS rice, grain yields per unit K uptake were close to maximal in the treatments that received no K, but they were well below that in the K-fertilized treatments. Uptake was well correlated with exchangeable K in the soil at maximum tillering measured by ammonium acetate extraction. The mass balances of K inputs, K uptake and exchangeable K in the soil however, showed that a large part of the uptake was from non-exchangeable pools. The mobilization of non-exchangeable K was apparently plant-induced and was greater in treatments with greater growth. A mechanism for root-induced solubilization of non-exchangeable K, peculiar to rice growing in flooded soil, is proposed.  相似文献   

20.
《Plant Production Science》2013,16(4):315-320
Abstract

Wet-seeded rice is a common method of sowing in Vietnam. Weeds, including weedy rice, however, are a major problem in this establishment method. A study was conducted in a farmer’s field to evaluate the effect of pretilachlor dose (0, 300, 600, and 900 g ai ha–1) on the management of weedy rice and other weeds in wet-seeded rice cultivation in the spring-summer, summer-autumn, and winter-spring seasons of 2012-13. The herbicide was applied 1 day after sowing. Weeds belonging to the grass, broadleaf, and sedge groups were effectively controlled by the lowest herbicide dose (300 g ha–1). Overall, weed control did not increase with increases in herbicide dose after 300 g ha–1, suggesting the optimum dose for pretilachlor in wet-seeded systems. The application of pretilachlor at 300 g ha–1 significantly reduced the number of weedy rice panicles (20 – 69%) and weedy rice biomass (15 – 26%). The highest pretilachlor dose (i.e., 900 g ha–1), however, was better than the lower doses in reducing the number of weedy rice panicles (47 – 80%) and weedy rice biomass (41 – 54%). The non-treated plots produced a rice grain yield of 210, 2000, and 1850 kg ha–1 in the spring-summer, summer-autumn, and winter-spring seasons, respectively. Compared with the non-treated plots, the lowest dose of pretilachlor improved grain yield. However, maximum yield was obtained by applying the highest dose of pretilachlor; 2690, 4490, and 5150 kg ha–1 in the spring-summer, summer-autumn, and winter-spring seasons, respectively. The results of our study suggest that a broad spectrum of weed flora can be easily managed by a lower dosage of pretilachlor in wet-seeded rice; however, the herbicide dose needs to be increased to 900 g ha–1 in order to decrease the weedy rice problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号