共查询到20条相似文献,搜索用时 0 毫秒
1.
以鸭肝炎病毒(DHV)SN株VP1基因序列为基础,运用Garnier-Robson、Chou-Fasman和Karplus-Schulz方法预测VP1蛋白的二级结构,并分别运用Kyte-Doolittle方法、Jameson-Wolf方法和Emini方法预测蛋白的亲水性、抗原指数和表面可及性,最后结合吴玉章的方法综合分析预测其B细胞抗原表位.结果显示,VP1蛋白C端第132~137、177~186、209~219区段有较好的亲水性、表面可及性和较高的抗原指数,并且在二级结构上含有易形成抗原表位的无规则卷曲和β-转角,可能是VP1蛋白的B细胞抗原优势表位;DHV SN株与弱毒疫苗株在推测的VP1 B细胞抗原表位177~186和209~219两个区域氨基酸序列变异较大. 相似文献
2.
从湖北某发病鸭场分离到一株鸭肝炎病毒DHV/HB98,通过RT-PCR方法扩增该毒株的VPI基因的核苷酸序列.系统发育分析表明,DHV/HB98株的基因组序列与已发表的DHV-1 E53和ZJ的结构基因VP1亲缘关系最近,核苷酸的同源性为98.6%和98.3%,氨基酸序列的同源性为98.3%和98.7%,分析DHV/HB98与发表的变异株90D和04G核苷酸同源性为65.4%和66.7%,氨基酸同源性为69.5%和74.8%.推断该毒株属于DHV-1,与变异株是不同的血清型;DHV/HB98与DHV-1 ZJ具有相近的遗传关系,推断DHV/HB98也为强毒株. 相似文献
3.
摘要:通过PCR技术,从自行分离的鸭肝炎病毒Js株基因组中扩增出病毒衣壳蛋白VP1完整基因片段,并对该片段进行序列测定及分析。结果显示Js—VP1与DHV—A的VP1基因序列酸核苷酸同源性在92.7%~99.7%之间,与DHV—B的VP1基因序列酸核苷酸同源性在58.5%~58.7%之间,与DHV—C的VP1基因序列酸核苷酸同源性在61.6%-63.9%之间,分析表明Js株为鸭肝炎病毒基因A型,血清型分型为血清1型。进化树表明Js株与E53、X、R、AV2111株的亲缘关系较进。 相似文献
4.
参照已公布的新型鸭肝炎病毒(new type Duck hepatitis virus,N-DHV)基因序列设计特异性引物,运用RT-PCR方法成功扩增出N-DHV FJ01株VP1基因,经克隆测序后得到全长为720 nt的FJ01株VP1基因序列。将所得测序结果用DNAstar软件包MegAligntkg程序进行序列比对分析表明,N-DHV FJ01株与GenBank登录的韩国病毒株的同源率为94.2%~98.9%,与台湾病毒株04G和90D的同源率仅分别为72.3%和72.5%,与DHV-1病毒株DHV-HS和DRL-62的同源率仅分别为70.8%和70.7%;通过系统进化树可以发现韩国型与台湾型鸭肝炎病毒可分为2小群。本研究同时将N-DHVVP1基因亚克隆到原核表达载体pGEX-6p-1,诱导表达后经SDS-PAGE和Western blot分析表明VP1基因已成功地在大肠杆菌中得以表达。 相似文献
5.
3株鸭肝炎病毒Ⅰ型结构基因VP1的克隆及序列分析 总被引:4,自引:0,他引:4
通过RT-PCR方法扩增鸭肝炎病毒DHV-1:161/79/V、YH、HN株的VP1基因的核苷酸序列.系统发育分析表明,3株病毒与已发表的DHV-1结构基因VP1核苷酸和氨基酸的同源性分别为92.7%~96.9%和95.4%~96.6%,与DHV-1变异株核苷酸和氨基酸序列的相似性均分别低于75%和88%,表明3株病毒属于DHV-1,与变异株是不同的血清型.强毒DHV-1:161/79/V的VP1蛋白第49和第183位氨基酸为T和H,弱毒DHV-1:YH、HN为S和Q,推测这2处位点的改变可能与病毒的强弱有关;DHV-1和其变异株的VP1蛋白均没有保守的RGD序列;变异株N-DHV:90D、04G在第50和51位比DHV-1多2个氨基酸(Q和D),在第147和185位各缺失1个氨基酸(E和L),而在变异株DHV:AP-03337、AP-04009、AP-04114、AP-04203的第145和146位比DHV-1多了2个氨基酸(G、G);不同血清型的鸭肝炎病毒在46-64位、95-149位、180-223位抗原指数差别较大,推测这些位点的改变可能影响病毒的生物学特性. 相似文献
6.
为了解新型鸭肝炎病毒(N-DHV)的变异情况,本实验从广西、河南、山东临床发病鸭体内分离到3株病毒.通过RT-PCR检测为N-DHV.将分离株进行鸭胚传代培养,并测定鸭胚毒的ELD50为10-3.29/0.2 mL~10-465/0.2 mL.以1型和N-DHV阳性血清分别与分离株进行血清交叉中和试验,结果表明,Ⅰ型鸭肝炎病毒(DHV-1)阳性血清对分离株无保护性.动物回归试验表明,分离株致死雏鸭的临床症状和病变与DHV-1相同,分离株的致死率为30%~70%.将分离株接种鸡胚,不产生任何病变,在鸡胚成纤维细胞中连续传5代后,细胞产生明显、规律的病变.扩增3株分离株的VP1基因,并进行氨基酸序列比对,结果表明3个分离株与DHV-C的同源性最高,与DHV-A的同源性最低,并存在氨基酸的插入和缺失.本实验表明3个分离株与韩国N-DHV属于同一血清型. 相似文献
7.
为探讨鸭甲肝病毒(DHAV)GX株基因分型特点及主要衣壳蛋白(VP1)的生物学特性,本试验对其进行全基因组序列测定,并应用分子生物学软件将DHAV GX株与DHAV 3个血清型参考毒株进行序列比对分析。结果显示,其基因组全长7 800 bp,由5'和3'非编码区(UTR)和一个大开放阅读框(ORF)组成。其中,5'UTR和3'UTR的长度分别为652和369 bp;ORF长度为6 756 bp,编码2 251个氨基酸长的多聚蛋白,其编码产物至少有12个(VP0/VP3/VP1/2A1/2A2/2A3/2B/2C/3A/3B/3C/3D);在分类地位上DHAV GX株属于DHAV-3,其与DHAV-3参考株核苷酸、氨基酸同源性最高;与DHAV-3 FS株亲缘关系最近,在同一较小分支上。DHAV GX株结构蛋白VP1以第195—201、211—221位氨基酸区段为B细胞优势表位的可能性较大。提示,VP1基因可作为研制DHAV基因工程疫苗的优势候选基因。 相似文献
8.
以鸡传染性法氏囊病毒VP2蛋白的基因组序列为基础,采用Garnier-Robson方法、Chou-Fasman方法和Karplus-Schultz方法预测VP2蛋白质的二级结构;用Kyte-Doolittle方案预测蛋白质的亲水性;用Emini方案预测蛋白质的表面可能性;用Jameson-Wolf方案预测氨基酸的抗原性指数。综合分析,预测VP2蛋白的抗原表位。通过以上几种方法预测IBDV病毒VP2蛋白的B细胞表位位于VP2蛋白N端3-10、30-45、77-84、150-157、197-206、211-222、278-288、298-303、315-325、376-381、386-394、403-411、415-425区段。 相似文献
9.
为获得口蹄疫病毒(FMDV)O/PanAsia毒株VPl蛋白的抗原信息,从而为制备多肽疫苗提供理论依据,运用生物信息学软件,对O/PanAsia毒株的结构蛋白VP1理化性质、结构功能以及细胞表位进行分析,预测抗原表位以选择合适肽段。应用ProParam、TMHMM Server、ProScale和SignaIP 等在线工具,分析VP1蛋白氨基酸序列,运用计算机技术和分子生物学软件,分析预测VP1蛋白的基本理化性质、结构功能以及可能的B细胞和T细胞抗原表位,筛选B细胞表位肽段并对VP1的两个主要T细胞表位CTL和Th细胞表位进行预测。结果显示:O/PanAsia毒株VP1 蛋白的等电点为9.49,相对分子质量为23 520.83;VP1蛋白的B细胞表位为8~23、135~149和193~205位氨基酸。预测该VP1有10个CTL和10个Th细胞抗原表位,表明其具有较好的免疫原性;最终筛选出VP1蛋白的5个CTL和5个Th优势表位。用生物信息学方法预测O/PanAsia毒株VPl蛋白为稳定性蛋白,含有T、B淋巴细胞抗原表位。本研究为FMDV的进一步研究和疫苗制备奠定了基础。 相似文献
10.
本研究旨在对新型鸭呼肠孤病毒(NDRV)QY株σB蛋白的遗传变异规律和结构及功能进行分析。从GenBank数据库中获取QY株和25株参考株的σB蛋白编码序列,通过Mega 6.0软件进行序列比对分析和系统进化树构建;使用Datamonkey软件进行选择压力分析;运用生物信息学软件预测QY株σB蛋白二级结构功能及B细胞和T细胞抗原表位。相似性分析结果显示,NDRV QY株与国内其他地区分离的鸭呼肠孤病毒(DRV)氨基酸相似性达到94.9%~98.9%,与禽呼肠孤病毒(ARV)及番鸭呼肠孤病毒(MDRV)的相似性仅为66.5%~68.4%和67.6%~68.4%;选择压力分析显示,σB蛋白承受净化选择压力,但存在一个正向选择位点;σB蛋白属于亲水蛋白,不具有信号肽和跨膜区,含有潜在的O-糖基化位点;结构预测分析显示,σB蛋白具有α-螺旋、β-折叠、β-转角及无规则卷曲等丰富的二级结构;表位分析显示,σB蛋白含有潜在的B细胞和T细胞抗原表位。本研究成功进行了QY株σB蛋白的基因特征和结构功能预测及其细胞表位分析,为深入了解该蛋白的免疫学特性及研发NDRV新型疫苗奠定了基础。 相似文献
11.
Ⅰ型鸭肝炎病毒R株VP1基因克隆与序列分析 总被引:8,自引:0,他引:8
本研究克隆了DHVI-R株VP1基因,分析其与目前GenBank上发表的DHVI VP1基因的遗传变异,发现DHV I-R株与GenBank上发表的其他中国毒株VP1基因的核苷酸序列相似性92.2%~100%,而氨基酸序列相似性为95.0%~100%,变异程度不大.但各毒株的亲缘关系相差较大. 相似文献
12.
利用反转录-聚合酶链式反应(RT-PCR)技术及RACE方法扩增得到鸭肝炎病毒(DHV)浙江分离株Z10的全基因(5',3'末端序列用RACE法扩增)及4株DHV分离株的VP1基因.结果表明,分离株Z10的全基因片段长7689 bp,有1个大的开放读码框(ORF),ORF位于626~7326位核苷酸,编码2249个氨基酸.Z10分离株全基因序列与GenBank登录的6株具有代表性的DHV核苷酸序列比对,同源性94.5%~98.4%;所测得的DHV分离株的VP1基因的序列与目前GenBank上发表的具有代表性的DHv-Ⅰ VP1基因进行比对分析,结果4株Ⅰ型DHV的VP1基因cDNA长度均为714 bp,编码238个氨基酸.4株DHV-Ⅰ之间VP1基因的核苷酸序列同源性为93%~99.7%,氨基酸序列同源性为95.0%~100%;与参考毒株VP1基因的核苷酸序列同源性为92.2%~100%,氨基酸序列同源性为95.0%~100%;表明各分离毒株的亲缘关系较近,属于同一基因群. 相似文献
13.
为了分析华南地区鸭肝炎病毒(Duckhepatitisvirus,DHV)的遗传进化情况,本试验对2007~2009年华南地区各鸭场发病雏鸭进行DHV的病原学检测以及VP1基因扩增、克隆和测序,并运用生物信息学软件对VP1基因进行了序列分析。结果表明:所分离的R、SS1、ZJ株为DHV-A、VP1与DHV-A参考毒株核苷酸序列相似性分别为93.8%~100%、93.7%-99.6%、91.7%-98.9%,氨基酸序列相似性分别为94.5%~100.0%、94.1%-99.2%、95.0%-99.2%。其余15株DHV-C分离病毒株与台湾新型DHV核苷酸和氨基酸序列相似性均在71.4%~72.0%和78.2%-79.0%之间,与韩国新型DHV相似性在94.0%-95.1%和91.6%-93.3%之间,与国内分离的新型DHV相似性均在97.9%~100.0%和97.5%~100.0%之间。VPl氨基酸序列比对分析表明:VP1的高变区主要分布在46-64、95-149、180-223位,尤其是C’末端,存在点突变或连续变异。在第145-146位,15株新型DHV毒株此3株I型DHV多2个氨基酸(G和G)。小RNA病毒科的VPl蛋白中保守的RGD基序,在DHV中分别显示为SGD和QSD。结果表明,危害华南地区鸭场的DHV已经发生变异,且存在两种基因型毒株的流行。 相似文献
14.
根据1型鸭肝炎病毒E53株基因组序列设计并合成一对特异性引物,RT-PCR扩增VP1基因,将其定向克隆至pFastBacTMHTB载体,转化至DH10BacTM感受态细胞中,蓝白斑筛选获得重组穿梭质粒rBacmid-VP1,重组质粒在脂质体的介导下转染昆虫细胞Sf9,获得重组杆状病毒。结果表明VP1蛋白在昆虫细胞中获得表达,表达产物能够与兔抗1型鸭肝炎病毒VP1蛋白多抗血清和鸭肝炎病毒阳性血清发生特异性反应。在昆虫细胞中表达VP1蛋白为VP1功能的研究及鸭肝炎病毒抗体的检测提供了物质材料。 相似文献
15.
为了解鸭甲型病毒性肝炎的病原特征,对2017-2019年从山东省采集的27份疑似鸭肝炎病毒感染的病料采用鸡胚进行病毒分离,并进行RT-PCR鉴定,随后对分离株的VP1基因进行序列测定以及遗传变异分析.结果显示:从27份疑似病料中共分离出了22株病毒,8株为鸭甲肝病毒1型(DHAV-1),14株为鸭甲肝病毒3型(DHAV... 相似文献
16.
根据前期试验中测得的蓝舌病病毒VP7蛋白的基因序列和推导的氨基酸序列,利用DNAStar软件和Biosun软件进行生物信息学预测,以单参数(亲水性、可及性、柔韧性、抗原性)预测为基础,结合二级结构预测来综合分析蓝舌病病毒VP7蛋白的B细胞表位.比较两种软件的预测结果发现,在蓝舌病病毒VP7蛋白的381个氨基酸序列中,第81~85、198~202、235~239、253~257区域有较好的亲水性、表面可及性和较高的抗原指数,并且在二级结构上含有易形成抗原表位的转角和无规则卷曲,最有可能为蓝舌病病毒VP7蛋白的B细胞线性优势表位.上述预测和判定结果表明,在蓝舌病病毒VP7蛋白序列中存在优势B细胞线型表位,为进一步合成多肽并分析已获得的VP7蛋白单抗的结合表位奠定了基础. 相似文献
17.
鸭肝炎病毒基因的生物信息学分析及多聚蛋白的加工预测 总被引:1,自引:0,他引:1
对NCBI GenBank中登录的鸭肝炎病毒1型(DHV-1)全基因组及VP1基因进行生物信息学分析,27株DHV-1全基因组序列其核苷酸同源性分别为93.3%~99.8%、多聚蛋白氨基酸序列同源性则达97%~99.8%,DHV-1和其他小RNA科病毒的多聚蛋白的氨基酸序列同源性均低于30%,多聚蛋白氨基酸序列进化分析显示DHV-1在小RNA科病毒上形成一个独立的进化分支.因此,应在小RNA病毒科中设立一个DHV-1的新病毒属.分析发现,在DHV-1 VP1区存在多个免疫优势辅助性T淋巴细胞抗原位点及其抗原决定簇.在DHV-1多聚蛋白的第1 757 aa~1 761 aa位,出现3 C蛋白酶(3 Cpro)的共有基序Gly-Ser-Cys-Gly-Gly,同时发现在751 aa/752 aa处存在自我切割基序NPG ↓ P.推测在整个DHV-1多聚蛋白的切割过程中首先进行NPG ↓ P切割,形成P1,P2-P3前体蛋白,进而再由3 Cpro对2个前体蛋白进行二级加工,最终DHV-1多聚蛋白总共被切割成12个成熟产物,形成其结构蛋白与非结构蛋白. 相似文献
18.
选取GenBank上4株不同绵羊痘毒株ORF121基因序列,采用DNASTAR软件对该基因序列进行同源性分析,并以B细胞表位分析参数及蛋白质二级结构分析数据,综合预测ORF121蛋白B细胞表位.结果表明:4株不同绵羊痘毒株OBF121基因核苷酸序列的同源性为99%;在ORF121蛋白的肽链中,35~46、76~82、160~167区段亲水性强,35~45、54~83、90~124、130~139、144~158和160~167区段柔韧性好,37~45、112~116、129~137和143~167区段抗原指数高,33~45、78~83和159~167区段表面可及性高,30~57和151~170区段可形成一定的空间构象.结果说明ORF121基因在不同的绵羊痘病毒流行株之间非常保守,ORF121蛋白35~45、160~167区段可能是B细胞表位优势区,具有潜在的疫苗或/和诊断价值. 相似文献
19.
选取GenBank上4株不同绵羊痘毒株ORF121基因序列,采用DNASTAR软件对该基因序列进行同源性分析,并以B细胞表位分析参数及蛋白质二级结构分析数据,综合预测ORFl21蛋白B细胞表位.结果表明:4株不同绵羊痘毒株ORF121基因核苷酸序列的同源性为99%;在ORFl21蛋白的肽链中,35~46、76~82、160~167区段亲水性强,35~45、54~83、90~124、130~139、144~158和160~167区段柔韧性好,37~45、112~116、129~137和143~167区段抗原指数高,33~45、78~83和159~167区段表面可及性高,30~57和151~170区段可形成一定的空间构象.结果说明ORF121基因在不同的绵羊痘病毒流行株之间非常保守,ORF121蛋白35~45、160~167区段可能是B细胞表位优势区.具有潜在的疫苗或/和诊断价值. 相似文献