首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
利用卷积神经网络等图像处理技术研究识别作物病虫害是农业智能化未来发展的必然趋势,具有识别速度快、精度高等优点。综述了卷积神经网络的几种经典模型及其分别在农作物病虫害识别领域的应用成果;讨论了卷积神经网络在农业病虫害识别领域的局限性和发展趋势,以期更有利于卷积神经网络技术更好地帮助农业进步和经济发展。  相似文献   

3.
农作物病害的精准检测与识别是推动农业生产智能化与现代化发展的重要举措。随着计算机视觉技术的发展,深度学习方法已得到快速应用,利用卷积神经网络进行农作物病害检测与识别成为近年来研究的热点。基于传统农作物病害识别方法,分析传统方法的弊端所在;立足于农作物病害检测与识别的卷积神经网络模型结构,结合卷积神经网络模型发展和优化历程,针对卷积神经网络在农作物病害检测与识别的具体应用进行分类,从基于公开数据集和自建数据集的农作物病害分类识别、基于双阶段目标检测和单阶段目标检测的农作物病害目标检测以及国外和国内的农作物病害严重程度评估3个方面,对各类卷积神经网络模型研究进展进行综述,对其性能做了对比分析,指出了基于农作物病害检测与识别的卷积神经网络模型当前存在的问题有:公开数据集上识别效果良好的网络模型在自建复杂背景下的数据集上识别效果不理想;基于双阶段目标检测的农作物病害检测算法实时性差,不适于小目标的检测;基于单阶段目标检测的农作物病害检测算法在复杂背景下检测精度较低;复杂大田环境中农作物病害程度评估模型的精度较低。最后对未来研究方向进行了展望:如何获取高质量的农作物病害数据集;如何提升网络的泛化性能;如何提升大田环境中农作物监测性能;如何进行大面积植株受病的范围定位、病害严重程度的评估以及单枝植株的病害预警。  相似文献   

4.
病害是我国养蚕业健康发展面临的主要威胁之一,为研究机械化养蚕模式下的家蚕病害防治方法,采用卷积神经网络进行家蚕病害图像的识别研究。首先在实际环境下,采用饲养和添食病原的方法,集中获取家蚕品种芳·秀×白·春在大蚕期的部分生长阶段下患脓病、微粒子病、白僵病、细菌病、农药中毒以及健康状态的样本,并开展图像采集工作,构建出家蚕病害图像数据集。其次采用特征融合和缩减结构的方法,对残差神经网络进行部分改进,以避免直接使用该算法会导致不必要的计算耗损。最后进行家蚕病害识别试验。结果表明:卷积神经网络能够高效准确识别家蚕病害图像,使用改进的算法在测试集上的准确率达到94.31%,与标准的残差神经网络准确率相当,但训练的参数量仅为原来的1/3,且识别效率大幅提升,更有利于网络的训练与部署。  相似文献   

5.
基于深度学习中数字图像识别的理论,课题组构建了深层卷积神经网络,并使用网络模型对苹果树叶片进行分类试验,基于深度学习MobileNet,修改输出的全连接层尺寸,搭建了MobileNet苹果树叶分类模型,实现了Alternaria_Boltch(斑点落叶病)、Brown_Spot(褐斑病)、Grey_Spot(灰斑病)、...  相似文献   

6.
卷积神经网络(CNN)的发展带来了大量的网络参数和庞大的模型体积,极大地限制了其在小规模计算资源设备上的应用。为将CNN应用在各种小型设备上,研究了一种基于知识蒸馏的结构化模型压缩方法。该方法首先利用VGG16训练了一个识别率较高的教师模型,再将该模型中的知识通过蒸馏的方法迁移到MobileNet,从而大幅减少了模型的参数量。将知识蒸馏后的Distilled-MobileNet模型应用在14种作物的38种常见病害分类中。进行了知识蒸馏在VGG16、AlexNet、GoogleNet和ResNet 4种不同网络结构上的表现测试,结果表明,当VGG16作为教师模型时,模型准确率提升了97.54%;使用单个病害识别率、平均准确率、模型内存、平均识别时间4个指标对训练好的Distilled-MobileNet模型进行真实环境下准确性评估,经测试,模型的平均准确率达到了97.62%,平均识别时间缩短至0.218 s,仅占VGG16模型的13.20%,模型大小压缩仅为19.83 MB,相比于VGG16缩小了93.60%,使其具备了较高的准确性和实时性要求。本方法模型在压缩内存体积和缩短识别时间上较传统神经网络有了明显提高,为内存和计算资源受限设备上的病害识别提供了新的思路。  相似文献   

7.
大数据背景下产生了海量图像数据,传统的图像识别方法识别玉米植株病害准确率较低,已远远不能满足需求。卷积神经网络作为深度学习中的常用算法被广泛用于处理机器视觉问题,能自动识别和提取图像特征。因此,本研究提出一种基于数据增强与迁移学习相结合的卷积神经网络识别玉米植株病害模型。该算法首先通过数据增强方法增加数据,以提高模型的泛化性和准确率;再构建基于迁移学习的卷积神经网络模型,引入该模型的训练方式,提取病害图片特征,加速卷积神经网络的训练过程,降低网络的过拟合程度;最后将该模型运用到从农田采集的玉米病害图片,进行玉米病害的精确识别。识别试验结果表明:使用数据增强与迁移学习的卷积神经网络优化算法对玉米主要病害(玉米大斑病、小斑病、灰斑病、黑穗病及瘤黑粉病)的平均识别准确度达96.6%,和单一的卷积神经网络相比,精度提高了25.6%,处理每张图片时间为0.28s,比传统神经网络缩短了将近10倍。本算法的精确度和训练速度上比传统卷积神经网络有明显提高,为玉米等农作物植株病害的识别提供了新方法。  相似文献   

8.
为提取水果图像的多维特征,运用卷积神经网络深度学习技术,在LeNet-5的模型结构的基础上,设计了一个卷积神经网络结构,进而完成水果识别任务.实验结果表明,所提出的网络结构取得了较高的识别准确率.  相似文献   

9.
针对现有的车牌识别方法存在车牌无法定位且车牌字符无法正确分割等情况,提出了一种基于卷积神经网络的车牌识别技术。首先,设计了一套图像处理流程实现车牌定位和字符分割,然后,利用提出的卷积神经网络对车牌字符集进行训练、识别。所提方法可以达到98.54%以上的准确率,极大提高适用性和准确率。  相似文献   

10.
为解决文本特征提取不准确和因网络层次加深而导致模型分类性能变差等问题,提出基于深度卷积神经网络的水稻知识文本分类方法.针对水稻知识文本的特点,采用Word2Vec方法进行文本向量化处理,并与One-Hot、TF-IDF和Hashing方法进行对比分析,得出Word2Vec方法具有较高的分类精度,正确率为86.44%,能...  相似文献   

11.
农作物病虫害是一种严重的自然灾害,需要对其进行及时预测和监控,以保证农作物产量。由于害虫种类繁多以及作物在生长初期的形态相似,农业工作者难以准确识别各类作物昆虫,给病虫害的防治工作带来巨大挑战。针对这一问题,提出一种基于多尺度特征融合的网络模型(FFNet)对作物害虫进行精准识别与分类。首先,采用空洞卷积设计多尺度特征提取模块(MFEM),获取害虫图像的多尺度特征图;然后,使用深层特征提取模块(DFEM)提取图像的深层特征信息;最后,将分别由多尺度特征提取模块(MFEM)和深层特征提取模块(DFEM)提取到的特征图进行融合,从而实现以端到端的方式对作物害虫进行精准分类与识别。试验表明:所提出的方法在12类害虫的数据集上获得优异的分类性能,分类准确率(ACC)达到98.2%,损失函数Loss为0.031,模型训练时间为197 min。  相似文献   

12.
基于深度卷积神经网络的红树林物种无人机监测研究   总被引:1,自引:1,他引:1  
红树林生态系统具有重要的生态价值和经济价值。但是近年来由于人类活动、环境污染等因素红树林的面积日益减少,红树林的保护变得极其迫切且重要。提出一种基于深度学习的红树林物种监测方法,以无人机采集红树林待监测区域图像为研究对象,基于LeNet-5模型结构构建深度卷积神经网络模型,将得到的新的网络模型命名为LeNet-5(2)。在新的卷积神经网络模型中,利用Leaky-ReLU激活函数解决模型中容易出现的梯度消失的问题,并且采用dropout技术提高网络模型的泛化能力,解决网络模型中容易出现的过拟合问题。利用LeNet-5(2)网络模型对红树林图像进行物种识别并标记,总体识别准确率87.31%,基本映射红树林各类物种的分布情况,预测出图像中4类红树林物种的面积分别为:白骨壤1 578.31 m^2、红海榄162.07 m^2、木榄58.94 m^2、秋茄871.79 m^2。将预测结果与图像中红树林物种的实际分布进行比较,总体上符合四类物种的实际分布情况。  相似文献   

13.
为提高现有苹果目标检测模型在硬件资源受限制条件下的性能和适应性,实现在保持较高检测精度的同时,减轻模型计算量,降低检测耗时,减少模型计算和存储资源占用的目的,本研究通过改进轻量级的MobileNetV3网络,结合关键点预测的目标检测网络(CenterNet),构建了用于苹果检测的轻量级无锚点深度学习网络模型(M-CenterNet),并通过与CenterNet和单次多重检测器(Single Shot Multibox Detector,SSD)网络比较了模型的检测精度、模型容量和运行速度等方面的综合性能。对模型的测试结果表明,本研究模型的平均精度、误检率和漏检率分别为88.9%、10.9%和5.8%;模型体积和帧率分别为14.2MB和8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度和不同果实数量等条件下有较好的果实检测效果和适应能力。在检测精度相当的情况下,所提网络模型体积仅为CenterNet网络的1/4;相比于SSD网络,所提网络模型的AP提升了3.9%,模型体积降低了84.3%;本网络模型在CPU环境中的运行速度比CenterNet和SSD网络提高了近1倍。研究结果可为非结构环境下果园作业平台的轻量化果实目标检测模型研究提供新的思路。  相似文献   

14.
为解决传统的玉米病害识别方法中特征提取主观性强及误识率高的问题,提出利用卷积神经网络对玉米病害进行识别。以玉米病害图像和健康图像共5种类别的玉米图像为研究对象,并采用LeNet模型进行试验。首先,按照8∶2的比例为每种玉米病害图像选择训练集和测试集。然后,通过试验组合和对比分析的方法比较不同卷积神经网络结构设置对准确率的影响,选出最佳参数。另外,选用Adam算法代替SGD算法来优化模型,通过指数衰减法调整学习率,将L2正则项添加到交叉熵函数中,并选择Dropout策略和ReLU激励函数。最后,确定了一个10层CNN网络结构。试验结果显示,玉米花叶病、灰斑病、锈病、叶斑病和玉米健康识别率分别为95.83%、90.57%、100%、93.75%、100%,平均识别率达96%,平均计算时间为0.15 s。经试验结果比较,该模型识别效果明显高于传统方法,为玉米病害的防治提供技术支持。  相似文献   

15.
互花米草的侵入对我国的生态系统多样性造成了巨大损失,如何准确地识别零散斑块的互花米草对其早期监测及预警具有重要意义。采用低空无人机遥感技术,以广西北海地区春季时期红树林中的互花米草为研究对象,利用AlexNet、VGG16、GoogleNet、ResNet50、EfficientNetB0五种卷积神经网络,分别对包含互花米草、红树林及其他地物背景的图像数据集进行模型的训练、验证与测试,然后将训练好的五种网络模型对整个试验区域的互花米草及地物背景进行识别并标记,得到互花米草的分布图。基于混淆矩阵和运算时间的综合定量评估结果表明,ResNet50网络模型总体上优于另外四种网络模型,识别准确率最高,达到了96.96%,且在测试集上耗时仅为5.47 s。将识别结果图与互花米草实际分布图进行对比,ResNet50网络模型的识别结果与互花米草的实际分布基本重合。  相似文献   

16.
随着深度学习技术与农业的密切融合,越来越多的研究将深度学习技术用于农业病虫害检测,提高农产品产量和质量.本文提出一种新颖的基于Xception模型的植物病害识别方法.了解到植物病害图像会受到不确定环境因素的干扰而减小图像信息.在Xception的基础上,提出一种新的通道扩增模块,采用带有通道分配权重的多尺度深度卷积与组...  相似文献   

17.
水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为3个等级(每个等级共包含530幅五通道图像,其中480幅作为训练集,50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于TensorFlow深度学习框架搭建了ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和GPS 信息,识别彩色图像模型在验证集的正确率为84.7%,识别多光谱图像模型在验证集的正确率为90.5%,模型训练平均时间为4.5h,五通道图像识别平均用时为3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。  相似文献   

18.
针对常规水力机组故障类型识别需要人工参与、识别效率低下的问题,借助轴心轨迹图片蕴含的丰富信息,在引入细粒度模型对故障严重程度进行区分的基础上,提出了一种基于卷积神经网络的水力机组轴心轨迹类型的智能识别方法.该方法先建立了4种故障严重程度的评判标准和对应的2种水电机组轴心轨迹细粒度数据库;利用改进过卷积层与池化层参数的卷...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号