首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Characterization of phenolic compounds in rooibos tea   总被引:1,自引:0,他引:1  
Polyphenols present in rooibos, a popular herbal tea from Aspalathus linearis, were isolated in two steps. First, phenolic ingredients were separated by multilayer countercurrent chromatography (MLCCC). Preparative high-performance liquid chromatography (HPLC) was then applied to obtain pure flavonoids. The purity and identity of isolated compounds was confirmed by different NMR experiments, HPLC-diode array detector (DAD), or gas chromatography-mass spectrometry (GC-MS) analysis. This strategy proved to be valid to isolate material in up to gram quantities and to verify known and previously not published polyphenol structures. In addition the chemistry of dihydrochalcones and related intermediates was studied. The dihydrochalcone aspalathin was oxidized to the corresponding flavanone- C-glycosides (( R)/( S)-eriodictyol-6- C-beta- D-glucopyranoside and ( R)/( S)-eriodictyol-8- C-beta- D-glucopyranoside). Flavanone-6- C-beta- D-glucopyranosides were further degraded to flavones isoorientin and orientin.  相似文献   

3.
A near-infrared reflectance spectroscopic (NIRS) method for the prediction of polyphenol and alkaloid compounds in the leaves of green tea [Camellia sinensis (L.) O. Kuntze] was developed. Reference measurements of the individual catechins, gallic acid, caffeine, and theobromine were performed by reversed-phase HPLC. The total polyphenols were determined according to the colorimetric Folin-Ciocalteu assay. Using the partial least-squares algorithm, very good calibration statistics were obtained for the prediction of gallic acid, (-)-epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate, caffeine, and theobromine (R(2) > 0.85) with standard deviation/standard error of cross-validation (SD/SECV) ratio ranging from 2.00 to 6.27. Simultaneously, the dry matter content of the tea leaves can be analyzed very precisely (R(2) = 0.94; SD/SECV = 4.12). Furthermore, it is possible to discriminate tea leaves of different age by principal component analysis on the basis of the received NIR spectra. Prediction of the total polyphenol content is performed with a lower accuracy, which might be due to the lack of specificity in the colorimetric reference method. The study demonstrates that NIRS technology can be successfully applied as a rapid method not only for breeding and cultivation purposes but also to estimate the quality and taste of green tea and to control industrial processes, for example, decaffeination.  相似文献   

4.
We developed a high-performance liquid chromatography-based method for simultaneous analysis of nine catechins, gallic acid, strictinin, caffeine, and theobromine in green tea by using catechol as an internal standard. Although the high cost and instability of the catechin reference standards limit the application of this method, the addition of ascorbic acid to the standard stock solution preserved the stability of the reference standards in the solution for 1 year when stored at -30 degrees C. Furthermore, we found that the slopes of the calibration curves plotted were stable for a run time of 2000 h. Our method proved to be appropriate for quantification and yielded good correlation coefficients, detection levels, repeatability, reproducibility, and recovery rates. Quantitative data revealed that the contribution of only 200 mL of brewed tea to the total dietary catechins was approximately 220-420 mg, while that of 500 mL of bottled tea was approximately 170-900 mg.  相似文献   

5.
Antioxidative activities of volatile extracts from six teas (one green tea, one oolong tea, one roasted green tea, and three black teas) were investigated using an aldehyde/carboxylic acid assay and a conjugated diene assay. The samples were tested at levels of 20, 50, 100, and 200 micrograms/mL of dichloromethane. The results obtained from the two assays were consistent. All extracts except roasted green tea exhibited dose-dependent inhibitory activity in the aldehyde/carboxylic acid assay. A volatile extract from green tea exhibited the most potent activity in both assays among the six extracts. It inhibited hexanal oxidation by almost 100% over 40 days at the level of 200 micrograms/mL. The extract from oolong tea inhibited hexanal oxidation by 50% in 15 days. In the case of the extract from roasted green tea, the lowest antioxidative activity was obtained at the level of 200 micrograms/mL, suggesting that the extract from roasted green tea contained some pro-oxidants. The extracts from the three black teas showed slight anti- or proactivities in both assays. The major volatile constituents of green tea and roasted green tea extracts, which exhibited significant antioxidative activities, were analyzed using gas chromatography-mass spectrometry. The major volatile chemicals with possible antioxidative activity identified were alkyl compounds with double bond(s), such as 3,7-dimethyl-1,6-octadien-3-ol (8.04 mg/kg), in the extract from green tea and heterocyclic compounds, such as furfural (7.67 mg/kg), in the extract from roasted green tea. Benzyl alcohol, which was proved to be an antioxidant, was identified both in a green tea extract (4.67 mg/kg) and in a roasted tea extract (1.35 mg/kg).  相似文献   

6.
The purpose of this study was to compare the effects of black and green tea consumption on human metabolism. Seventeen healthy male volunteers consumed black tea, green tea, or caffeine in a randomized crossover study. Twenty-four-hour urine and blood plasma samples were analyzed by NMR-based metabonomics, that is, high-resolution 1H NMR metabolic profiling combined with multivariate statistics. Green and black tea consumption resulted in similar increases in urinary excretion of hippuric acid and 1,3-dihydroxyphenyl-2-O-sulfate, both of which are end products of tea flavonoid degradation by colonic bacteria. Several unidentified aromatic metabolites were detected in urine specifically after green tea intake. Interestingly, green and black tea intake also had a different impact on endogenous metabolites in urine and plasma. Green tea intake caused a stronger increase in urinary excretion of several citric acid cycle intermediates, which suggests an effect of green tea flavanols on human oxidative energy metabolism and/or biosynthetic pathways.  相似文献   

7.
红茶与绿茶感官品质与其化学组分的相关性   总被引:4,自引:2,他引:4  
对茶叶感官审评分属性与其化学组分的相关性进行探讨,该文以不同等级、产地红茶和绿茶为代表,利用传统感官审评方法鉴定茶叶品质(外形、香气、汤色、滋味和叶底),并对各品质指标进行相关性分析,筛选出对茶叶品质影响最重要的品质指标,即滋味。在利用尺度评价法对茶叶滋味品质的10个分属性(浓度、厚度、甘度、鲜度、醇度、涩度、嫩度、陈味、纯正度、火工度)进行更为细致的评定和对茶叶中主要呈味物质—茶多酚、咖啡碱、茶氨酸进行定量分析的基础上,对不同等级、不同产地茶叶的滋味分属性进行差异分析,并对化学组分与滋味分属性进行相关性分析,结果表明,各种茶样之间的产地和等级间差异主要是鲜度和涩度,而与之相关的组分主要是茶氨酸和咖啡碱,茶多酚的影响还有待进一步考察。该研究实现了茶叶感官品质的定量分析,提高了感官审评结果的客观性和确定性,为茶叶原产地保护和分等分级提供核心技术和标准支撑。  相似文献   

8.
9.
Application of taste dilution analyses on freshly prepared black tea infusions revealed neither the high molecular weight thearubigen-like polyphenols nor the catechins and theaflavins, but a series of 14 flavon-3-ol glycosides as the main contributors to the astringent taste perceived upon black tea consumption. Among these glycosides, the apigenin-8-C-[alpha-l-rhamnopyranosyl-(1-->2)-O-beta-d-glucopyranoside] was identified for the first time in tea infusions. Depending on the structure, the flavon-3-ol glycosides were found to induce a velvety and mouth-coating sensation at very low threshold concentrations, which were far below those of catechins or theaflavins; for example, the threshold of 0.001 micromol/L found for quercetin-3-O-[alpha-l-rhamnopyranosyl-(1-->6)-O-beta-d-glucopyranoside] is 190000, or 16000 times below the threshold determined for epigallocatechin gallate or theaflavin, respectively. Moreover, structure/activity considerations revealed that, besides the type of flavon-3-ol aglycon, the type and the sequence of the individual monosaccharides in the glycosidic chain are key drivers for astringency perception of flavon-3-ol glycosides.  相似文献   

10.
Oxidative deamination by various polyphenolic compounds is presumed to be due to the oxidative conversion of polyphenols to the corresponding quinones through autoxidation. Here we examined the oxidative deamination by the polyphenol-rich beverages green tea, black tea, and coffee at a physiological pH and temperature. Green tea, black tea, and coffee extracts oxidatively deaminated benzylamine and the lysine residues of bovine serum albumin to benzaldehyde and alpha-aminoadipic delta-semialdehyde residues, respectively, in sodium phosphate buffer (pH 7.4) at 37 degrees C in both the presence and absence of Cu2+, indicating the occurrence of an amine (lysyl) oxidase-like reaction. We also examined the effects of pH and metal ions on the reaction. The possible biological effects of drinking polyphenol-rich beverages on human are also discussed.  相似文献   

11.
The effects of product and preparation variables on the in-cup chemical composition of tea extracts is of interest because the appearance and taste characteristics and the possible health effects of a tea liquor arise from the chemical components extracted from the leaf during tea preparation. A comprehensive study was therefore undertaken to determine the contributions of product and preparation variables on the total soluble solids, caffeine, and polyphenol contents of tea extracts. The results of this study show that the variety, growing environment, manufacturing conditions, and grade (particle size) of the tea leaves each influence the tea leaf and final infusion compositions. In addition, the composition of the tea infusion was shown to be influenced by whether the tea was contained in a teabag and, if so, the size and material of construction of the bag. Finally, the preparation method, including the amounts of tea and water used, infusion time, and amount of agitation, was shown to be a major determinant of the component concentrations of tea beverages as consumed. An illustration of the variation introduced by these product and preparation factors is provided by comparing solids, caffeine, and polyphenol contents of green and black tea infusions when commercial products are prepared according to the instructions given on their packaging.  相似文献   

12.
Creaming in black tea   总被引:1,自引:0,他引:1  
Tea cream is the precipitate formed as tea cools. Its formation has been studied by X-ray scattering, and it is shown that a higher tea concentration leads to earlier onset of creaming and larger particles and that addition of theaflavin and calcium promotes creaming. Association constants between the major components of black tea have been obtained using NMR and show that calcium and glucose enhance the self-association of caffeine, polyphenols, and theaflavin but have little effect on hetero-association. Glycosylation of a polyphenol reduced self-association and reduced binding to caffeine. We conclude that theaflavin is important for the initiation of creaming, forming nanoclusters of typically 3 nm diameter, whereas caffeine acts more to fill in the gaps within the clusters and thus adds to the bulk of tea cream without being necessary for its initiation. Tea creaming may be reduced by increasing the solubility of the polyphenols (i.e., by glycosylation) or by removing calcium. Tea cream; theaflavin; caffeine; small-angle X-ray scattering; NMR; colloid.  相似文献   

13.
The phenolic profile of four blueberry varieties (Vaccinium corymbosum L., cv. Toro, Legacy, Duke and Bluecrop) and two varieties (Rosenthal and Rovada) of red currants (Ribes rubrum L.) and black currants (Ribes nigrum L.) cultivated in Macedonia have been analyzed using HPLC coupled to diode-array detection and tandem mass spectrometry with electrospray ionization. A complex profile of anthocyanins, flavonols, flavan-3-ols and hydroxycinnamic acid derivatives has been assayed in acetone-acetic acid (99:1, v/v) extracts. Anthocyanins comprised the highest content of total phenolic compounds in currants (>85%) and lower and variety dependent in blueberries (35-74%). Hydroxycinnamic acid derivatives comprised 23-56% of total phenolics in blueberries and 1-6% in currants. Chlorogenic acid was the major hydroxycinnamic acid in blueberries, only in the Legacy variety, two malonyl-caffeoylquinic acid isomers were major components. Flavonols, mainly quercetin and myricetin glycosides, were a minor group, but glucosides of laricitrin and syringetin were also detected in the blueberry varieties counting for 10-34% of total flavonols. From flavan-3-ols, catechin was detected in most samples; the dimer B2 was specific for blueberries whereas epigallocatechin was detected in currants.  相似文献   

14.
Degradation of green tea catechins in tea drinks   总被引:9,自引:0,他引:9  
Green tea cateachins (GTC). namely (-) epicatechin (EC), (-) epicatechin gallate (ECG), (-) epigallocatechin (EGC), and (-) epigallocatechin gallate (EGCG), have been studied extensively for their wide-ranging biological activities. The goal of the present study was to examine the stability of GTC as a mixture under various processing conditions. The stability study demonstrated that GTC was stable in water at room temperature. When it was brewed at 98 degrees C for 7 h, longjing GTC degraded by 20%. When longjing GTC and pure EGCG were autoclaved at 120 degrees C for 20 min, the epimerization of EGCG to (-) gallocatechin gallate (GCG) was observed. The relatively high amount of GCG found in some tea drinks was most likely the epimerization product of EGCG during autoclaving. If other ingredients were absent, the GTC in aqueous solutions was pH-sensitive: the lower the pH, the more stable the GTC during storage. When it was added into commercially available soft drinks or sucrose solutions containing citric acid and ascorbic acid, longjing GTC exhibited varying stability irrespective of low pH value. This suggested that other ingredients used in production of tea drinks might interact with GTC and affect its stability. When canned and bottled tea drinks are produced, stored, and transported, the degradation of GTC must be taken into consideration.  相似文献   

15.
Oolong tea manufactured via a semifermentation process possesses a taste and color somewhere between green and black teas. Alteration of constituents, particularly phenolic compounds, in the infusion of oolong tea resulting from its manufacture, was analyzed by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The identified constituents contained 2 alkaloids, 11 flavan-3-ols, 8 organic acids and esters, 11 proanthocyanidin dimers, 3 theaflavins, and 22 flavonoid glycosides, including 6 novel acylated flavonol glycosides. The tentative structures of these 6 novel compounds were depicted according to their mass fragmentation patterns in MS(n) (n = 1-4). In comparison with caffeine as an internal standard, relative contents of the constituents in the infusions of fresh tea shoot and different oolong tea preparations were examined. Approximately, 30% catechins and 20% proanthocyanidins were oxidized during the manufacture of oolong tea from fresh tea shoots, and 20% of total flavonoids were decomposed in a follow-up drying process. Gallocatechin-3-O-gallate and theaflavins putatively produced in the semifermentation process of oolong tea were not detected in fresh tea shoots, and the majority of theaflavins were presumably transformed into thearubigins after drying.  相似文献   

16.
The phenolic compounds of 25 peach, nectarine, and plum cultivars were studied and quantified by HPLC-DAD-ESIMS. Hydroxycinnamates, procyanidins, flavonols, and anthocyanins were detected and quantified. White and yellow flesh nectarines and peaches, and yellow and red plums, were analyzed at two different maturity stages with consideration of both peel and flesh tissues. HPLC-MS analyses allowed the identification of procyanidin dimers of the B- and A-types, as well as the presence of procyanidin trimers in plums. As a general rule, the peel tissues contained higher amounts of phenolics, and anthocyanins and flavonols were almost exclusively located in this tissue. No clear differences in the phenolic content of nectarines and peaches were detected or between white flesh and yellow flesh cultivars. There was no clear trend in phenolic content with ripening of the different cultivars. Some cultivars, however, had a very high phenolic content. For example, the white flesh nectarine cultivar Brite Pearl (350-460 mg/kg hydroxycinnamates and 430-550 mg/kg procyanidins in flesh) and the yellow flesh cv. Red Jim (180-190 mg/kg hydroxycinnamates and 210-330 mg/kg procyanidins in flesh), contained 10 times more phenolics than cultivars such as Fire Pearl (38-50 mg/kg hydroxycinnamates and 23-30 mg/kg procyanidins in flesh). Among white flesh peaches, cultivars Snow King (300-320 mg/kg hydroxycinnamates and 660-695 mg/kg procyanidins in flesh) and Snow Giant (125-130 mg/kg hydroxycinnamates and 520-540 mg/kg procyanidins in flesh) showed the highest content. The plum cultivars Black Beaut and Angeleno were especially rich in phenolics.  相似文献   

17.
By application of the aroma extract dilution analysis on the volatile fraction isolated from a black tea infusion (Darjeeling Gold Selection), vanillin (vanilla-like), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel), 2-phenylethanol (flowery), and (E,E,Z)-2,4,6-nonatrienal (oat-flake-like) were identified with the highest flavor dilution (FD) factors among the 24 odor-active compounds detected in the FD factor range of 4-128. Quantitative measurements performed by means of stable isotope dilution assays and a calculation of odor activity values (OAVs; ratio of concentration to odor threshold in water) revealed, in particular, the previously unknown tea constituent (E,E,Z)-2,4,6-nonatrienal as a key odorant in the infusion and confirmed the important role of linalool and geraniol for the tea aroma. An aroma recombinate performed by the 18 odorants for which OAVs > 1 were determined in their "natural" concentrations matched the overall aroma of the tea beverage. In the black tea leaves, a total of 42 odorants were identified, most of which were identical with those in the beverage prepared thereof. However, quantitative measurements indicated that, in particular, geraniol, but also eight further odorants were significantly increased in the infusion as compared to their concentration in the leaves.  相似文献   

18.
19.
Investigations into the manufacturing process of one kind of black tea revealed that it included five steps: withering, rolling, fermentation, drying, and drying and sorting. A total of 16 polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in fresh leaves, withered leaves, rolled leaves, fermented leaves, crude black tea, and black tea sampled after each manufacturing stage and in the indoor and outdoor air of the drying house. It was observed that the total contents of the 16 PAHs (SigmaPAHs) in the crude black tea and the black tea were obviously higher than those in the tea leaves sampled after each manufacturing step before the drying stage; the air SigmaPAHs in the drying house were about 100 times higher than those outside the drying house. It can be concluded that quantities of PAHs were released into the drying house from the combustion of pine firewood during the drying stage, and then were absorbed by the tea leaves, thus resulting in the high PAH contents in the black tea.  相似文献   

20.
A new method for the detection of phenolics in food systems was developed. This method is based on interactions of phenolics with Fast Blue BB diazonium salt in alkali pH, forming azo complexes, with the absorbance measured at 420 nm after 60 min. The linear regression correlations (R(2)) of gallic acid calibration standards were >0.99. The phenolic content (gallic acid equivalent) of samples analyzed yielded higher ratios (1.7-6.6) of the total phenolics by Fast Blue BB to Folin-Ciocalteu methods in most beverages and grain samples, but in flaxseed and some juice blends, the ratios were <1. The lower ratios suggest the presence of non-phenolic reducing constituents measured with the Folin-Ciocalteu method as "total phenolics". This method is simple and inexpensive and can be used to rapidly assess the total phenolics of foods and beverages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号