首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探索快速检测土壤有机质含量的方法,试验采用不同分解水平的Coiflet函数的小波(wavelet)分析方法,对山西关帝山土壤样品的近红外光谱信号进行了消噪处理,来快速获取土壤中有机质含量。结果表明:对有机质敏感波段的为450~600 nm,810~935 nm,1 030~1 315 nm,1 380~1 400 nm;有机质NIRS法与实验室标准法测定值之间的相关系数R2为0.9818;说明通过小波变换滤波,选择敏感波段,用偏最小二乘回归方法预测土壤有机质含量是可行的。  相似文献   

2.
基于随机森林的农耕区土壤有机质空间分布预测   总被引:3,自引:0,他引:3  
以陕西省周至县农耕区为研究区,采集192个土壤样品,通过随机森林模型(random forest, RF)对土壤有机质含量进行回归预测,通过29个(15%)独立验证点对预测结果进行精度验证,并与普通克里格(ordinary kriging,OK)和协同克里格(cokriging,COK)插值结果进行对比分析。结果表明,研究区土壤有机质含量在训练集和验证集中均属于中等变异性,含量处于中等偏低水平,大致表现为中、南部黑河东岸土壤有机质含量相对较高,东北部渭河沿岸含量较低。对变量重要性进行排序,影响研究区土壤有机质的主要因素为数字高程(DEM)和降水量。与OK、COK相比, RF对土壤有机质的预测值和实测值的相关系数(0.782)更高,而平均绝对误差(0.618 g·kg-1)和均方根误差(2.062 g·kg-1)更低,说明RF能够更精确地反映局部土壤有机质含量的空间变化信息。  相似文献   

3.
土壤有机质高光谱估算模型研究进展   总被引:2,自引:0,他引:2  
土壤有机质高光谱估算较传统土壤农化分析方法表现出极大优势,顺应了现代农业发展的迫切需要。国内外众多学者先后对土壤有机质高光谱估算模型进行了大量研究,估算模型由简单的一元线性模型逐渐发展为多元线性及非线性模型,常用的建模方法分为线性方法和非线性方法,重点分析了各种方法的适用性。通过总结分析前人研究,发现土壤有机质高光谱估算模型研究存在以下发展趋势:多种建模方法耦合使用增多;建模方法的复杂度逐渐增强;尝试消减外部环境因素对建模的影响;尝试将室内土壤有机质估算模型应用于野外实地研究。  相似文献   

4.
黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测   总被引:6,自引:0,他引:6  
南锋  朱洪芬  毕如田 《中国农业科学》2016,49(11):2126-2135
【目的】针对黄土高原丘陵地多、地形复杂、有机质含量低、采样困难以及因采煤活动引起大面积土地损毁等问题,在土地复垦与综合整治过程中,为快速定量监测与评估复垦农田土壤质量提供一种新的方法。【方法】以山西省襄垣县复垦农田土壤为研究对象,选取由北向南土地损毁中间条带状区域采集样品152个,进行室内土壤农化分析、光谱测定,运用ParLes 3.1软件对光谱曲线进行多元散射校正(multipication scatter correction,MSC)、基线偏移(baseline offset correction,BOC)和Savitzky-Golay filter平滑去噪预处理。对土壤原始光谱反射率(raw spectral reflectance,R)作一阶微分(first order differential reflectance,D(R))和倒数的对数变换(inverse-lg reflectance ,lg(1/R)),分析3种不同变换形式的光谱数据与土壤有机质含量的相关性,相关系数通过P=0.01水平显著性检验来确定显著性波段的范围。基于全波段(400-2400 nm)和显著性波段利用偏最小二乘回归(partial least squares regression,PLSR)分析方法建立该区域土壤有机质含量高光谱预测模型,通过模型精度评价指标:决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)和相对预测偏差(residual prediction deviation,PRD)确定最优模型。【结果】通过P=0.01水平显著性检验的波段范围为:R的400-1 800、1880-2 400 nm;D(R)的420-790、1 020-1 040、2 150-2 200 nm;lg(1/R)的400-1 830、1 860-2 400 nm。光谱与有机质含量的相关系数绝对值最大的波段是R的800 nm;D(R)的600 nm;lg(1/R)的760 nm。进行D(R)变换,光谱曲线的吸收特征更加明显,相关系数在可见光(400-800 nm)波段范围内有所增加,其最大值由0.72提高到了0.82;基于显著性波段的PLSR建模效果优于全波段,其中lg(1/R)变换的预测精度为最佳,具有很好的预测能力,其校正模型的R2和RMSE分别为0.95、7.64,预测模型的R2、RMSE和RPD分别为0.85、3.00、2.56;基于全波段的R-PLSR和lg(1/R)-PLSR模型具有较好的预测能力,其预测模型的R2、RMSE和RPD分别为0.79、3.64、2.10和0.79、3.53、2.17,而D(R)-PLSR模型只能进行粗略估测,其预测模型的R2、RMSE和RPD分别为0.61、5.43、1.41。综合分析全波段和显著性波段3种光谱数据的预测精度,发现基于显著性波段的R-PLSR、D(R)-PLSR、lg(1/R)-PLSR模型均取得了显著的预测效果。【结论】研究区土壤光谱反射率与土壤有机质含量具有高度的相关性,应用偏最小二乘回归分析方法可以很好地建立土壤有机质含量反演模型。  相似文献   

5.
定量分析了北京顺义、通州区土壤高光谱反射特征,利用资源三号、高分一号、高分二号传感器的光谱响应函数,结合高光谱数据生成相应宽波段模拟数据;将土壤光谱数据、拟合宽波段数据分别与实测土壤有机质含量开展相关性分析,提取并筛选敏感波段,利用偏最小二乘法建立基于高光谱数据的土壤有机质含量预测模型;依据宽波段模拟数据和实测土壤有机质含量的相关性,提取并筛选敏感波段,建立土壤有机质含量预测模型。结果表明,在基于土壤高光谱数据建立的土壤有机质含量预测模型中,以对数的一阶微分为最优,其R和RMSE分别为0.697和0.195,偏最小二乘法得到的反演土壤有机质含量的模型是可靠的;在基于模拟宽波段构建的土壤有机质含量估测模型中,以高分一号的拟合精度最高,R和RMSE分别为0.334和0.240;受室外不可控因素的影响,模拟宽波段数据在估测北方地区土壤有机质含量方面仍需进一步研究。  相似文献   

6.
为研究不同土壤颗粒粒径对可见/近红外光谱分析技术在土壤有机质含量快速检测应用中的影响,获取粒径为0.169~2 mm和<0.169 mm的2种土壤样本(各53个)的可见/近红外光谱(325~1075 nm),分别建立各自的主成分-反向传播神经网络(PCA-BPNN)、最小二乘-支持向量机(LS-SVM)和偏最小二乘法(PLS)土壤有机质含量检测模型.结果表明:当土壤粒径为0.169~2 mm时,所建立模型的土壤有机质含量预测相关系数r均在0.84以上,且预测均方根误差(RMSEP)都在0.20以下;而当土壤粒径<0.169 mm时,所建立模型的预测相关系数r均不超过0.71.而RMSEP都在0.23以上;对于相同粒径的土壤,PLS模型对土壤有机质含量的预测效果优于LS-SVM和PCA-BPNN模型.说明不同土壤颗粒粒径会显著影响可见/近红外光谱对于土壤有机质含量的预测结果.  相似文献   

7.
土壤电导率是反映土壤质量和物理性质的重要参数。本研究通过对试验区不同覆盖类型下土壤温度、含水量及电导率的测试,探讨土壤温度和含水量对土壤电阻率的影响。结果表明,不同土壤覆盖类型土壤温度的变化对土壤电阻率的影响不同,土壤电阻率随着土壤含水量的增加而逐渐变小。将偏最小二乘回归模型(PLS)与BP神经网络模型应用于土壤电阻率的预测,PLS模型及BP神经网络模型对土壤电阻率预测皆有较好效果,偏最小二乘回归模型对沙地和草地土壤电阻率预测的误差较小,BP神经网络对农田土壤电阻率建模精度较为理想。  相似文献   

8.
【目的 】结合分数阶微分和异常值识别,提高土壤有机质模型反演精度,实现土壤有机质含量的快速、准确估计。【方法 】文章以吉林省伊通县黑土区为研究区,基于实地采集的213个土壤样本和HyMap-C机载高光谱传感器获取高光谱影像,选择S-G函数和分数阶微分进行光谱预处理,竞争性自适应重加权采样(Competitive Adaptive Reweighted Sampling,CARS)提取特征波段建立土壤有机质含量偏最小二乘回归(Partial Least Squares Regression,PLSR)反演模型,并使用蒙特卡洛交叉验证(Monte Carlo Cross-Validation,MCCV)进行异常值识别。【结果 】(1)将分数阶微分用于机载高光谱可以放大光谱特征,阶数越高、特征越明显,低阶分数微分对噪音不敏感;(2) CARS方法能有效压缩光谱信息;全样本建模中0.4阶分数阶微分CARS-PLSR建模表现较优,但总体精度仍然不高;(3)使用MCCV剔除异常值后,0.6阶分数阶微分CARS-PLSR建立的土壤有机质含量反演模型精度最高,训练集和测试集的均方误差分别为0.219%...  相似文献   

9.
[目的]本研究以湖南省石门县为例,采用普通克里格和基于MODIS和DEM数据的回归克里格方法,结合有限个采样数据对该区有机质进行空间预测,并进行对比分析。[方法]运用由地形参数(由DEM派生得到)、归一化植被指数(NDVI)以及由MODIS派生得到的地表温度(LST)等指标进行空间模拟,然后通过平均误差(ME)和均方根误差(RMSE)验证精度,数据的描述性统计及转换均通过软件实现。[结果]结果表明在有限个采样数据下,结合多元遥感数据的回归克里格方法优于普通克里格法,回归克里格法的平均误差和均方根误差均低于普通克里格法,相对提高值为6.03%。[结论]在低山丘陵区,运用MODIS数据及其他遥感数据对土壤有机质进行空间预测具有较好的效果。  相似文献   

10.
【目的】探讨高光谱遥感数据不同预处理及不同估测算法下土壤有机质估测模型的优劣,为提高土壤有机质估测精度奠定基础。【方法】使用高光谱仪在室内条件下对土壤样品进行光谱测量,对光谱数据进行4种去噪处理(无去噪处理、Savitzky-Golay(S-G)平滑滤波去噪、小波包去噪以及S-G平滑与小波包结合去噪),然后对去噪后的光谱数据进行8种数据变换(原始光谱数据R、倒数1/R、对数log(R)、倒数对数log(1/R)、一阶导数R′、倒数一阶导数(1/R)′、对数一阶导数(log(R))′、倒数对数一阶导数(log(1/R))′),接着对变化后的光谱数据进行3种降维处理(无降维处理、敏感波段降维和主成分分析降维),最后运用支持向量回归法和偏最小二乘回归法分别建立SOM含量估测模型。【结果】研究中所涉及的各种数据预处理和估测算法中,小波包去噪、PCA降维、反射率倒数一阶导数(1/R)′光谱数据变换处理条件下,使用PLSR方法的估测模型精度最高、模型最稳定,可以较精确地估测吉林省伊通县SOM含量。【结论】合适的数据预处理,尤其是小波包去噪和PCA降维相结合,可有效改善光谱数据质量,提高SOM含量估测模型精度及稳定性。  相似文献   

11.
[目的]以陕西杨凌示范区耕层土壤为对象,通过采集、测定耕层土壤的有机质含量,并结合野外相应高光谱数据和光谱响应函数,利用模拟宽波段数据估测土壤有机质含量。[方法]通过分析土壤有机质含量与光谱间的内在关系,筛选敏感波段,构建估测土壤有机质含量模型;以宽波段波段响应函数、土壤高光谱数据为基础,通过模拟宽波段数据,构建估测土壤有机质含量模型;通过高光谱与模拟宽波段数据的对比分析,研究基于宽波段遥感数据定量估测土壤有机质含量的可行性。[结果]基于宽波段数据估测土壤有机质的精度相对较高。[结论]利用宽波段数据估测土壤土壤有机质含量具有可行性,2%并非利用光谱数据估测土壤有机质含量的下限。  相似文献   

12.
针对土默川平原地区的土壤盐分含量提出了偏最小二乘与随机森林相结合(RF-PLSR、PLSR-RF)对土壤盐分含量进行预测的回归反演模型.该研究共采集45份土壤样本,随机选取35份为建模集,10份为验证集.试验首先对采集到的高光谱土壤图像进行分割处理提取出土壤在400~1000 nm的原始反射光谱,其次对原始反射光谱进行4种光谱变换(一阶微分、多元散射校正的一阶微分、SG平滑去噪的一阶微分、对数的一阶微分),并与土壤的实测盐分量进行相关性分析(CA),利用相关系数选取敏感波段,最后建立偏最小二乘与随机森林结合的回归反演模型.结果表明,与偏最小二乘回归、随机森林回归单独建模相比,2种模型结合后的预测精度有明显的改善.光谱经过对数的一阶微分变换建立的PLSR-RF反演模型更为明显,其建模集决定系数Rc 2为0.852,均方根误差RMSEc为0.102 g/kg,相对分析误差RPDc为2.600,验证集决定系数Rv 2为0.941,均方根误差RMSEv为0.049 g/kg,相对分析误差RPDv为4.117.  相似文献   

13.
为快速准确地获取土壤有机质的空间分布状况,以江西省万年县齐埠镇为例,运用四方位搜索法、地统计学和遥感影像分析技术提取环境因子和邻近信息,构建基于环境因子和邻近信息的回归克里金法(RK)和回归径向基函数神经网络法(R-RBFNN),对齐埠镇耕地表层(0~20 cm)土壤有机质空间分布进行模拟,并与普通克里金法(OK)相比较。结果显示:齐埠镇耕地表层土壤有机质含量在17.30~53.58 g·kg-1,平均值为35.03 g·kg-1,变异系数为23.61%,呈中等变异性。半变异函数分析显示,土壤有机质的块金效应值为0.59,表现为中等空间相关性,自相关范围较大。利用62个采样点进行建模、16个采样点进行独立验证,误差分析表明,应用环境因子和邻近信息作为辅助变量的RK和R-RBFNN预测结果的均方根误差、平均绝对误差、平均相对误均差较OK降低,测试集中的相对提高度分别为66.67%和71.79%,显示出较高精度。但R-RBFNN无须计算半方差函数,使用简单,因此更具优势。  相似文献   

14.
【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil moisture,SM)、温度、土壤表面状况等因素的影响,导致光谱信息中包含大量干扰信息,其中,SM变化是影响光谱观测结果最为显著的因素之一。此研究的目的是探讨OSC算法消除其影响,提升Vis-NIR光谱定量估算土壤有机质(soil organic matter,SOM)的精度。【方法】以江汉平原公安县和潜江市为研究区域,采集217份耕层(0—20 cm)土壤样本,进行风干、研磨、过筛等处理,采用重铬酸钾-外加热法测定SOM;将总体样本划分为3个互不重叠的样本集:建模集S~0(122个样本)、训练集S~1(60个样本)、验证集S~2(35个样本);设计SM梯度试验(梯度间隔为4%),在实验室内获取S~1和S~2样本集的9个梯度SM(0%—32%)的土壤光谱数据;分析SM对土壤Vis-NIR光谱反射率的影响,采用外部参数正交化算法(external parameter orthogonalization,EPO)、正交信号校正算法(orthogonal signal correction,OSC)消除SM对土壤光谱的干扰;利用主成分分析(principal component analysis,PCA)的前两个主成分得分和光谱相关系数两种方法检验消除SM干扰前、后的效果;基于偏最小二乘回归(partial least squares regression,PLSR)方法建立EPO和OSC处理前、后的SOM估算模型,利用决定系数(coefficient of determination,R~2)、均方根误差(root mean square error,RMSE)和RPD(the ratio of prediction to deviation)3个指标比较PLSR、EPO-PLSR、OSC-PLSR模型的性能。【结果】土壤Vis-NIR光谱受SM的影响十分明显,随着SM的增加,土壤光谱反射率呈非线性降低趋势。OSC处理前的湿土光谱数据主成分得分散点相对分散,与干土光谱数据主成分得分空间的位置不重叠,不同SM梯度之间的光谱相关系数变化较大;OSC处理后的湿土光谱数据主成分得分空间的位置基本与干土光谱数据相重合,各样本光谱数据之间相似性很高,不同SM梯度之间的光谱相关系数变化较小。9个SM梯度的EPO-PLSR模型的验证平均R~2_(pre)、RPD分别为0.69、1.7。9个SM梯度的OSC-PLSR模型的验证平均R~2_(pre)、RPD分别为0.72、1.89,校正后的OSC-PLSR模型受SM的较小,有效提升SOM估算模型的精度和鲁棒性。【结论】OSC能够消除SM变化对土壤Vis-NIR光谱的影响,可为将来田间原位实时监测SOM信息提供一定的理论支撑。  相似文献   

15.
以江西省万年县为例,根据万年县测土配方数据,构建以思维进化算法、BP神经网络、四方位搜索法三者结合的模型(MEA-BPNN-F模型),同时加入高程和坡度信息来预测万年县耕地土壤有机质的空间分布,并与普通克里金法(OK模型)、以地理坐标为输入的BP神经网络模型(BPNN-G模型)、以高程和坡度作为辅助变量同时利用四方位搜索法加入邻近信息的BP神经网络模型(BPNN-F模型)进行比较。结果表明:4种模型的预测精度表现为MEA-BPNNFBPNN-FBPNN-GOK。应用MEA-BPNN-F模型预测精度最高、效果最好,比较符合土壤有机质地学运动规律及实际情况。该模型克服了BP神经网络全局搜索能力差和收敛速度慢的缺点,提高了BP神经网络的泛化能力。  相似文献   

16.
以江西省万年县为例,根据万年县测土配方数据,构建以思维进化算法、BP神经网络、四方位搜索法三者结合的模型(MEA-BPNN-F模型),同时加入高程和坡度信息来预测万年县耕地土壤有机质的空间分布,并与普通克里金法(OK模型)、以地理坐标为输入的BP神经网络模型(BPNN-G模型)、以高程和坡度作为辅助变量同时利用四方位搜索法加入邻近信息的BP神经网络模型(BPNN-F模型)进行比较。结果表明:4种模型的预测精度表现为MEA-BPNNF>BPNN-F>BPNN-G>OK。应用MEA-BPNN-F模型预测精度最高、效果最好,比较符合土壤有机质地学运动规律及实际情况。该模型克服了BP神经网络全局搜索能力差和收敛速度慢的缺点,提高了BP神经网络的泛化能力。  相似文献   

17.
土壤有机质高光谱特征与波长变量优选方法   总被引:6,自引:0,他引:6  
【目的】探究土壤有机质的高光谱特征及响应规律,优选土壤有机质的敏感波长,降低土壤有机质高光谱估测模型复杂度,提高模型稳健性,为利用高光谱技术对农田土壤肥力的定量监测提供理论支撑。【方法】采集江汉平原潮土土样130个,将其中40个样本作为训练集,测量其去有机质前、后的土壤有机质含量及光谱数据,计算差值及变化率,分析土壤有机质含量变化对光谱特征的影响,结合无信息变量消除(uninformative variables elimination,UVE)、竞争适应重加权采样(competitive adaptive reweighted sampling,CARS)变量优选方法确定土壤有机质敏感波长;采用45个建模集样本,基于偏最小二乘回归(partial Least Squares Regression,PLSR)和反向传播神经网络(back propagation neural network,BPNN)建立土壤有机质含量的估算模型;利用45个验证集样本检验敏感波长对同类土壤的适用性。【结果】通过有机质去除试验,供试土壤的平均光谱反射率在全波段均有所增加,在可见光波段变化率高于近红外波段;比较UVE、CARS、UVE-CARS、CARS-UVE这4种变量优选方法,得到最佳变量优选方法为UVE-CARS,该方法从2001个波长变量中优选得到84个变量作为土壤有机质的敏感波长,分布于561—721、1 920—2 280 nm波段覆盖范围;基于敏感波长的PLSR、BPNN模型性能均优于全波段模型,其中,基于敏感波长的BPNN模型的估测能力高于PLSR,模型验证集R~2、RMSE、RPD、MAE、MRE值分别为0.74、1.33 g·kg~(-1)、2.02、1.04 g·kg~(-1)、6.2%,可实现土壤有机质含量的有效估测。【结论】通过训练集获得的土壤有机质敏感波长,能够实现对该试验区同种土壤类型样本土壤有机质含量的有效估测;利用去有机质试验结合变量优选方法确定的敏感波长建模,不仅将输入波长压缩至全波段波长数目的 4.2%,而且提升了模型估测精度,降低了变量维度和模型复杂度,为快速准确评估农田土壤有机质含量提供了新途径。  相似文献   

18.
汤超 《农业与技术》2021,(13):123-128
高光谱遥感能提供精细的光谱,具有弱信息诊断能力,在土壤微量成分反演表现出巨大的潜力.本文以安徽省淮北某矿为例,采集不同深度土壤样本,在实验室测定了样本有机质含量及光谱,并对土壤样本光谱进行预处理;在对光谱进行一阶微分、二阶微分和吸光率等变换后,用交换检验法在87个样本中,58个样品做训练集,27个做验证集,确定了用于矿...  相似文献   

19.
[目的]高光谱技术被普遍应用于土壤有机质的检测,而土壤水分在近红外波段中的吸收特性对土壤有机质的检测有很强干扰,消除水分对土壤有机质检测影响是提高模型预测精度的关键,开展土壤水分光谱影响及其消除方法的研究具有重要意义。[方法]本研究获取了山西省晋中市太谷县内不同区域的50个土壤样本在5种含水率(干土、5%、10%、15%和17%)下共250条高光谱曲线,用非负矩阵分解(Nonnegative matrix factor,NMF)对光谱分解重构,以去除水分对土壤有机质检测的影响。采用偏最小二乘(Partial least-squares,PLS)建立的土壤有机质定量预测模型对重构前后湿土土样的有机质含量进行了预测。[结果]经NMF分解重构后的湿样吸光度谱图与对应的干样相近;重构后的光谱数据对有机质预测相关系数(R)较湿样提高了0.059,预测标准差(Predicted standard deviation,SEP)降低了0.154,均方根误差(Root-mean-square error,RMSEP)降低了0.718。[结论]NMF能够在很大程度上削弱土壤水分对有机质检测的影响,提高湿土土样有机质含量的高光谱预测精度。  相似文献   

20.
蔗田土壤有机质平衡预测   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]进行蔗田土壤有机质平衡预测,为甘蔗生产中合理使用甘蔗残体、糖厂滤泥和酒精废液,提高土壤肥力及甘蔗产量提供依据.[方法]采用尼龙网袋将有机物料与土混合埋于新植蔗行间,埋置后1年后取样测定有机物料碳的残留量,确定土壤有机物料腐殖化系数,并根据Jenny数学模型公式Ct=A/K-(A/K-C0)e-kt,对蔗田土壤有机质平衡进行预测.[结果]蔗叶、蔗根、蔗头、滤泥、酒精废液腐殖化系数分别为0.39、0.46、0.20、0.15与0.07;要保持蔗田土壤有机质平衡在21.19 g/kg,每年需向土壤施入稳定有机质2004.0 kg/ha,即需要蔗根4356.5 kg/ha(干重),5138.5 kg/ha蔗叶(干重)、10020.0 kg/ha蔗头(干重)、13360.0 kg/ha滤泥(干重)、28628.6 kg/ha酒精发酵液(固形物);要稳步提高土壤有机质含量,培肥土壤时间越长,每年投入的有机质量越少,反之则越多.[结论]循环利用甘蔗糖业中的蔗叶、糖厂滤泥、糖厂酒精废液等有机物料,可以促进土壤肥力的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号