首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ObjectiveTo evaluate the isoflurane‐sparing effects of an intravenous (IV) constant rate infusion (CRI) of fentanyl, lidocaine, ketamine, dexmedetomidine, or lidocaine‐ketamine‐dexmedetomidine (LKD) in dogs undergoing ovariohysterectomy.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane with one of the following IV treatments: butorphanol/saline (butorphanol 0.4 mg kg?1, saline 0.9% CRI, CONTROL/BUT); fentanyl (5 μg kg?1, 10 μg kg?1 hour?1, FENT); ketamine (1 mg kg?1, 40 μg kg?1 minute?1, KET), lidocaine (2 mg kg?1, 100 μg kg?1 minute?1, LIDO); dexmedetomidine (1 μg kg?1, 3 μg kg?1 hour?1, DEX); or a LKD combination. Positive pressure ventilation maintained eucapnia. An anesthetist unaware of treatment and end‐tidal isoflurane concentration (Fe′Iso) adjusted vaporizer settings to maintain surgical anesthetic depth. Cardiopulmonary variables and Fe′Iso concentrations were monitored. Data were analyzed using anova (p < 0.05).ResultsAt most time points, heart rate (HR) was lower in FENT than in other groups, except for DEX and LKD. Mean arterial blood pressure (MAP) was lower in FENT and CONTROL/BUT than in DEX. Overall mean ± SD Fe′Iso and % reduced isoflurane requirements were 1.01 ± 0.31/41.6% (range, 0.75 ± 0.31/56.6% to 1.12 ± 0.80/35.3%, FENT), 1.37 ± 0.19/20.8% (1.23 ± 0.14/28.9% to 1.51 ± 0.22/12.7%, KET), 1.34 ± 0.19/22.5% (1.24 ± 0.19/28.3% to 1.44 ± 0.21/16.8%, LIDO), 1.30 ± 0.28/24.8% (1.16 ± 0.18/32.9% to 1.43 ± 0.32/17.3%, DEX), 0.95 ± 0.19/54.9% (0.7 ± 0.16/59.5% to 1.12 ± 0.16/35.3%, LKD) and 1.73 ± 0.18/0.0% (1.64 ± 0.21 to 1.82 ± 0.14, CONTROL/BUT) during surgery. FENT and LKD significantly reduced Fe′Iso.Conclusions and clinical relevanceAt the doses administered, FENT and LKD had greater isoflurane‐sparing effect than LIDO, KET or CONTROL/BUT, but not at all times. Low HR during FENT may limit improvement in MAP expected with reduced Fe′Iso.  相似文献   

2.
In a previous study we showed that the MAC of isoflurane was decreased by 18 ± 12% and 59 ± 7% by constant rate infusions of dexmedetomidine at 0.5 and 3 μg kg–1 hour–1. The purpose of this study was to document the cardiovascular changes associated with these infusions of dexmedetomidine at 1.3 MAC isoflurane/ dexmedetomidine. Dogs were anesthetized with isoflurane in oxygen given by mask. A cephalic venous catheter, a dorsal pedal arterial catheter and a balloon tipped, Swan–Ganz, pulmonary arterial catheter were placed percutaneously. After instrumentation the dogs were maintained at 1.3 MAC isoflurane for 60 minutes. At this time a set of measurements was made including, heart rate, respiratory rate, core body temperature, pulmonary and systemic arterial blood pressures (SAP, MAP, DAP, CVP, SPAP, MPAP, DPAP and PAOP), cardiac output and arterial and mixed venous blood samples were collected for the measurement of blood gases, pH, hemoglobin concentration, PCV and total protein. Calculated variables included base excess (BE), (HCO3?), cardiac index, systemic and pulmonary vascular resistance indices, oxygen delivery, oxygen consumption, oxygen utilization ratio and shunt fraction. After these measurements to dogs were randomly assigned to receive a loading dose of 0.5 or 3 μg kg–1 of dexmedetomidine given over 6 minutes followed by an infusion of 0.5 (LD) or 3 μg kg–1 hour–1 (HD), respectively. The concentration of isoflurane was reduced by the above percentages, respectively, to maintain 1.3 MAC. Full sets of measurements were repeated at 10, 30, 60, 90, 120, 150 and 180 minutes after the start of the loading dose. Measured and calculated variables were compared with baseline using an anova and a post‐hoc Tukey's test. Significance was set at p = 0.05 and results are given as mean ± SD. The initial concentration of isoflurane was 1.73 ± 0.02% and was reduced to 1.41 ± 0.02 and 0.72 ± 0.09% for the LD and HD, respectively. Heart rate decreased with both doses but no other parameter changed significantly with the LD. With the HD there were significant changes in SAP, MAP, DAP, CVP, MPAP, PAOP, CI, SVRI, PCV, DO2 and shunt fraction. The LD appeared to have minimal effect on the cardiopulmonary values measured, whereas the HD caused typical changes expected with an alpha‐2 agonist.  相似文献   

3.
ObjectiveTo evaluate the effects of a constant rate infusion (CRI) of lidocaine alone or in combination with ketamine on the minimum infusion rate (MIR) of propofol in dogs and to compare the hemodynamic effects produced by propofol, propofol-lidocaine or propofol-lidocaine-ketamine anesthesia.Study designProspective, randomized cross-over experimental design.AnimalsFourteen adult mixed-breed dogs weighing 15.8 ± 3.5 kg.MethodsEight dogs were anesthetized on different occasions to determine the MIR of propofol alone and propofol in combination with lidocaine (loading dose [LD] 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) or lidocaine (LD 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) and ketamine (LD 1 mg kg?1, CRI 0.1 mg kg?1 minute?1). In six other dogs, the hemodynamic effects and bispectral index (BIS) were investigated. Each animal received each treatment (propofol, propofol-lidocaine or propofol-lidocaine-ketamine) on the basis of the MIR of propofol determined in the first set of experiments.ResultsMean ± SD MIR of propofol was 0.51 ± 0.08 mg kg?1 minute?1. Lidocaine-ketamine significantly decreased the MIR of propofol to 0.31 ± 0.07 mg kg?1 minute?1 (37 ± 18% reduction), although lidocaine alone did not (0.42 ± 0.08 mg kg?1 minute?1, 18 ± 7% reduction). Hemodynamic effects were similar in all treatments. Compared with the conscious state, in all treatments, heart rate, cardiac index, mean arterial blood pressure, stroke index and oxygen delivery index decreased significantly, whereas systemic vascular resistance index increased. Stroke index was lower in dogs treated with propofol-lidocaine-ketamine at 30 minutes compared with propofol alone. The BIS was lower during anesthesia with propofol-lidocaine-ketamine compared to propofol alone.Conclusions and clinical relevanceLidocaine-ketamine, but not lidocaine alone, reduced the MIR of propofol in dogs. Neither lidocaine nor lidocaine in combination with ketamine attenuated cardiovascular depression produced by a continuous rate infusion of propofol.  相似文献   

4.

Objective

To assess the temporal effects of a single fentanyl intravenous (IV) bolus on the minimum anesthetic concentration (MAC) of isoflurane in chickens and to evaluate the effects of this combination on heart rate (HR) and rhythm, systemic arterial pressures (sAP) and ventilation.

Study design

Prospective experimental trial.

Animals

Seventeen adult chickens weighing 1.8 ± 0.2 kg.

Methods

Individual isoflurane MAC for 17 chickens was previously determined using the bracketing method. Chickens were anesthetized with isoflurane to evaluate the effects of a single IV fentanyl bolus (10 or 30 μg kg?1) on isoflurane MAC over time using the up-and-down method. Ventilation was controlled. The isoflurane MAC reduction was estimated by logistic regression at 5 and 15 minutes after fentanyl administration. In the second phase, seven chickens were anesthetized with isoflurane, and fentanyl was administered (30 μg kg?1) IV over 1 minute during spontaneous ventilation and HR and rhythm, sAP and ventilation variables were measured.

Results

At 5 minutes after IV administration of fentanyl (10 or 30 μg kg?1), isoflurane MAC was significantly reduced by 17.6% (6.1–29.1%) [logistic regression estimate (95% Wald confidence interval)] and 42.6% (13.3–71.9%), respectively. Isoflurane MAC reduction at 15 minutes after IV administration of fentanyl (10 or 30 μg kg?1) was 6.2% (?0.6 to 12.9%) and 13.2% (?0.9 to 27.3%), respectively; however, this reduction was not significant. No clinically significant cardiopulmonary changes or arrhythmias were detected after the administration of fentanyl (30 μg kg?1).

Conclusions and clinical relevance

Administration of a single fentanyl bolus induced a dose-dependent and short-lasting reduction in isoflurane MAC. The higher dose induced no significant cardiopulmonary depression in isoflurane-anesthetized chickens during spontaneous ventilation. In chickens anesthetized with isoflurane, the clinical usefulness of a single fentanyl bolus is limited by its short duration of effect.  相似文献   

5.
ObjectiveTo evaluate medetomidine as a continuous rate infusion (CRI) in horses in which anaesthesia is maintained with isoflurane and CRIs of ketamine and lidocaine.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses undergoing elective surgery.MethodsAfter sedation and induction, anaesthesia was maintained with isoflurane. Mechanical ventilation was employed. All horses received lidocaine (1.5 mg kg?1 initially, then 2 mg kg?1 hour?1) and ketamine (2 mg kg?1 hour?1), both CRIs reducing to 1.5 mg kg?1 hour?1 after 50 minutes. Horses in group MILK received a medetomidine CRI of 3.6 μg kg?1 hour?1, reducing after 50 minutes to 2.75 μg kg?1 hour?1, and horses in group ILK an equal volume of saline. Mean arterial pressure (MAP) was maintained above 70 mmHg using dobutamine. End-tidal concentration of isoflurane (FE′ISO) was adjusted as necessary to maintain surgical anaesthesia. Group ILK received medetomidine (3 μg kg?1) at the end of the procedure. Recovery was evaluated. Differences between groups were analysed using Mann-Whitney, Chi-Square and anova tests as relevant. Significance was taken as p < 0.05.ResultsFE′ISO required to maintain surgical anaesthesia in group MILK decreased with time, becoming significantly less than that in group ILK by 45 minutes. After 60 minutes, median (IQR) FE′ISO in MILK was 0.65 (0.4–1.0) %, and in ILK was 1 (0.62–1.2) %. Physiological parameters did not differ between groups, but group MILK required less dobutamine to support MAP. Total recovery times were similar and recovery quality good in both groups.Conclusion and clinical relevanceA CRI of medetomidine given to horses which were also receiving CRIs of lidocaine and ketamine reduced the concentration of isoflurane necessary to maintain satisfactory anaesthesia for surgery, and reduced the dobutamine required to maintain MAP. No further sedation was required to provide a calm recovery.  相似文献   

6.
Lidocaine has been reported to decrease the minimum alveolar concentration (MAC) of inhalation anesthetics in several species and has been used clinically to reduce the requirements for other anesthetic drugs. This study examined the effects of intravenous lidocaine on isoflurane MAC in cats. Six cats were studied. In experiment 1, the MAC of isoflurane was determined. An intravenous bolus of lidocaine 2 mg kg–1 was then administrated and venous plasma lidocaine concentrations measured to determine pharmacokinetic values. In experiment 2, lidocaine was administered to achieve target plasma concentrations between 1 and 11 μg mL–1 and the MAC of isoflurane was determined in triplicate at each lidocaine plasma concentration, using the tail‐clamp method. End‐tidal isoflurane concentration was determined using a calibrated infrared analyzer. Systolic blood pressure (Doppler), SpO2 and end‐tidal PCO2 (calibrated Raman spectrometer) were measured prior to each MAC determination. Body temperature was maintained between 38.5 and 39.5 °C by supplying external heat as needed. MAC values at the different lidocaine plasma concentrations were analyzed by a repeated measures ANOVA , using the Huynh–Feldt correction. The MAC of isoflurane in these cats was 2.21 ± 0.17. For the target concentrations of 1, 3, 5, 7, 9, and 11 μg mL–1, the actual lidocaine plasma concentrations was 1.06 ± 0.12, 2.83 ±0.39, 4.93 ± 0.64, 6.86 ± 0.97, 8.86 ± 2.10, and 9.84 ± 1.34 μg mL–1, respectively. At these target concentrations, the MAC of isoflurane was 2.14 ± 0.14, 1.88 ± 0.18, 1.66 ± 0.16, 1.47 ±0.13, 1.33 ± 0.23, and 1.06 ± 0.19%, respectively. Lidocaine, at target plasma concentrations of 1, 3, 5, 7, 9, and 11 μg mL–1, linearly decreased isoflurane MAC by –6 to 6, 7 to 28, 19 to 35, 28 to 45, 29 to 53, and 44 to 59%, respectively. Lidocaine significantly dose‐dependently and linearly decreases the requirements for isoflurane in cats. No ceiling effect was observed within the range of plasma concentrations studied.  相似文献   

7.
ObjectiveTo determine the accuracy of an oscillometric blood pressure monitor in anesthetized sheep.Study designProspective study.AnimalsTwenty healthy adult sheep, 11 males and nine females, weighing 63.6 ± 8.6 kg.MethodsAfter premedication with buprenorphine or transdermal fentanyl, anesthesia was induced with ketamine‐midazolam and maintained with isoflurane and ketamine, 1.2 mg kg?1 hour?1, ± lidocaine, 3 mg kg?1 hour?1. Invasive blood pressure measurements were obtained from an auricular arterial catheter and noninvasive measurements were from a cuff on the metatarsus or antebrachium. Simultaneous invasive and noninvasive measurements were recorded over a range (55–111 mmHg) of mean arterial pressures (MAP). Isoflurane concentration was increased to decrease MAP and decreasing the isoflurane concentration and infusing dobutamine achieved higher pressures. Invasive and noninvasive measurements were compared.ResultsCorrelation (R2) was good between the two methods of measurement (average of three consecutive readings) for systolic (SAP) (0.87), diastolic (DAP) (0.86), and mean (0.90) arterial pressures (p < 0.001). Bias ± SD between noninvasive and invasive measurements for SAP was 3 ± 8 mmHg, for DAP was ?10 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. There was no significant difference between the average of three measurements and use of the first measurement. Correlations using the first measurement were SAP (0.82), DAP (0.84), and MAP (0.89). Bias ± SD for SAP was 3 ±10 mmHg, for DAP was ?11 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. The oscillometric monitor slightly overestimated SAP and underestimated DAP and MAP for both average values and the first reading.Conclusions and clinical relevanceThis oscillometric model provided MAP measurements that were acceptable by ACVIM standards. MAP measurements with this monitor were lower than those found with the invasive technique so a clinical diagnosis of hypotension may be made in sheep that are not hypotensive.  相似文献   

8.
ObjectiveTo evaluate the effects of intravenous lidocaine (L) and ketamine (K) alone and their combination (LK) on the minimum alveolar concentration (MAC) of sevoflurane (SEVO) in dogs.Study designProspective randomized, Latin-square experimental study.AnimalsSix, healthy, adult Beagles, 2 males, 4 females, weighing 7.8 – 12.8 kg.MethodsAnesthesia was induced with SEVO in oxygen delivered by face mask. The tracheas were intubated and the lungs ventilated to maintain normocapnia. Baseline minimum alveolar concentration of SEVO (MACB) was determined in duplicate for each dog using an electrical stimulus and then the treatment was initiated. Each dog received each of the following treatments, intravenously as a loading dose (LD) followed by a constant rate infusion (CRI): lidocaine (LD 2 mg kg−1, CRI 50 μg kg−1minute−1), lidocaine (LD 2 mg kg−1, CRI 100 μgkg−1 minute−1), lidocaine (LD 2 mg kg−1, CRI 200 μg kg−1 minute−1), ketamine (LD 3 mg kg−1, CRI 50 μg kg−1 minute−1), ketamine (LD 3 mgkg−1, CRI 100 μg kg−1 minute−1), or lidocaine (LD 2 mg kg−1, CRI 100 μg kg−1 minute−1) + ketamine (LD 3 mg kg−1, CRI 100 μg kg−1 minute−1) in combination. Post-treatment MAC (MACT) determination started 30 minutes after initiation of treatment.ResultsLeast squares mean ± SEM MACB of all groups was 1.9 ± 0.2%. Lidocaine infusions of 50, 100, and 200 μg kg−1 minute−1 significantly reduced MACB by 22.6%, 29.0%, and 39.6%, respectively. Ketamine infusions of 50 and 100 μg kg−1 minute−1 significantly reduced MACB by 40.0% and 44.7%, respectively. The combination of K and L significantly reduced MACB by 62.8%.Conclusions and clinical relevanceLidocaine and K, alone and in combination, decrease SEVO MAC in dogs. Their use, at the doses studied, provides a clinically important reduction in the concentration of SEVO during anesthesia in dogs.  相似文献   

9.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

10.
Lidocaine decreases minimum alveolar concentration (MAC) of inhalational anesthetics. This study determined the influence of a low dose, 50 µg kg?1 minute?1 (LDI) and high dose, 200 µg kg?1 minute?1 (HDI) constant rate infusion of lidocaine on the MAC of isoflurane (I) in dogs. Ten mongrel dogs were anesthetized with I in oxygen and mechanically ventilated. End‐tidal anesthetic (Fe ′A) and CO2 (Pe ′CO2) concentrations were monitored at the endotracheal tube adaptor with an infrared gas analyzer calibrated before each experiment with a standardized calibration gas mixture designed for the analyzer. Pe ′CO2 and body temperature were maintained within normal limits. Noxious stimuli included clamping the hindlimb paw (HC) and electrical current (50 V at 50 cycles second?1 for 10 milliseconds pulse?1) applied subcutaneously to the forelimb (FE) at the level of the ulna. After an initial equilibration period of at least 40 minutes at an Fe ′A of 1.7%, the Fe ′A was decreased to a value close to the estimated MAC for dogs. MAC was defined as the Fe ′A mid‐way between the value permitting and preventing purposeful movement. Following baseline MAC, a loading dose of 2 mg kg?1 of lidocaine IV was administered over 3 minutes followed by the LDI, and MAC determinations for the combination started after 30 minutes of infusion. Once determined, the lidocaine infusion was stopped for 30 minutes and the dog maintained at the ETC that prevented movement without the lidocaine. Following this period, a second loading dose of lidocaine was given (2 mg kg?1) over 3 minutes followed by the HDI, and the MAC determination procedure repeated after 30 minutes of infusion. Data were analyzed using an anova for repeated measures. MAC of I was 1.34 ± 0.035% (mean ± SEM) for both the FE and HC stimuli. The LDI significantly decreased MAC to 1.09 ± 0.043% (18.7% reduction) and HDI to 0.76 ± 0.030% (43.3% reduction). In conclusion, lidocaine infusions decreased the MAC of isoflurane in a dose‐dependent manner.  相似文献   

11.
ObjectiveTo evaluate the effect of tramadol on sevoflurane minimum alveolar concentration (MACSEVO) in dogs. It was hypothesized that tramadol would dose-dependently decrease MACSEVO.Study designRandomized crossover experimental study.AnimalsSix healthy, adult female mixed-breed dogs (24.2 ± 2.6 kg).MethodsEach dog was studied on two occasions with a 7-day washout period. Anesthesia was induced using sevoflurane delivered via a mask. Baseline MAC (MACB) was determined starting 45 minutes after tracheal intubation. A noxious stimulus (50 V, 50 Hz, 10 ms) was applied subcutaneously over the mid-humeral area. If purposeful movement occurred, the end-tidal sevoflurane was increased by 0.1%; otherwise, it was decreased by 0.1%, and the stimulus was re-applied after a 20-minute equilibration. After MACB determination, dogs randomly received a tramadol loading dose of either 1.5 mg kg?1 followed by a continuous rate infusion (CRI) of 1.3 mg kg?1 hour?1 (T1) or 3 mg kg?1 followed by a 2.6 mg kg?1 hour?1 CRI (T2). Post-treatment MAC determination (MACT) began 45 minutes after starting the CRI. Data were analyzed using a mixed model anova to determine the effect of treatment on percentage change in baseline MACSEVO (p < 0.05).ResultsThe MACB values were 1.80 ± 0.3 and 1.75 ± 0.2 for T1 and T2, respectively, and did not differ significantly. MACT decreased by 26 ± 8% for T1 and 36 ± 12% for T2. However, there was no statistically significant difference in the decrease between the two treatments.Conclusion and clinical relevanceTramadol significantly reduced MACSEVO but this was not dose dependent at the doses studied.  相似文献   

12.
ObjectiveTo assess the brachial plexus block in chickens by an axillary approach and using a peripheral nerve stimulator.Study designProspective, randomized, double-blinded study.AnimalsSix, 84-week old, female chickens.MethodsMidazolam (1 mg kg−1) and butorphanol (1 mg kg−1) were administered into the pectoralis muscle. Fifteen minutes later, the birds were positioned in lateral recumbency and following palpation of the anatomic landmarks, a catheter was inserted using an axillary approach to the brachial plexus. Lidocaine or bupivacaine (1 mL kg−1) was injected after plexus localization by the nerve stimulator. Sensory function was tested before and after blockade (carpus, radius/ulna, humerus and pectoralis muscle) in the blocked and unblocked wings. The latency to onset of motor and sensory block and the duration of sensory block were recorded. A Friedman nonparametric one-way repeated-measures anova was used to compare scores from baseline values over time and to compare the differences between wings at each time point.ResultsA total of 18 blocks were performed with a success rate of 66.6% (12/18). The latency for motor block was 2.8 ± 1.1 and 3.2 ± 0.4 minutes for lidocaine and bupivacaine, respectively. The latencies for and durations of the sensory block were 6.0 ± 2.5 and 64.0 ± 18.0 and 7.8 ± 5.8 and 91.6 ± 61.7 minutes for lidocaine and bupivacaine, respectively. There was no statistical difference between these times for lidocaine or bupivacaine. Sensory function was not abolished in nonblocked wings.Conclusions and clinical relevanceThe brachial plexus block was an easy technique to perform but had a high failure rate. It might be useful for providing anesthesia or postoperative analgesia of the wing in chickens and exotic avian species that have similar wing anatomy.  相似文献   

13.
ObjectiveTo evaluate and compare the cardiopulmonary effects of induction of anesthesia with isoflurane (Iso), ketamine–diazepam (KD), or propofol–diazepam (PD) in hypovolemic dogs.Study designProspective randomized cross–over trial.AnimalsSix healthy intact, mixed breed, female dogs weighing 20.7 ± 4.2 kg and aged 22 ± 2 months.MethodsDogs had 30 mL kg?1 of blood removed at a rate of 1.5 mL kg?1 minute?1 under isoflurane anesthesia. Following a 30–minute recovery period, anesthesia was reinduced. Dogs were assigned to one of three treatments: isoflurane via facemask using 0.5% incremental increases in the delivered concentration every 30 seconds, 1.25 mg kg?1 ketamine and 0.0625 mg kg?1 diazepam intravenously (IV) with doses repeated every 30 seconds as required, and 2 mg kg?1 propofol and 0.2 mg kg?1 diazepam IV followed by 1 mg kg?1 propofol increments IV every 30 seconds as required. Following endotracheal intubation all dogs received 1.7% end–tidal isoflurane in oxygen. Cardiopulmonary variables were recorded at baseline (before induction) and at 5 or 10 minute intervals following endotracheal intubation.ResultsInduction time was longer in Iso (4.98 ± 0.47 minutes) compared to KD (3.10 ± 0.47 minutes) or PD (3.22 ± 0.45 minutes). To produce anesthesia, KD received 4.9 ± 2.3 mg kg?1 ketamine and 0.24 ± 0.1 mg kg?1 diazepam, while PD received 2.2 ± 0.4 mg kg?1 propofol and 0.2 mg kg?1 diazepam. End–tidal isoflurane concentration immediately following intubation was 1.7 ± 0.4% in Iso. Arterial blood pressure and heart rate were significantly higher in KD and PD compared to Iso and in KD compared to PD. Arterial carbon dioxide partial pressure was significantly higher in PD compared to KD and Iso immediately after induction.Conclusions and clinical relevanceIn hypovolemic dogs, KD or PD, as used in this study to induce anesthesia, resulted in less hemodynamic depression compared to isoflurane.  相似文献   

14.
ObjectiveTo determine the cardiovascular effects of lidocaine infused intravenously (IV) in broiler chickens.Study designTwo phase study: Phase 1, randomized up-and-down study to determine effective dose 50 (ED50) for lidocaine; Phase 2, prospective randomized study to determine the cardiovascular effects of lidocaine.AnimalsSeventeen Ross-708 broiler chickens (Gallus gallus domesticus) [11 chickens (Phase 1) and 6 chickens (Phase 2)], weighing 2.6–4.3 kg.MethodsAfter induction of anesthesia with isoflurane and placement of monitoring equipment including invasive blood pressure, chickens were administered lidocaine IV. During Phase 1, using an up-and-down design, each animal received a variable dose selected based on the response of the previous animal. During Phase 2, each animal was administered 6 mg kg−1 of lidocaine IV over 2 minutes. Clinically irrelevant cardiovascular effects were defined as a relative decrease of heart rate (HR) and mean blood pressure (MAP) <30% subsequent to IV lidocaine administration. The ED50 was defined as the dose rate that would cause clinically irrelevant cardiovascular depression in 50% of the population.ResultsDuring Phase 1, using an up-and-down study design (n = 11), the ED50 of lidocaine was determined to be 6.30 mg kg−1 and 6.22 mg kg−1 (95% confidence interval, 5.30–7.13 mg kg−1), when calculated by Dixon's up-and-down method, and logistic regression, respectively. During Phase 2, following infusion of lidocaine (6 mg kg−1), no clinically relevant effects on HR or MAP were detected in any animal.Conclusions and clinical relevancePrevious reports state that the dose of lidocaine used in birds should be =4 mg kg−1. In this study, 6 mg kg−1 of lidocaine injected IV was not associated with adverse cardiovascular effects. These results suggest that the dose of 4 mg kg−1 can be exceeded, at least in chickens, and opens the possibility of other therapeutic uses for lidocaine in birds.  相似文献   

15.
ObjectiveTo determine the effect of butorphanol, administered by intravenous (IV) infusion, on the minimum alveolar concentration of isoflurane (MACISO) in cats and to examine the dosage dependence of this effect.Study designRandomized, placebo-controlled, crossover experimental study.AnimalsA group of six healthy adult male neutered cats.MethodsCats were anesthetized with isoflurane in oxygen. A venous catheter was placed for fluid and drug administration, and an arterial catheter was placed for measurement of arterial pressure and blood sampling. Four treatments were administered at random with at least 2 week interval between treatments: saline (control), butorphanol low dosage (treatment LD; 0.25 mg kg–1 IV bolus followed by 85 μg kg–1 minute–1 for 20 minutes, then 43 μg kg–1 minute–1 for 40 minutes, then 19 μg kg–1 minute–1), medium dosage (treatment MD, double the dosages in LD) and high dosage (treatment HD, quadruple the dosages in LD). MACISO was determined in duplicate using the bracketing technique and tail clamping. Pulse rate, arterial pressure, hemoglobin oxygen saturation, end-tidal partial pressure of carbon dioxide and arterial blood gas and pH were measured.ResultsButorphanol reduced MACISO in a dosage-dependent manner, by 23 ± 8%, 37 ± 12% and 68 ± 10% (mean ± standard deviation) in treatments LD, MD and HD, respectively. The main cardiopulmonary effect observed was a decrease in pulse rate, significant in treatment HD compared with control.Conclusions and clinical relevanceButorphanol caused a dosage-dependent MACISO reduction in cats. IV infusion of butorphanol may be of interest for partial IV anesthesia in cats.  相似文献   

16.
ObjectiveTo compare isoflurane alone or in combination with systemic ketamine and lidocaine for general anaesthesia in horses.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses (ASA I-III) undergoing elective surgery.MethodsHorses were assigned to receive isoflurane anaesthesia alone (ISO) or with ketamine and lidocaine (LKI). After receiving romifidine, diazepam, and ketamine, the isoflurane end-tidal concentration was set at 1.3% and subsequently adjusted by the anaesthetist (unaware of treatments) to maintain a light plane of surgical anaesthesia. Animals in the LKI group received lidocaine (1.5 mg kg−1 over 10 minutes, followed by 40 μg kg−1 minute−1) and ketamine (60 μg kg−1 minute−1), both reduced to 65% of the initial dose after 50 minutes, and stopped 15 minutes before the end of anaesthesia. Standard clinical cardiovascular and respiratory parameters were monitored. Recovery quality was scored from one (very good) to five (very poor). Differences between ISO and LKI groups were analysed with a two-sample t-test for parametric data or a Fischer's exact test for proportions (p < 0.05 for significance). Results are mean ± SD.ResultsHeart rate was lower (p = 0.001) for LKI (29 ± 4) than for ISO (34 ± 6). End-tidal concentrations of isoflurane (ISO: 1.57% ± 0.22; LKI: 0.97% ± 0.33), the number of horses requiring thiopental (ISO: 10; LKI: 2) or dobutamine (ISO:8; LKI:3), and dobutamine infusion rates (ISO:0.26 ± 0.09; LKI:0.18 ± 0.06 μg kg−1 minute−1) were significantly lower in LKI compared to the ISO group (p < 0.001). No other significant differences were found, including recovery scores.Conclusions and clinical relevanceThese results support the use of lidocaine and ketamine to improve anaesthetic and cardiovascular stability during isoflurane anaesthesia lasting up to 2 hours in mechanically ventilated horses, with comparable quality of recovery.  相似文献   

17.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

18.
ObjectiveTo compare the effects of continuous rate infusions (CRIs) of intravenous (IV) morphine and morphine-tramadol on the minimum alveolar concentration (MAC) of sevoflurane, and on electroencephalographic entropy indices in dogs.DesignProspective study.AnimalsEight young, healthy German shepherds, weighing 26.3 ± 3.1 kg (mean ± SD).MethodsAnaesthesia was induced and maintained with sevoflurane. A standard tail-clamp technique was used for MAC determination. Within one anaesthetic period, MAC was first determined during sevoflurane anaesthesia alone (MACB); then during morphine infusion (MACM), (loading dose 0.5 mg kg−1IM; CRI, 0.2 mg kg−1hour−1) then finally during morphine-tramadol infusion (tramadol loading dose 1.5 mg kg−1IV; CRI, 2.6 mg kg−1 hour−1) (MACMT). At each change, periods of 45 minutes were allowed for equilibration. Stated entropy (SE), response entropy (RE), and RE-SE differences were measured five minutes prior to and during tail clamping.ResultsThe MACB was 2.1 ± 0.3vol%. The morphine and morphine-tramadol infusions reduced MAC to 1.6 ± 0.3vol% and 1.3 ± 0.3vol%, respectively. MAC was decreased below baseline more during morphine-tramadol than during morphine alone (39 ± 9% versus 25 ± 6%, respectively; p = 0.003). All SE and RE and most RE-SE differences were increased significantly (p < 0.05) over pre-stimulation in all groups when the dogs responded purposefully to noxious stimulation. When no response to noxious stimulation occurred, the entropy indices did not change.Conclusion and clinical relevanceIn dogs, combined morphine-tramadol CRI decreased sevoflurane MAC more than morphine CRI alone. Entropy indices changed during nociceptive responses in anaesthetized animals, suggesting that entropy measurements may be useful in determining anaesthetic depth in dogs.  相似文献   

19.
Reduction of isoflurane MAC by fentanyl or remifentanil in rats   总被引:2,自引:0,他引:2  
Objective The main objective of the study was to determine the effects of three different infusion rates of fentanyl and remifentanil on the minimum alveolar concentration (MAC) of isoflurane in the rat. A secondary objective was to assess the cardiovascular and respiratory effects of the two opioid drugs. Animal population Thirty‐seven male Wistar rats were randomly allocated to one of six treatment groups. Material and methods For all treatment groups anaesthesia was induced with 5% isoflurane in oxygen using an induction chamber. A 14‐gauge catheter was used for endotracheal intubation, and anaesthesia was maintained with isoflurane delivered in oxygen via a T‐piece breathing system. A baseline determination of the minimum alveolar concentration of isoflurane (MACISO) was made for each animal. Fentanyl (15, 30, 60 µg kg?1 hour?1) or remifentanil (60, 120, 240 µg kg?1 hour?1) were infused intravenously into a previously cannulated tail vein. Thirty minutes after the infusion started, a second MACISO (MACISO+drug) was determined. The carotid artery was cannulated to monitor the arterial pressure and to take samples for arterial gas measurements. Cardiovascular (heart rate and arterial pressure) and respiratory (respiratory rate and presence/absence of apnoea) effects after opioid infusion were also recorded. Results Fentanyl (15, 30, 60 µg kg?1 hour?1) and remifentanil (60, 120, 240 µg kg?1 hour?1) similarly reduced isoflurane MAC in a dose‐dependent fashion: by 10% at lower doses, 25% at medium doses and by 60% at higher doses of both the drugs. Both opioids reduced the respiratory rate in a similar way for all doses tested. No episodes of apnoea were recorded in the remifentanil groups, while administration of fentanyl resulted in apnoea in three animals (one at each dose level). The effects on the cardiovascular system were similar with both drugs. Conclusions We conclude that the intraoperative use of remifentanil in the rat reduces the MAC of isoflurane, and that this anaesthetic sparing effect is dose‐dependent and similar to that produced by fentanyl at the doses tested. Clinical relevance The use of remifentanil during inhalant anaesthesia in the rat can be considered an intravenous alternative to fentanyl, providing similar reduction in isoflurane requirements. Due to its rapid offset, it is recommended that alternative pain relief be instituted before it is discontinued.  相似文献   

20.
ObjectiveTo compare, in horses undergoing laparotomy for colic, the effects of administering or not administering a loading intravenous (IV) bolus of lidocaine prior to its constant rate infusion (CRI). Effects investigated during isoflurane anaesthesia were end-tidal isoflurane concentration (Fe’ISO), cardiovascular function, anaesthetic stability and the quality of recovery.Study designProspective, randomized clinical study.AnimalsThirty-six client-owned horses.MethodsHorses were assigned randomly to receive lidocaine as a CRI (50 μg kg−1 minute−1) either preceded (LB) or not preceded (L) by a loading dose (1.5 mg kg−1 IV over 15 minutes). Lidocaine infusion (LInf) was started (T0) within 20 minutes after induction of general anaesthesia and discontinued approximately 30 minutes before the end of surgery. Anaesthetic depth, Fe’ISO, intra-operative physiological parameters and quality of recovery were assessed or measured. Data were analysed using one-way anova, t-test, Fisher test, Wilcoxon and Kruskal–Wallis tests as appropriate (p < 0.05).ResultsMean ± SD Fe’ISO was 1.21 ± 0.08% in group LB and 1.23 ± 0.06% in group L. Heart rate was significantly higher in group L than in group LB at times T5-T15, T25, T35 and T95. No difference was found between groups in other measured physiological values, nor in any measure taken to improve these parameters. Recovery phase was comparable and satisfactory in all but one full term pregnant horse in group L which fractured a femur during recovery.ConclusionPreloading with a lidocaine bolus prior to a CRI of lidocaine did not influence isoflurane requirements, cardiopulmonary effects (other than a reduction in heart rate at some time points) or recovery compared to no preloading bolus.Clinical relevanceA loading dose of lidocaine prior to CRI does not confer any advantage in horses undergoing laparotomy for colic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号