首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective – To evaluate the effect of body position on the arterial partial pressures of oxygen and carbon dioxide (PaO2, PaCO2), and the efficiency of pulmonary oxygen uptake as estimated by alveolar‐arterial oxygen difference (A‐a difference). Design – Prospective, randomized, crossover study. Setting – University teaching hospital, intensive care unit. Animals – Twenty‐one spontaneously breathing, conscious, canine patients with arterial catheters placed as part of their management strategy. Interventions – Patients were placed randomly into lateral or sternal recumbency. PaO2 and PaCO2 were measured after 15 minutes in this position. Patients were then repositioned into the opposite position and after 15 minutes the parameters were remeasured. Measurements and Main Results – Results presented as median (interquartile range). PaO2 was significantly higher (P=0.001) when patients were positioned in sternal, 91.2 mm Hg (86.0–96.1 mm Hg), compared with lateral recumbency, 86.4 mm Hg (73.9–90.9 mm Hg). The median change was 5.4 mm Hg (1.1–17.9 mm Hg). All 7 dogs with a PaO2<80 mm Hg in lateral recumbency had improved arterial oxygenation in sternal recumbency, median increase 17.4 mm Hg with a range of 3.8–29.7 mm Hg. PaCO2 levels when patients were in sternal recumbency, 30.5 mm Hg (27.3–32.7 mm Hg) were not significantly different from those in lateral recumbency, 32.2 mm Hg (28.3–36.0 mm Hg) (P=0.07). The median change was ?1.9 mm Hg (?3.6–0.77 mm Hg). A‐a differences were significantly lower (P=0.005) when patients were positioned in sternal recumbency, 21.7 mm Hg (17.3–27.7 mm Hg), compared with lateral recumbency, 24.6 mm Hg (20.4–36.3 mm Hg). The median change was ?3.1 mm Hg (?14.6–0.9 mm Hg). Conclusions – PaO2 was significantly higher when animals were positioned in sternal recumbency compared with lateral recumbency, predominantly due to improved pulmonary oxygen uptake (decreased A‐a difference) rather than increased alveolar ventilation (decreased PaCO2). Patients with hypoxemia (defined as PaO2<80 mm Hg) in lateral recumbency may benefit from being placed in sternal recumbency. Sternal recumbency is recommended to improve oxygenation in hypoxemic patients.  相似文献   

2.
The objective of the study was to describe the effects of carbon dioxide pneumoperitoneum and Trendelenburg position on arterial blood gas values in horses anesthetized for laparoscopy. The study design was a prospective case series using 14 healthy adult horses anesthetized for elective laparoscopic surgery. All horses in the study were maintained under anesthesia with halothane in oxygen with intermittent positive-pressure ventilation. A pneumoperitoneum of 15 mmHg or less was achieved with carbon dioxide, and horses were tilted to a 35-degree Trendelenburg position to allow the completion of laparoscopic cryptorchidectomy (n = 13) or ovariectomy (n = 1). Heart rate, mean arterial pressure, and arterial blood gases were recorded at six time intervals throughout the procedure. Results of the study indicated a pH that decreased and partial pressure of carbon dioxide (PaCO2) and mean arterial pressure that increased over time and differed significantly from baseline during Trendelenburg position. Partial pressure of oxygen (PaO2) was significantly lower than baseline after assumption of Trendelenburg position and did not improve on return to normal recumbency and abdominal pressure. As body weight increased, pH and PaO2 decreased and PaCO2 increased. We concluded that horses placed in Trendelenburg position have changes that are transient, with the exception of PaO2. Heavier horses have a greater change in pH, PaCO2, and PaO2 than lighter horses during abdominal insufflation and Trendelenburg position. The changes incurred during CO2 abdominal insufflation and Trendelenburg position are transient, with the exception of a decreased PaO2. Heavy horses undergoing abdominal insufflation and Trendelenburg position should be closely monitored for critical cardiopulmonary values.  相似文献   

3.
Effects of intermittent positive pressure ventilation (IPPV) on cardiopulmonary function were evaluated in horses anesthetized with total intravenous anesthesia using constant rate infusions of medetomidine (3.5 µg/kg/hr), lidocaine (3 mg/kg/hr), butorphanol (24 µg/kg/hr) and propofol (0.1 mg/kg/min) (MLBP-TIVA). Five horses were anesthetized twice using MLBP-TIVA with or without IPPV at 4-week interval (crossover study). In each occasion, the horses breathed 100% oxygen with spontaneous ventilation (SB-group, n=5) or with IPPV (CV-group, n=5), and changes in cardiopulmonary parameters were observed for 120 min. In the SB-group, cardiovascular parameters were maintained within acceptable ranges (heart rate: 33–35 beats/min, cardiac output: 27–30 l/min, mean arterial blood pressure [MABP]: 114–123 mmHg, mean pulmonary arterial pressure [MPAP]: 28–29 mmHg and mean right atrial pressure [MRAP]: 19–21 mmHg), but severe hypercapnea and insufficient oxygenation were observed (arterial CO2 pressure [PaCO2]: 84–103 mmHg and arterial O2 pressure [PaO2]: 155–172 mmHg). In the CV-group, normocapnea (PaCO2: 42–50 mmHg) and good oxygenation (PaO2: 395–419 mmHg) were achieved by the IPPV without apparent cardiovascular depression (heart rate: 29–31 beats/min, cardiac output: 17–21 l /min, MABP: 111–123 mmHg, MPAP: 27–30 mmHg and MRAP: 15–16 mmHg). MLBP-TIVA preserved cardiovascular function even in horses artificially ventilated.  相似文献   

4.
ObjectiveTo compare PaO2 and PaCO2 in horses recovering from general anesthesia maintained with either apneustic anesthesia ventilation (AAV) or conventional mechanical ventilation (CMV).Study designRandomized, crossover design.AnimalsA total of 10 healthy adult horses from a university-owned herd.MethodsDorsally recumbent horses were anesthetized with isoflurane in oxygen [inspired oxygen fraction = 0.3 initially, with subsequent titration to maintain PaO2 ≥ 85 mmHg (11.3 kPa)] and ventilated with AAV or CMV according to predefined criteria [10 mL kg–1 tidal volume, PaCO2 40–45 mmHg (5.3–6.0 kPa) during CMV and < 60 mmHg (8.0 kPa) during AAV]. Horses were weaned from ventilation using a predefined protocol and transferred to a stall for unassisted recovery. Arterial blood samples were collected and analyzed at predefined time points. Tracheal oxygen insufflation at 15 L minute–1 was provided if PaO2 < 60 mmHg (8.0 kPa) on any analysis. Time to oxygen insufflation, first movement, sternal recumbency and standing were recorded. Data were analyzed using repeated measures anova, paired t tests and Fisher’s exact test with significance defined as p < 0.05.ResultsData from 10 horses were analyzed. Between modes, PaO2 was significantly higher immediately after weaning from ventilation and lower at sternal recumbency for AAV than for CMV. No PaCO2 differences were noted between ventilation modes. All horses ventilated with CMV required supplemental oxygen, whereas three horses ventilated with AAV did not. Time to first movement was shorter with AAV. Time to oxygen insufflation was not different between ventilation modes.ConclusionsAlthough horses ventilated with AAV entered the recovery period with higher PaO2, this advantage was not sustained during recovery. Whereas fewer horses required supplemental oxygen after AAV, the use of AAV does not preclude the need for routine supplemental oxygen administration in horses recovering from general anesthesia.  相似文献   

5.
The purpose of this study was to find out if an LMA (#1 LMA‐Classic) would provide a better airway than a face mask in spontaneously breathing anesthetized rabbits, and to test if it could be used for mechanically controlled ventilation. Sixteen rabbits (4.1 ± 0.8 kg, mean ± SD) were assigned randomly to three treatment groups; face mask with spontaneous ventilation (FM‐SV; n = 5), LMA with spontaneous ventilation (LMA‐SV; n = 5), and LMA with controlled ventilation (LMA‐CV; n = 6). Rabbits were anesthetized in dorsal recumbency using a circle circuit at constant ET isoflurane (2.3%, Datex airway gas monitor) and constant rectal temperature (38.85 °C) for 2 hours. PaCO2, PaO2, minute volume, tidal volume (Wright's respirometer), and Pe CO2 were measured at 15 minute intervals. Two individuals in the FM‐SV group had PaCO2 >100 mm Hg (>13.3 kPa). One rabbit in the FM‐SV had PaO2 <80 mm Hg (<10.7 kPa). All FM‐SV rabbits showed signs of airway obstruction and two were withdrawn from the study at 45 and 90 minutes, respectively, because of cyanosis. Tidal volume could not be measured in the FM‐SV group. No signs of airway obstructions were observed in either of the LMA groups. Four rabbits in the LMA‐CV group developed gastric tympany, and one of these refluxed after 110 minutes. The significance of differences between the two spontaneously breathing groups and between the two LMA groups were measured using Wilcoxon's rank sum test (with significance assumed at p < 0.05). There were no statistical differences between FM‐SV and LMA‐SV in any variable tested. PaCO2 and Pe ′CO2 were less in the LMA‐CV group than in the LMA‐SV group, while PaO2, tidal volume, and minute volume were all more. We conclude that biologically, the LMA provides a better airway than the face mask during spontaneous breathing and that it can be used for IPPV, but that gastric tympany is likely to occur during IPPV.  相似文献   

6.
Objective— To study the combined effects of intra-abdominal CO2 insufflation with changes in body position during laparoscopy in xylazine-ketamine-halothane anesthetized llamas. Study Design— Prospective, controlled study. Animals— Nine castrated, male llamas weighing 114 ± 23 kg, 3 to 13 years old. Methods— Three llamas (preliminary study [PS] group) were used to study the effect of right lateral, dorsal, and left lateral recumbency on gas exchange and acid-base status. The other six (experimental study [ES] group) were used to study the combined effects of changes in body position and CO2 insufflation to an intraabdominal pressure of 10 to 12 mm Hg. Heart rate, respiratory rate, and indirect arterial blood pressures (systolic [SAP], mean [MAP], and diastolic [DAP]) were recorded every 5 minutes during anesthesia. Arterial blood gases (PaO2 and PaCO2) and acid-base status (pHa and HCO3) were measured immediately after induction of anesthesia and before each change of position. Results— In the PS group, significant decreases in SAP, MAP and PaCO2 and increases in PaO2 and pHa were observed when the llamas were turned from right lateral to dorsal recumbency. Values for HCO-3 were lower than the postinduction values, but they remained unaffected by the changes in position. In the ES group, values for MAP were significantly lower when the llamas were placed in dorsal and left lateral recumbency than those observed during right lateral recumbency. Arterial O2 tension during right lateral recumbency was lower but returned to preinsufflation values when the llamas were placed in the dorsal position. All llamas recovered uneventfully within 30 minutes after termination of anesthesia. Conclusions— Insufflation of CO2 and changing body position induce minor and transient changes in cardiovascular and respiratory function. Clinical Relevance— Laparoscopy with mild intra-abdominal CO2 insufflation (10 to 12 mm Hg) can be used safely in spontaneously breathing llamas anesthetized with xylazine, ketamine, and halothane.  相似文献   

7.
The objective of this prospective clinical study was to evaluate the accuracy of pulse oximetry and capnography in healthy and compromised horses during general anesthesia with spontaneous and controlled ventilation. Horses anesthetized in a dorsal recumbency position for arthroscopy (n = 20) or colic surgery (n = 16) were instrumented with an earlobe probe from the pulse oximeter positioned on the tip of the tongue and a sample line inserted at the Y-piece for capnography. The horses were allowed to breathe spontaneously (SV) for the first 20 min after induction, and thereafter ventilation was controlled (IPPV). Arterial blood, for blood gas analysis, was drawn 20 min after induction and 20 min after IPPV was started. Relationships between oxygen saturation as determined by pulse oximetry (SpO2), arterial oxygen saturation (SaO2), arterial carbon dioxide partial pressure (PaCO2), and end tidal carbon dioxide (P(et)CO2), several physiological variables, and the accuracy of pulse oximetry and capnography, were evaluated by Bland–Altman or regression analysis. In the present study, both SpO2 and P(et)CO2 provided a relatively poor indication of SaO2 and PaCO2, respectively, in both healthy and compromised horses, especially during SV. A difference in heart rate obtained by pulse oximetry, ECG, or palpation is significantly correlated with any pulse oximeter inaccuracy. If blood gas analysis is not available, ventilation to P(et)CO2 of 35 to 45 mmHg should maintain the PaCO2 within a normal range. However, especially in compromised horses, it should never substitute blood gas analysis.  相似文献   

8.
Objective To determine, in mildly hypercapnic horses under isoflurane–medetomidine balanced anaesthesia, whether there is a difference in cardiovascular function between spontaneous ventilation (SV) and intermittent positive pressure ventilation (IPPV). Study design Prospective randomized clinical study. Animals Sixty horses, undergoing elective surgical procedures under general anaesthesia: ASA classification I or II. Methods Horses were sedated with medetomidine and anaesthesia was induced with ketamine and diazepam. Anaesthesia was maintained with isoflurane and a constant rate infusion of medetomidine. Horses were assigned to either SV or IPPV for the duration of anaesthesia. Horses in group IPPV were maintained mildly hypercapnic (arterial partial pressure of carbon dioxide (PaCO2) 50–60 mmHg, 6.7–8 kPa). Mean arterial blood pressure (MAP) was maintained above 70 mmHg by an infusion of dobutamine administered to effect. Heart rate (HR), respiratory rate (fR), arterial blood pressure and inspiratory and expiratory gases were monitored continuously. A bolus of ketamine was administered when horses showed nystagmus. Cardiac output was measured using lithium dilution. Arterial blood‐gas analysis was performed regularly. Recovery time was noted and recovery quality scored. Results There were no differences between groups concerning age, weight, body position during anaesthesia and anaesthetic duration. Respiratory rate was significantly higher in group IPPV. Significantly more horses in group IPPV received supplemental ketamine. There were no other significant differences between groups. All horses recovered from anaesthesia without complications. Conclusions There was no difference in cardiovascular function in horses undergoing elective surgery during isoflurane–medetomidine anaesthesia with SV in comparison with IPPV, provided the horses are maintained slightly hypercapnic. Clinical relevance In horses with health status ASA I and II, cardiovascular function under general anaesthesia is equal with or without IPPV if the PaCO2 is maintained at 50–60 mmHg.  相似文献   

9.
ObjectiveTo determine the haemodynamic effects of halothane and isoflurane with spontaneous and controlled ventilation in dorsally recumbent horses undergoing elective surgery.Study designProspective randomized clinical trial.AnimalsTwenty-five adult horses, body mass 487 kg (range: 267–690).MethodsHorses undergoing elective surgery in dorsal recumbency were randomly assigned to one of four treatment groups, isoflurane (I) or halothane (H) anaesthesia, each with spontaneous (SB) or controlled ventilation (IPPV). Indices of cardiac function and femoral arterial blood flow (ABF) and resistance were measured using transoesophageal and transcutaneous Doppler echocardiography, respectively. Arterial blood pressure was measured directly.ResultsFour horses assigned to receive isoflurane and spontaneous ventilation (SBI) required IPPV, leaving only three groups for analysis: SBH, IPPVH and IPPVI. Two horses were excluded from the halothane groups because dobutamine was infused to maintain arterial blood pressure. Cardiac index (CI) was significantly greater, and pre-ejection period (PEP) shorter, during isoflurane compared with halothane anaesthesia with both spontaneous (p = 0.04, p = 0.0006, respectively) or controlled ventilation (p = 0.04, p = 0.008, respectively). There was an association between CI and PaCO2 (p = 0.04) such that CI increased by 0.45 L minute−1m−2 for every kPa increase in PaCO2. Femoral ABF was only significantly higher during isoflurane compared with halothane anaesthesia during IPPV (p = 0.0006). There was a significant temporal decrease in CI, but not femoral arterial flow.ConclusionThe previously reported superior cardiovascular function during isoflurane compared with halothane anaesthesia was maintained in horses undergoing surgery. However, in these clinical subjects, a progressive decrease in CI, which was independent of ventilatory mode, was observed with both anaesthetic agents.Clinical relevanceCardiovascular function may deteriorate progressively in horses anaesthetized for brief (<2 hours) surgical procedures in dorsal recumbency. Although cardiovascular function is superior with isoflurane in dorsally recumbent horses, the need for IPPV may be greater.  相似文献   

10.

Objective

To compare the effects of two concentrations of oxygen delivered to the anaesthetic breathing circuit on oxygenation in mechanically ventilated horses anaesthetised with isoflurane and positioned in dorsal or lateral recumbency.

Methods

Selected respiratory parameters and blood lactate were measured and oxygenation indices calculated, before and during general anaesthesia, in 24 laterally or dorsally recumbent horses. Horses were randomly assigned to receive 100% or 60% oxygen during anaesthesia. All horses were anaesthetised using the same protocol and intermittent positive pressure ventilation (IPPV) was commenced immediately following anaesthetic induction and endotracheal intubation. Arterial blood gas analysis was performed and oxygenation indices calculated before premedication, immediately after induction, at 10 and 45 min after the commencement of mechanical ventilation, and in recovery.

Results

During anaesthesia, the arterial partial pressure of oxygen was adequate in all horses, regardless of position of recumbency or the concentration of oxygen provided. At 10 and 45 min after commencing IPPV, the arterial partial pressure of oxygen was lower in horses in dorsal recumbency compared with those in lateral recumbency, irrespective of the concentration of oxygen supplied. Based on oxygenation indices, pulmonary function during general anaesthesia in horses placed in dorsal recumbency was more compromised than in horses in lateral recumbency, irrespective of the concentration of oxygen provided.

Conclusion

During general anaesthesia, using oxygen at a concentration of 60% instead of 100% maintains adequate arterial oxygenation in horses in dorsal or lateral recumbency. However, it will not reduce pulmonary function abnormalities induced by anaesthesia and recumbency.  相似文献   

11.
The effect of nitrous oxide (N2O) on arterial partial pressure of oxygen (PaO2) was evaluated in 20 adult horses anaesthetised with halothane. A fresh gas flow rate of 20ml/kg/min, comprising a 1:1 N2O/oxygen (O2) mixture, was supplied via the rotameter flowmeters of an anaesthetic machine to a large animal breathing system. The horses breathed spontaneously from the circuit immediately after endotracheal intubation. Ten horses were subsequently positioned in lateral recumbency and ten in dorsal recumbency. A further twenty adult horses were anaesthetised with halothane and acted as controls; halothane in 20mls/kg/min of O2 being supplied to the same breathing system. Fifty percent NO caused significant decreases in PaO2 for horses in lateral and dorsal recumbency. However when administered to horses in lateral recumbency it did not promote arterial hypoxaemia. There was a higher risk of intraopera- tive arterial hypoxaemia (PaO2 < 8.6kPa) associated with its use in spontaneously breathing horses in dorsal recumbency. Arterial hypoxaemia occurred in all horses during the first fifteen minutes of recovery but when N2O was discontinued, halothane in oxygen supplied to the breathing circuit for five minutes at a flow rate of 20ml/kg/minute was sufficient to ensure that diffusion hypoxia did not occur. The magnitude of the hypoxaemia was not signficantly different between the groups. The time taken to adopt sternal recumbency was significantly shorter in the horses that had received N2O.  相似文献   

12.
Objective To compare arterial oxygen and carbon dioxide tensions in apneic and spontaneously ventilating horses recovering from anesthesia. Study design Randomized clinical trial. Animal population Forty‐two healthy horses averaging 466 ± 106 kg and 6 ± 5 years of age. Methods Anesthetized horses undergoing a variety of surgical procedures and receiving positive pressure ventilation (IPPV) were divided into two equal groups. One group was allowed to return to spontaneous ventilation prior to disconnection from the anesthetic circuit (weaned). The other group remained apneic during transport to a recovery stall. Arterial blood gas data were collected at five time points: 20 minutes before moving to a recovery stall (t = ? 20); at the time the anesthetic circuit was disconncted (t = 0); at 3 and 5 minutes post‐disconnection (t = 3 and t = 5) and at the time of the first spontaneous breath (t = sv). The data were analyzed using an anova method for repeated measures and paired, two‐tailed t‐tests. Significance was assumed when p < 0.05. Results The apneic group took a mean of 5 minutes 18 seconds (± 135 seconds) before starting spontaneous ventilation. This group maintained significantly higher PaO2 levels at intermediate time points (t = 0 and t = 3) but no difference was noted after 5 minutes. PaCO2 levels were higher in the weaned group at time 0 minutes, returning to a comparable level to the apneic group at t = 3 minutes. Conclusions and clinical relevance Horses can survive a short period of apnea during transport from the surgery suite to recovery stall and may benefit from a reduced incidence of transient hypoxemia compared with spontaneously ventilating horses. This information has practical implications for the anesthetist evaluating the options for discontinuing IPPV when horses are moved to a recovery stall.  相似文献   

13.
Objective The study aimed to investigate the effect of varying pulse lengths of inhaled nitric oxide (iNO), and 2.5 hours of continuous pulse‐delivered iNO on pulmonary gas exchange in anaesthetized horses. Study Design Experimental study. Animals Six Standardbred horses. Methods Horses received acepromazine, detomidine, guaifenesin, thiopentone and isoflurane in oxygen, were positioned in dorsal recumbency and were breathing spontaneously. iNO was on average pulsed during the first 20, 30, 43 or 73% of the inspiration in 15 minute steps. The pulse length that corresponded to the highest (peak) partial pressure of arterial oxygen (PaO2) in the individual horses was determined and delivered for a further 1.5 hours. Data measured or calculated included arterial and mixed venous partial pressures of O2 and CO2, heart rate, respiratory rate, expired minute ventilation, pulmonary and systemic arterial mean pressures, cardiac output and venous admixture. Data (mean ± SD) was analysed using anova with p < 0.05 considered significant. Results Although the pulse length of iNO that corresponded to peak PaO2 varied between horses, administration of all pulse lengths of iNO increased PaO2 compared to baseline. The shortest pulse lengths that resulted in the peak PaO2 were 30 and 43% of the inspiration. Administration of iNO increased PaO2 (12.6 ± 4.1 kPa [95 ± 31 mmHg] at baseline to a range of 23.0 ± 8.4 to 25.3 ± 9.0 kPa [173 to 190 mmHg]) and PaCO2 (8.5 ± 1.2 kPa [64 ± 9 mmHg] to 9.8 ± 1.5 kPa [73 ± 11 mmHg]) and decreased venous admixture from 32 ± 6% to 25 ± 6%. The increase in PaO2 and decrease in venous admixture was sustained for the entire 2.5 hours of iNO delivery. Conclusions The improvement in arterial oxygenation during pulsed delivery of iNO was significant and sustained throughout 2.5 hours of anaesthesia. Clinical relevance Pulsed iNO potentially could be used clinically to counteract hypoxemia in anaesthetized horses.  相似文献   

14.
ObjectiveTo examine the relationship between body mass and thoracic dimensions on arterial oxygen tensions (PaO2) in anaesthetized horses and ponies positioned in dorsal recumbency.Study designProspective clinical study.AnimalsThirty six client-owned horses and ponies, mean [±SD (range)] age 8.1 ± 4.8 (1.5–20) years and mean body mass 467 ± 115 (203–656) kg.MethodsBefore general anaesthesia, food and water were withheld for 12 and 1 hours respectively. Body mass (kg), height at the withers (H), thoracic circumference (C), thoracic depth (length between dorsal spinous process and sternum; D), thoracic width (between point of shoulders; W), and thoracic diagonal length (point of shoulder to last rib; L) were measured. Pre-anaesthetic medication was with intravenous (IV) romifidine (0.1 mg kg−1). Anaesthesia was induced with an IV ketamine (2.2 mg kg−1) and diazepam (0.05 mg kg−1) combination and maintained with halothane in 1:1 oxygen:nitrous oxide (N2O) mixture. Animals were positioned in dorsal recumbency and allowed to breathe spontaneously. Nitrous oxide was discontinued after 10 minutes, and arterial blood samples obtained and analysed for gas tensions at 15, 30 and 60 minutes after connection to the anaesthetic breathing circuit. Data were analysed using anova and Pearson's correlation co-efficient.ResultsThe height per unit body mass (H kg−1) and thoracic circumference per unit body mass (C kg−1) correlated strongly (r = 0.85, p < 0.001 and r = 0.82, p < 0.001 respectively) with arterial oxygen tensions (PaO2) at 15 minutes.ConclusionsThere is a strong positive correlation between H kg−1 and C kg−1 and PaO2 after 15 minutes of anaesthesia in halothane-anaesthetized horses positioned in dorsal recumbency.Clinical relevanceReadily obtained linear measurements (height and thoracic circumference) and body mass may be used to predict the ability of horses to oxygenate during anaesthesia.  相似文献   

15.
ObjectivesTo investigate the influence of two inspired oxygen fractions (FIO2) on the arterial oxygenation in horses anaesthetized with isoflurane.Study DesignRetrospective, case-control clinical study.AnimalsTwo hundred equine patients undergoing non-abdominal surgery (ASA class 1–2), using a standardized anaesthetic protocol and selected from anaesthetic records of a period of three years, based on pre-defined inclusion criteria.MethodsIn group O (n = 100), medical oxygen acted as carrier gas, while in group M (n = 100), a medical mixture of oxygen and air (FIO2 0.60) was used. Demographic data, FIO2, arterial oxygen tension (PaO2) and routinely monitored physiologic data were recorded. The alveolar-arterial oxygen tension difference [P(A-a)O2] and PaO2/FIO2 ratio were calculated. The area under the curve, standardized to the anaesthetic duration, was calculated and statistically compared between groups using t-tests or Mann–Whitney tests as appropriate. Categorical data were compared using Chi-square tests.ResultsNo significant differences in age, body weight, sex, breed, surgical procedure, position, anaesthetic duration or arterial carbon dioxide tension were found. Mean FIO2 was 0.78 in group O and 0.60 in group M. Compared to group O, significantly lower values for PaO2 and for P(A-a)O2 were found in group M. In contrast, the PaO2/FIO2 ratio and the percentage of horses with a PaO2 <100 mmHg (13.33 kPa) were comparable in both groups.ConclusionsAlthough a reduction of the inspired oxygen fraction resulted in a lower PaO2, the P(A-a)O2 was also lower and the number of horses with PaO2 values <100 mmHg was comparable.Clinical relevanceIn healthy isoflurane anaesthetized horses, the use of a mixture of oxygen and air as carrier gas seems acceptable, but further, prospective studies are needed to confirm whether it results in a lower degree of ventilation/perfusion mismatching.  相似文献   

16.
ObjectiveTo determine if pressure support ventilation (PSV) weaning from general anesthesia affects ventilation or oxygenation in horses.Study designProspective randomized clinical study.AnimalsTwenty client‐owned healthy horses aged 5 ± 2 years, weighing 456 ± 90 kg.MethodsIn the control group (CG; n = 10) weaning was performed by a gradual decrease in respiratory rate (fR) and in the PSV group (PSVG; n = 10) by a gradual decrease in fR with PSV. The effect of weaning was considered suboptimal if PaCO2 > 50 mmHg, arterial pH < 7.35 plus PaCO2 > 50 mmHg or PaO2 < 60 mmHg were observed at any time after disconnection from the ventilator until 30 minutes after the horse stood. Threshold values for each index were established and the predictive power of these values was tested.ResultsPressure support ventilation group (PSVG) had (mean ± SD) pH 7.36 ± 0.02 and PaCO2 41 ± 3 mmHg at weaning and the average lowest PaO2 69 ± 6 mmHg was observed 15 minutes post weaning. The CG had pH 7.32 ± 0.02 and PaCO2 57 ± 6 mmHg at weaning and the average lowest PaO2 48 ± 5 mmHg at 15 minutes post weaning. No accuracy in predicting weaning effect was observed for fR (p = 0.3474), minute volume (p = 0.1153), SaO2 (p = 0.1737) and PaO2/PAO2 (p = 0.1529). A high accuracy in predicting an optimal effect of weaning was observed for VT > 10 L (p = 0.0001), fR/VT ratio ≤ 0.60 breaths minute?1 L?1 (p = 0.0001), VT/bodyweight > 18.5 mL kg?1 (p = 0.0001) and PaO2/FiO2 > 298 (p = 0.0002) at weaning. A high accuracy in predicting a suboptimal effect of weaning was observed for VT < 10 L (p = 0.0001), fR/VT ratio ≥ 0.60 breaths minute?1 L?1 (p = 0.0001) and Pe′CO2 ≥ 38 mmHg (p = 0.0001) at weaning.Conclusions and clinical relevancePressure support ventilation (PSV) weaning had a better respiratory outcome. A higher VT, VT/body weight, PaO2/FiO2 ratio and a lower fR/VT ratio and Pe′CO2 were accurate in predicting the effect of weaning in healthy horses recovering from general anesthesia.  相似文献   

17.
ObjectiveTo compare tidal volume estimations obtained from Respiratory Ultrasonic Plethysmography (RUP) with simultaneous spirometric measurements in anaesthetized, mechanically ventilated horses.Study designProspective randomized experimental study.AnimalsFive experimental horses.MethodsFive horses were anaesthetized twice (1 week apart) in random order in lateral and in dorsal recumbency. Nine ventilation modes (treatments) were scheduled in random order (each lasting 4 minutes) applying combinations of different tidal volumes (8, 10, 12 mL kg?1) and positive end-expiratory pressures (PEEP) (0, 10, 20 cm H2O). Baseline ventilation mode (tidal volume = 15 mL kg?1, PEEP = 0 cm H2O) was applied for 4 minutes between all treatments. Spirometry and RUP data were downloaded to personal computers. Linear regression analyses (RUP versus spirometric tidal volume) were performed using different subsets of data. Additonally RUP was calibrated against spirometry using a regression equation for all RUP signal values (thoracic, abdominal and combined) with all data collectively and also by an individually determined best regression equation (highest R2) for each experiment (horse versus recumbency) separately. Agreement between methods was assessed with Bland-Altman analyses.ResultsThe highest correlation of RUP and spirometric tidal volume (R2 = 0.81) was found with the combined RUP signal in horses in lateral recumbency and ventilated without PEEP. The bias ± 2 SD was 0 ± 2.66 L when RUP was calibrated for collective data, but decreased to 0 ± 0.87 L when RUP was calibrated with individual data.Conclusions and clinical relevanceA possible use of RUP for tidal volume measurement during IPPV needs individual calibration to obtain limits of agreement within ± 20%.  相似文献   

18.
ObjectiveTo compare the effects of two fractions of inspired oxygen (FiO2) (0.4 and 1) on lung aeration and gas exchange during general anaesthesia in cats.Study designRandomized, blinded, controlled study.AnimalsThirty healthy, mixed breed, client owned female cats.Materials and methodsCats were premedicated intramuscularly with acepromazine (0.03 mg kg?1) and medetomidine (0.015 mg kg?1). Anaesthesia was induced with propofol (5 mg kg?1) and, after orotracheal intubation, maintained with isoflurane carried by either 100% oxygen (G100, n = 15) or an oxygen-air mixture with 40% oxygen (G40, n = 15). All cats were placed in dorsal recumbency and breathed spontaneously throughout the entire procedure. Following surgery (ovariectomy), a spiral computed tomography (CT) of the thorax was performed, arterial oxygen (PaO2) and carbon dioxide (PaCO2) tensions were measured and alveolar-arterial gradient of oxygen [P(A-a)O2] calculated. The CT images were analysed for lung aeration by the analysis of radiograph attenuations (Hounsfield units, HU), according to the following classification: hyperinflated area (-1000 to -900 HU), normally aerated area (-900 to -500 HU), poorly aerated area (-500 to -100 HU) and non-aerated area (-100 to +100 HU). The groups were compared using one-way anova.ResultsCompared to G100, the normally-aerated lung area was significantly greater and the poorly-aerated and non-aerated areas were significantly smaller in G40. PaCO2 was similar in both groups. PaO2 and P(A-a)O2 were significantly higher in G100. In both groups, pulmonary atelectasis developed preferentially in the caudal lung fields.ConclusionIn cats anaesthetised with isoflurane, the administration of an FiO2 of >0.9 significantly impaired lung aeration and gas exchange as compared to an FiO2 of 0.4.Clinical relevanceAn FiO2 of 0.4 may better preserve lung aeration and gas exchange in anaesthetised spontaneously breathing cats but monitoring is essential to ensure oxygenation is adequate.  相似文献   

19.
The anesthetic sparring and cardiovascular effects produced by midazolam 0.8 mg/ml-ketamine 40 mg/ml-medetomidine 0.05 mg/ml (0.025 ml/kg/hr) drug infusion during sevoflurane in oxygen (MKM-OS) anesthesia was determined in healthy horses. The anesthetic sparring effects of MKM-OS were assessed in 6 healthy thoroughbred horses in which the right carotid artery was surgically relocated to a subcutaneous position. All horses were intubated and ventilated with oxygen using intermittent positive pressure ventilation (IPPV). The end-tidal concentration of sevoflurane (ET(SEV)) required to maintain surgical anesthesia was approximately 1.7%. Heart rate and mean arterial blood pressure averaged 23-41 beats/min and 70-112 mmHg, respectively. All horses stood between 23-44 min after the cessation of all anesthetic drugs. The cardiovascular effects of MKM-OS anesthesia were evaluated in 5 healthy thoroughbred horses ventilated using IPPV. Anesthesia was maintained for 4 hr at an ET(SEV) of 1.7%. Each horse was studied during left lateral (LR) and dorsal recumbency (DR) with a minimum interval between evaluations of 1 month. Cardiac output and cardiac index were maintained between 70-80% of baseline values during LR and 65-70% of baseline values during DR. Stroke volume was maintained between 75-85% of baseline values during LR and 60-70% of baseline values during DR. Systemic vascular resistance was not different from baseline values regardless of position. MKM-OS anesthesia may be useful for prolonged equine surgery because of its minimal cardiovascular depression in both of lateral and dorsal recumbency.  相似文献   

20.
ObjectiveHypoxemia is common during equine field anesthesia. Our hypothesis was that oxygen therapy from a portable oxygen concentrator would increase PaO2 during field anesthesia compared with the breathing of ambient air.Study designProspective clinical study.AnimalsFifteen yearling (250 – 400 kg) horses during field castration.MethodsHorses were maintained in dorsal recumbency during anesthesia with an intravenous infusion of 2000 mg ketamine and 500 mg xylazine in 1 L of 5% guaifenesin. Arterial samples for blood gas analysis were collected immediately post-induction (PI), and at 15 and 30 minutes PI. The control group (n = 6) breathed ambient air. The treatment group (n = 9) were administered pulsed-flow oxygen (192 mL per bolus) by nasal insufflation during inspiration for 15 minutes PI, then breathed ambient air. The study was performed at 1300 m above sea level. One-way and two-way repeated-measures anova with post-hoc Bonferroni tests were used for within and between-group comparisons, respectively. Significance was set at p ≤ 0.05.ResultsMean ± SD PaO2 in controls at 0, 15 and 30 minutes PI were 46 ± 7 mmHg (6.1 ± 0.9 kPa), 42 ± 9 mmHg (5.6 ± 1.1 kPa), and 48 ± 7 mmHg (6.4 ± 0.1 kPa), respectively (p = 0.4). In treatment animals, oxygen administration significantly increased PaO2 at 15 minutes PI to 60 ± 13 mmHg (8.0 ± 1.7 kPa), compared with baseline values of 46 ± 8 mmHg (6.1 ± 1 kPa) (p = 0.007), and 30 minute PI values of 48 ± 7 mmHg (6.5 ± 0.9 kPa) (p = 0.003).ConclusionsThese data show that a pulsed-flow delivery of oxygen can increase PaO2 in dorsally recumbent horses during field anesthesia with ketamine-xylazine-guaifenesin.Clinical relevanceThe portable oxygen concentrator may help combat hypoxemia during field anesthesia in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号