首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Our study focuses on the physiological response and yield-quality performance of split-root potted Sangiovese grapevines under a partial root-zone drying (PRD) regime from pre-veraison to harvest by withholding water from one of the two pots and comparing the results to a well-watered control (WW). While predawn water potential (ψpd) tended to equilibrate in PRD with the soil moisture level of the wet pot, both stem (ψst) and mid-day leaf-water potential (ψl) were markedly lower in PRD as compared to WW vines, indicating that Sangiovese shows anisohydric response. On the other hand, the seasonal reduction of leaf assimilation rate (A) in PRD over the 6-week stress period versus WW was 16% as compared to a 41 and 25% for leaf stomatal conductance (gs) and transpiration (E), respectively. As a consequence, intrinsic WUE (A/gs) was markedly increased in the half-stressed vines, suggesting a response more typical of an isohydric strategy. Shoot growth was promptly checked in PRD vines, which had no limitation in yield and better grape composition as per soluble solids and total anthocyanins. These responses occurred in spite of sub-optimal leaf photosynthesis rates and lowered leaf-to-fruit ratio and qualify Sangiovese as a good candidate for adapting to regulated deficit irrigation strategies.  相似文献   

2.
A greenhouse study was conducted to evaluate the ameliorative effects of zinc (0, 5, 10 and 20 mg Zn kg−1 soil) under saline (800, 1600, 2400 and 3200 mg NaCl kg−1 soil) conditions on pistachio (Pistacia vera L. cv. Badami) seedlings’ photosynthetic parameters, carbonic anhydrase activity, protein and chlorophyll contents, and water relations. Zn deficiency resulted in a reduction of net photosynthetic rate and stomatal conductance. The quantum yield of photosystem II was reduced at zinc deficiency and salt stress. Zinc improved plant growth under salt-affected soil conditions. Increasing salinity in soil under Zn-deficient conditions, generally decreased carbonic anhydrase activity, protein, chlorophyll a and b contents. However, these adverse effects of salinity alleviated by increasing Zn levels up to 10 mg kg−1 soil. Under increasing salinity, chlorophyll a/b ratio significantly increased. Zinc treatment influenced the relationship between relative water content and stomatal conductance, and between leaf water potential and stomatal conductance. It concluded that Zn may act as a scavenger of ROS for mitigating the injury on biomembranes under salt stress. Adequate Zn also prevents uptake and accumulation of Na in shoot, by increasing membrane integrity of root cells.  相似文献   

3.
The Andean seed crop quinoa (Chenopodium quinoa Willd.) is traditionally grown under drought and other adverse conditions that constrain crop production in the Andes, and it is regarded as having considerable tolerance to soil drying. The objective of this research was to study how chemical and hydraulic signalling from the root system controlled gas exchange in a drying soil in quinoa. It was observed that during soil drying, relative gs and photosynthesis Amax (drought stressed/fully watered plants) equalled 1, until the fraction of transpirable soil water (FTSW) decreased to 0.82 ± 0.152 and 0.33 ± 0.061, respectively, at bud formation, indicating that photosynthesis was maintained after stomata closure. The relationship between relative gs and relative Amax at bud formation was represented by a logarithmic function (r2 = 0.79), which resulted in a photosynthetic water use efficiency WUEAmax/gsWUEAmax/gs of 1 when FTSW > 0.8, and increased by 50% with soil drying to FTSW 0.7–0.4. Mild soil drying slightly increased ABA in the xylem. It is concluded that during soil drying, quinoa plants have a sensitive stomatal closure, by which the plants are able to maintain leaf water potential (ψl) and Amax, resulting in an increase of WUE. Root originated ABA plays a role in stomata performance during soil drying. ABA regulation seems to be one of the mechanisms utilised by quinoa when facing drought inducing decrease of turgor of stomata guard cells.  相似文献   

4.
Measurements of sap flux were carried out from May 2003 to March 2004 on 6 year-old irrigated olive trees of cultivar Chétoui cultivated at 6 m × 6 m spacing in Mornag (36.5°N, 10.2°E), Northern Tunisia. The aim of the research is to evaluate the sap flux technique for its applicability with young olive trees and to estimate their water consumption under field conditions. Three thermal sensors were implanted in the trunk of three olive trees following to North (N), South-East (SE) and South-West (SW) directions. Data were analyzed following to the procedure of Do and Rocheteau (2002b) that derives from Granier (1985). In this paper, data on probe calibration, wood conductive section estimation and sap flux spatial-variability are presented and discussed. Relationships between sap flux measurements, climate and soil water status have been investigated. Results show that sap flux values vary with sensor position, soil water content and climate demand. Good agreements between sap fluxes and global radiation and reference evapotranspiration measurements were observed. Some variations were recorded under water shortage conditions. Maximum and minimum daily fluxes of 4.5 l and 41.0 l per tree were found in February 2003 and in August 2003, respectively. Maximum transpiration represented only 53% of the crop evapotranspiration as determined by the F.A.O. method.  相似文献   

5.
There has been limited research on measuring potential differences in leaf gas exchange of Arracacha (Peruvian parsnip, Arracacia xanthorriza Bancroft) cultivars, as affected by different environments, as well as its relation to storage root-yield. The present paper reports field measurements of leaf CO2 assimilation rates (A) for five contrasting cultivars grown at two different high-altitude locations. Using a design of plots chosen at random with three repetitions, commercial root production was determined in the two locations at different altitude (1580 and 1930 m). Daily leaf gas exchange was repeatedly monitored with a portable open-mode infrared gas analyzer at different times in both locations during the growth cycle. Root-yield, leaf area and dry weight were measured. Significant differences in leaf photosynthetic rate and in specific leaf area (SLA) were observed among cultivars. Cultivars with high SLA, had high CO2 assimilation. Mean (An) and total (Atot) of CO2 assimilation and SLA were significantly correlated with storage root-yield across cultivars and locations. The three cultivars with the greatest commercial root production also had the highest maximum values for A and the highest specific leaf area, indicating that these two parameters can be used to select for highly productive cultivars of A. xanthorriza.  相似文献   

6.
Callistemon is an Australian species used as ornamental plant in Mediterranean regions. The objective of this research was to analyse the ability of Callistemon to overcome water deficit in terms of adjusting its physiology and morphology. Potted Callistemon laevis Anon plants were grown in controlled environment and subjected to drought stress by reducing irrigation water by 40% compared to the control (irrigated to container capacity). The drought stress produced the smallest plants throughout the experiment. After three months of drought, the leaf area, number of leaves and root volume decreased, while root/shoot ratio and root density increased. The higher root hydraulic resistance in stressed plants caused decreases in leaf and stem water potentials resulting in lower stomatal conductance and indicating that water flow through the roots is a factor that strongly influences shoot water relations. The water stress affected transpiration (63% reduction compared with the control). The consistent decrease in gs suggested an adaptative efficient stomatal control of transpiration by this species, resulting in a higher intrinsic water use efficiency (Pn/gs) in drought conditions, increasing as the experimental time progressed. This was accompanied by an improvement in water use efficiency of production to maintain the leaf water status. In addition, water stress induced an active osmotic adjustment and led to decreases in leaf tissue elasticity in order to maintain turgor. Therefore, the water deficit produced changes in plant water relations, gas exchange and growth in an adaptation process which could promote the faster establishment of this species in gardens or landscaping projects in Mediterranean conditions.  相似文献   

7.
The effect of brassinosteroid (BR) on relative water content (RWC), stomatal conductance (gs), net photosynthetic rate (PN), intercellular CO2 concentration (Ci), lipid peroxidation level, activities of antioxidant enzymes and abscisic acid concentration (ABA) in tomato (Lycopersicon esculentum) seedlings under water stress was investigated. Two tomato genotypes, Mill. cv. Ailsa Craig (AC) and its ABA-deficient mutant notabilis (not), were used. Water stress was achieved by withholding water and both the AC and not plants were treated with 1 μM 24-epibrassinolide (EBR) or distilled water as a control. The RWC, gs, Ci and PN were significantly decreased under water stress. However, EBR treatment significantly alleviated water stress and increased the RWC and PN. EBR application also markedly increased the activities of antioxidant enzymes (catalase, ascorbate peroxidase and superoxide dismutase) while it decreased gs, Ci and the contents of H2O2 and malondialdehyde (MDA). Interestingly, ABA concentration in AC and not plants was markedly elevated after EBR treatment although the increasing rate and amplitude of ABA in not plants treated by EBR was significantly lower than those in AC plants. Our study suggested that amelioration of the drought stress of tomato seedlings may be caused by EBR-induced elevation of endogenous ABA concentration and/or the activities of antioxidant enzymes.  相似文献   

8.
To study the response of tomato (Solanum lycopersicum cv. Rio Grande) to salinity, the effect on plant growth, water relations, stomatal conductance and Chlorophyll fluorescence was investigated. Tomato plants were grown in peat culture under controlled conditions and submitted during 28 days to saline stress ranging from 0 to 25, 50, 100, 150 and 200 mM of NaCl. At the end of the experiment period, plant growth was significantly decreased with increasing salinity.  相似文献   

9.
Drought and salinity are two of the most important factors limiting the lemon yield in south-eastern Spain. The effects of drought and salt stress, applied independently, on water relations, osmotic adjustment and gas exchange in the highest evapotranspiration period were studied to compare the tolerance and adaptive mechanisms of 13-year-old ‘Fino 49’ lemon trees, in immature and mature leaves. The study was carried out in an experimental orchard located in Torre Pacheco (Murcia). Three treatments were applied: Control, well-irrigated; drought-stress (DS), non-irrigated from 15th May to 7th July and salinity, irrigated with 30 mM NaCl from 1st March to 7th July. At the end of the experiment, only DS trees showed a decreased leaf stem water potential (Ψmd). Under DS conditions, both types of leaf lost turgor and did not show any osmotic or elastic mechanism to maintain leaf turgor. Osmotic adjustment was the main tolerance mechanism for maintenance of turgor under salt stress, and was achieved by the uptake of Cl ions. Gas-exchange parameters were reduced by DS but not by salinity, stomatal closure being the main adaptive mechanism for avoidance of water loss and maintenance of leaf turgor. Salinity gave rise to greater Cl accumulation in mature than in immature leaves. The increase of proline in immature leaves due to DS indicates greater damage than in mature leaves.  相似文献   

10.
A tomato (Solanum lycopersicum L.) crop was grown in four greenhouses during the dry season 2005/06 in Central Thailand. Sidewalls and roof vents of two greenhouses were covered with nets and these greenhouses were mechanically ventilated when air temperature exceeded 30 °C (NET). The other two greenhouses were covered with polyethylene film and equipped with a fan and pad cooling system (EVAP). Overall mean air temperature was significantly reduced by 2.6 and 3.2 °C (day) and 1.2 and 2.3 °C (night) in EVAP as compared to NET and outside air, respectively. Temperature maxima in EVAP averaged about 4 °C lower than in NET and outside. The relative humidity was around 20 and 30% (day) and 10 and 15% (night) higher in EVAP than in NET or outside, respectively. Vapour pressure deficit averaged 0.25 kPa in EVAP, 1.03 kPa in NET and 1.48 kPa outside. The crop water-consumption was significantly lower in EVAP (1.2) than in NET (1.8 L plant−1 day−1), which is ascribed to reduced transpiration in EVAP. Total fruit yield was similar in NET (6.4 kg plant−1) and EVAP (6.3 kg plant−1). The quantity of undersized (mostly parthenocarpic) and blossom-end rot (BER)-affected fruits was reduced in EVAP. However, the proportion of marketable yield was significantly higher in NET (4.5 kg plant−1) than in EVAP (3.8 kg plant−1), owing largely to an increased incidence of fruit cracking (FC) in EVAP. Higher FC but lower BER incidence coincided with higher fresh weight and Ca concentration in the fruits in EVAP. It is concluded that in regions with high atmospheric relative humidity evaporative cooling without technical modifications allowing dehumidification will not improve protected tomato production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号