首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In the present study, the effects of kinetin (KN; 10 and 100 μM) application under manganese toxicity (Mn; 50, 100 and 250 μM) were investigated, on growth, photosynthetic pigments, total protein, total nitrogen, ammonium (NH4+) content, NH4+ assimilating enzymes and antioxidant system in pea seedlings. The exposure of pea seedlings to Mn and 100 μM of KN alone and in combination, caused decrease in growth, photosynthetic pigments, total protein and total nitrogen contents, and an increase in NH4+ content. However, application of 10 μM of KN together with Mn reduced the Mn toxicity symptoms, promoted the growth of seedlings and led to the decrease in NH4+ content compared to Mn treatments alone. The root and shoot activities of glutamine synthetase (GS), glutamate oxoglutarate aminotransferase (GOGAT) and catalase (CAT) were decreased while glutathione reductase (GR) and dehydroascorbate reductase (DHAR) activities exhibited differential responses when pea seedlings were exposed to Mn and 100 μM of KN. However, under similar treatments, activities of glutamate dehydrogenase (GDH), superoxide dismutase (SOD) and ascorbate peroxidase (APX) in root and shoot were increased. It was noticed that addition of 10 μM of KN together with Mn, caused significant stimulation in activities of enzymes of NH4+ assimilation and antioxidant defense system even over their respective control values. Non-enzymatic antioxidants (ascorbate and glutathione) in root and shoot of pea seedlings exposed to Mn stress were significantly increased by the addition of 10 μM of KN. Therefore, ameliorative effect of 10 μM of KN against Mn toxicity was observed. This study thus suggests that 10 μM of KN appreciably improves Mn tolerance of pea seedlings under Mn toxicity while reverse effects were exhibited by 100 μM of KN.  相似文献   

2.
A novel micropropagation protocol was established for Capsicum frutescens L. cv. ‘Uchithi’, a pungent chilli cultivar, through induction of axillary shoot proliferation of in vitro raised plantlets by decapitation and using the axillary shoots as explants for multiple shoot bud induction. About 2–6 axillary shoots were induced within 2 weeks when 4-week-old in vitro raised plantlets were decapitated. The axillary shoot-tip explants produced multiple shoot buds when cultured on Murashige and Skoog's (MS) medium containing 8.8–44.4 μM 6-benzylaminopurine (BAP) or 9.3–46.7 μM kinetin alone or 8.8–44.4 μM BAP with 4.6 μM kinetin or 5.7 and 28.5 μM indole-3-acetic acid (IAA). Maximum number of shoots (5.6) were induced on medium containing 22.2 μM BAP in combination with 4.65 μM kinetin. The separated shoots rooted and elongated on medium containing 2.8 μM IAA or 2.4–4.9 μM indole-3-butyric acid (IBA). Rooted plantlets were successfully established in the soil. Efficient mass multiplication of this important food crop was achieved.  相似文献   

3.
Cardiospermum halicacabum Linn. is an important medicinal twining herb belonging to the family sapindaceae. A method for rapid micropropagation of C. helicacabum through plant regeneration from leaf and nodal explant derived calli has been developed. The nodal and leaf segments were cultured on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxy acetic acid (2,4-D; 0.5–9 μM) for callus induction. Callus production was highest at 5 μM 2,4-D where 96 and 90% of cultured leaf and nodal cuttings produced callus, respectively. The viable calli were maintained at reduced concentration of 2,4-D (2 μM). These calli were transferred to MS medium supplemented with various concentrations of 6-benzyladenine (BA; 2–10 μM) or kinetin (2–10 μM) alone or in combination with indole 3-acetic acid (IAA; 0.2–1.0 μM) for shoot regeneration. The addition of low concentrations of IAA into BA or kinetin containing medium significantly increased the frequency of shoot regeneration in both nodal cuttings and leaf-derived calli. The highest number of adventitious shoots (28 per callus) formed at 8 μM Kin and 0.5 μM IAA. For rooting of the shoots, half-strength MS medium supplemented with different concentrations of indole 3-acetic acid, indole 3-butyric acid (IBA) and (alpha)-naphthalene acetic acid (NAA) 1–5 μM was tried. The optimal result was observed on half-strength MS medium supplemented with 2.5 μM IBA, on which 91% of the regenerated shoots developed roots with an average of 4.2 roots per shoot within 45 days. The in vitro raised plantlets were acclimatized and transferred to soil with 90% success. This in vitro propagation protocol should be useful for conservation as well as mass propagation of this medicinal plant.  相似文献   

4.
Shoots regenerated adventitiously on epicotyl segments from in vitro seedlings of Emblica officinalis var. ‘Kanchan’. Epicotyls derived from 2-week-old aseptic seedlings were most responsive and produced a maximum number of 303 shoots per explant in Murashige and Skoog (1962) medium (MS) augmented with 8.8 μM N6-benzyladenine (BA) + 1.425 μM indole-3-acetic acid (IAA). Shoots readily elongated in MS lacking growth regulators and rooted in half-salt-strength MS (1/2 MS) supplemented with indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA). The highest rooting response was recorded in 1/2 MS containing 14.7 μM IBA. Plantlets were acclimatized inside the green house and 80% of the plantlets survived on transfer to garden soil.  相似文献   

5.
An adventitious shoot regeneration and rooting protocol was developed for green ash (Fraxinus pennsylvanica) seedling explants. The best regeneration medium for freshly isolated hypocotyls and cotyledons was Murashige and Skoog (MS) supplemented with 13.3 μM 6-benzylaminopurine (BA) plus 4.5 μM thidiazuron (TDZ), and 22.2 μM BA plus 4.5 μM TDZ, respectively. Seventy-six percent of hypocotyl segments and 24% of cotyledon segments produced adventitious shoots, with a mean number of adventitious shoots per explant of 2.7 ± 0.5 and 2.3 ± 1.3, respectively. The effect of in vitro-germinated seedling age on adventitious shoot regeneration from hypocotyl and cotyledon explants was also studied. Results showed that hypocotyl and cotyledon explants from freshly isolated embryos exhibited a higher organogenesis potential than 4–15-day-old explants. Adventitious shoots from hypocotyls and cotyledons were established as proliferating shoot cultures following transfer to MS basal medium with Gamborg B5 vitamins supplemented with 10 μM BA plus 10 μM TDZ. A high rooting percentage (73–90%) was achieved when in vitro shoots were rooted on woody plant medium (WPM) containing 4.9 μM indole-3-butyric acid (IBA) and IAA (0, 2.9, 5.7, or 8.6 μM) with a combination of 10-day dark culture period followed by a 16-h photoperiod. The highest rooting (90%) of adventitious shoots or the number of roots per shoot (3.0 ± 1.0) was obtained on WPM with 4.9 μM IBA plus 5.7 μM IAA. Rooted plants were successfully acclimatized to the greenhouse and 100% survived after overwintering in cold storage. This regeneration system using hypocotyls and cotyledons provides a foundation for Agrobacterium-mediated genetic transformation of F. pennsylvanica for resistance to the emerald ash borer.  相似文献   

6.
Seed dressing with fungicides adversely affects the structure and function of beneficial soil microbial communities and consequently crop yield. This study was aimed to evaluate the impact of technical-grade fungicide tebuconazole on plant growth promoting potentials of tebuconazole-tolerant Rhizobium isolate MRP1. The performance of the isolate MRP1-inoculated pea plants grown in tebuconazole treated soils was also assessed. Generally, the three concentrations [100 (recommended dose), 200 and 300 μg kg−1 soil] of tebuconazole when used alone, adversely affected the growth, symbiosis, grain yield and nutrient uptake by pea plants. Concentration dependent phytotoxicity of tebuconazole was observed for all the measured parameters. On the contrary, fungicide tolerant Rhizobium sp. MRP1 in the presence of fungicide increased the measured parameters at all tested concentrations. As an example, when inoculant MRP1 was also used with 300 μg tebuconazole kg−1 soil, it substantially increased the root nitrogen, shoot nitrogen, root P, shoot P, seed yield and grain protein by 20, 19, 50, 31, 15 and 7%, respectively, when compared with uninoculated plants grown in fungicide-treated soils. The study suggests that the plant growth promoting Rhizobium sp. MRP1 can be used as bacterial inoculant to increase the production of pea in soils polluted with fungicides.  相似文献   

7.
Organogenic callus induction and high frequency shoot regeneration were achieved from cotyledon explants of cucumber. About 86.2% of cotyledon explants derived from 5-day-old in vitro raised seedlings produced green, compact nodular organogenic callus in MS medium containing NAA (2.69 μM) and BA (4.44 μM) after two successive transfers at 20 days interval. Adventitious shoots were produced from the organogenic callus when it was transferred to MS medium supplemented with NAA (1.34 μM), BA (8.88 μM), zeatin (0.91 μM) and l-glutamine (136.85 μM) with shoot induction frequency of 75.6%. Shoot proliferation occurred when callus with emerging shoots was transferred in the same medium at an interval of 20 days. Shoots (1.0 cm length) were excised from callus and were elongated in MS medium fortified with GA3 (1.44 μM) and BA (4.44 μM). The elongated shoots were rooted in MS medium supplemented with IBA (3.42 μM) and BA (4.44 μM). Rooted plants were acclimatized in green-house and subsequently established in soil with a survival rate of 80%. This protocol yielded an average of 35 shoots per cotyledon explant in a culture duration of 120–140 days.  相似文献   

8.
An effective protocol was developed for in vitro regeneration of Psoralea corylifolia through enriched cotton moistened-liquid (CML) and solid culture systems. Prolific adventitious shoot buds were achieved from hypocotyl explants of 2-week-old cultures on enriched CML Phillips and Collins (L2) medium supplemented with different concentrations and combinations of thidiazuron (TDZ), benzyladenine (BA), kinetin (KIN), naphthalene acetic acid (NAA), indole-3-acetic acid (IAA) and bavistin (BVN). Combination of 2 μM TDZ, 0.5 μM BA, 100 mg l−1 BVN and 2 μM NAA produced a greater number of adventitious shoots per explant (93.5) when transferred to half-strength enriched solid L2 medium. Regenerated shoots (40–50 mm in length) were exposed simultaneously for rooting as well as hardening in moistened (1/8-L2 basal salt solution with 5 μM IBA and 100 mg l−1 BVN) soil mixture and vermiculite (3:1, v/v). The plants were subsequently established in the field. The survival percentage differed with seasonal variations.  相似文献   

9.
Somatic embryos (SEs) were induced from apical sections of the lateral roots of spinach seedlings (1 cm), which were cultivated on solid Murashige and Skoog (MS) medium with 20 μM α-naphthaleneacetic acid and 5 μM gibberellic acid. Apical shoots of the same lines were isolated and cultivated on plant growth regulator-free medium. The regeneration capacities of seedlings randomly chosen from a population were quite low and variable, and only 4 out of 30 lines responded at the frequency of 85–100%, with 6.96–9.96 SEs per explant and up to 347 SEs per seedling over a 12-week period. These SEs were isolated and maintained on medium with 5 μM kinetin. Plants derived from seedlings’ apical shoot and SEs self-fertilised in vitro and set seeds, and these seedlings (S1) were used to induce regeneration. Similarly, S2–S4 seedlings were obtained and the regeneration capacities of 23 S1, 23 S2, 17 S3 and 5 S4-seedlings were compared to parental lines. Of these, four S3 and S4 lines with extremely high regeneration capacities were selected. These lines exhibited 78–139 fold higher embryo-forming capacities than the mother plant, and produced 38.9–68.3 SEs per explant and 1339–2181 SEs per seedling during the same time period. In addition, the process of somatic embryogenesis began 2–4 weeks earlier in these lines, and root explants taken from SE-derived plants of these lines retained high and stable regeneration capacities, and therefore may be ideal material for genetic transformation.  相似文献   

10.
The present study was carried out to assess the effect of explant preparation and sizing for in vitro micropropagation of Aloe vera L. The stem nodal explants and shoot tips were cultured on modified Murashige and Skoog's medium (1962) supplemented with different concentrations of 6-benzylaminopurine (BA), kinetin (KIN), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and α-naphthaleneacetic acid (NAA) either singly or in combination. The best media composition was found to be MS medium supplemented with IAA (11.42 μM), IBA (9.8 μM) and BA (8.88 μM). The explants were divided into 2 sets, with and without ensheathing leaf base. Explant sizing, pruning and retention of mother tissue was highly significant in induction of multiple shoots and roots. The stem nodal explants with leaf base performed much better than those without such covering. A very high number of shoots and roots grew from these explants. The rooted plantlets were successfully acclimatized and transferred to the green house conditions and finally to field conditions.  相似文献   

11.
Goldenseal (Hydrastis canadensis L.) is an endangered medicinal plant used to treat sore eyes and mouths, cold and flu and also as a dye. The objective of this study was to develop an efficient in vitro propagation protocol for goldenseal. Significantly more shoots (26 shoots per leaf explants) were induced on a medium containing 2.5 μM thidiazuron (TDZ) and 5.0 μM 1-naphthaleneacetic acid (NAA) than any other treatment. Sub-culturing regenerated shoots on a medium with 5.0 μM 6-benzylaminopurine (BA) induced the maximum rate of shoot multiplication. Growth of the regenerated shoots in a temporary immersion bioreactor resulted in significant increases in biomass, shoot height and shoot multiplication. The regenerated shoots from the temporary immersion bioreactor formed roots when transferred onto a medium with 1.0–2.0 μM indole-3-butyric acid (IBA). Regenerated whole plantlets were acclimatized and maintained in standard greenhouse conditions for further growth. The regeneration protocol developed in this study provides a basis for germplasm conservation and for further investigation of this rare, medicinally important species.  相似文献   

12.
Since cucumber plants are mostly discarded as large waste after crop harvesting, allelopathy of cucumber plants was investigated for possible weed management options and utilization of the waste. Two potent growth inhibitory substances were isolated from an aqueous methanol extract of cucumber (Cucumis sativus L. cv. Phung Tuong) plants. These substances were determined as 9-hydroxy-4,7-megastigmadien-9-one (HMO) and (6S,7E,9S)-6,9,10-trihydroxy-4,7-megastigmadien-3-one (THMO) by the analysis of MS, 1H NMR spectra and optical rotation. HMO inhibited the growth of cress (Lepidium sativum L.) and Echinochloa crus-galli (L.) Beauv seedlings at concentrations greater than 0.3 and 1 μM, respectively. THMO inhibited the growth of cress and E. crus-galli seedlings at concentrations greater than 1 and 3 μM, respectively. The concentrations required for 50% growth inhibition on roots and shoots of cress and E. crus-galli were 2.4–29.3 μM for HMO and 8.1–52.2 μM for THMO. The endogenous levels of HMO and THMO in cucumber plants were 31.8 and 43.5 μg g−1 dry weight, respectively. These results suggest that HMO and THMO may be the causal factors for the growth inhibitory effect of cucumber plants. Therefore, cucumber plants may be potentially useful for weed management options in an agricultural setting, such as a cover crop and soil admixture, which should be investigated further in the field.  相似文献   

13.
Micropropagation studies on Zamioculcas zamiifolia Engl. (ZZ) as to the position and orientation of leaflet explants and plant growth regulators were carried out. Explants consisted of leaflet lamina from the basal or apical part of the leaflet with or without petiolule or midrib that were placed vertically into the medium except for the explants with midrib from the basal part of the leaflet that were placed horizontally as well. The explants were cultured on solid Murashige and Skoog medium (MS) with 30 g l−1 sucrose, supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) at 2 or 4 mg l−1 and 6-benzyladenine (BA) at 0 or 4.44 μM in all (four) possible combinations, or with 1-naphteleneacetic acid (NAA) at 0 or 5.38 μM and BA at 0 or 4.44 μM in all (four) possible combinations (establishment medium). The morphogenic response was direct from all types of leaflet explants and varied only with respect to different plant growth regulators of the medium: 2,4-D combined or not with BA formed somatic embryo-like structures; NAA alone produced tubers and roots; BA alone resulted mainly in leaves; NAA combined with BA produced mainly roots. The intensity of the response varied accordingly to the explant type and orientation. Explants with petiolule or midrib from the basal part of the leaflet showed the highest morphogenic response compared to explants without petiolule or midrib or to explants from the apical part of the leaflet, in all the plant growth regulator combinations used. Explants with midrib from the basal part of the leaflet placed vertically into the media showed higher morphogenic response compared to those placed horizontally on the medium surface. With the objective to regenerate plantlets, explants were subcultured on MS with NAA and BA at various concentrations based on the explant response in the establishment medium, taking into consideration the initial explant type. The initial explant type did not affect the response in the subculture. Most plantlets (a tuber with roots and one leaf with one pair of leaflets) were produced by explants with embryo-like structures induced in a medium with only 2,4-D. Explants with tubers induced in a medium with NAA gave plantlets at 65–85% when subcultured in a medium with 4.44 μM BA alone or in combination with 2.69 μM NAA. Explants with leaves induced in a medium with BA and explants with roots induced in a medium with NAA and BA gave plantlets at low percentages (20–40%). The best response was produced by explants with embryo like structures induced in a medium with only 2,4-D which gave plantlets at 100% when subcultured in the medium with 2.69 μM NAA and 2.22 μM BA. Plantlets raised in different treatments were transplanted ex vitro after 22 weeks and exhibited 80–100% survival.  相似文献   

14.
The effects of nitrogen (N) fertigation rates on levels of nitrogenous and carbohydrate compounds were determined in young ‘Fuyu’ persimmon trees. Total N amounts of 0 g, 10 g, 20 g, 30 g, and 40 g were distributed, respectively, to a 50-L pot by fertigation as different volumes of 1% (w/v) urea solution every week from May 15 to September 25. Fruits were sampled on November 2, and shoots and roots on November 17. High N fertigation rates significantly increased the N and amino acids in all the tree parts and protein in fruits and shoots. In contrast, the concentration of soluble sugars significantly decreased in the fruits and perennial parts as the N rate increased from 10 g to 40 g. A notable reduction of starch was also found in the shoots and roots of trees with high N fertigation rates. The percentage of shoots died due to cold injury during the winter was the highest at the 0 g N rate; however, it was 2.3-fold greater at the 40 g N rate as compared to the 10 g N rate. We concluded that high N fertigation could interfere not only with sugar accumulation of fruits through increased N metabolism, but also reserve carbohydrates of perennial organs.  相似文献   

15.
Apical and axillary buds from a high yielding, early fruiting elite tree (more than 20 years old) were cultured in woody plant medium (WPM) supplemented with 0.9 μM N6-benzyl adenine (BA). Multiple shoots were obtained on WPM basal medium containing 8.9 μM BA and 0.5 μM thidiazuron (TDZ). Elongation of axillary shoots was obtained in half-strength WPM medium supplemented with 0.4 μM BA. For root initiation, the elongated shoots were transferred to half strength WPM basal medium containing 2.5–245 μM indole-3-butyric acid (IBA) or 2.7–268.5 μM α-naphthaleneacetic acid (NAA) or the shoots were subjected to 2.5–53.9 mM IBA, 2.7–59.1 mM NAA dip for (30 s–30 min) and then transferred to half strength WPM basal medium. However, rooting was never achieved even after 2 months of culture.  相似文献   

16.
The purpose of this work was to acquire more information on the capacity of in vitro grown quince (Cydonia oblonga Mill.) leaves to simultaneously regenerate somatic embryos, adventitious roots and shoots, and to evaluate the variations induced on regeneration response by treatments of different length with growth regulators. After 2 days of liquid treatment with 2,4-dichlorophenoxyacetic acid, the leaves were cultured for 0, 3, 6, 9, 12, 15, 18 and 21 days on gelled growth medium containing the basal components of Murashige and Skoog and kinetin (Kin) 4.5 μM + naphthaleneacetic acid (NAA) 0.5 μM. At the end of each treatment period, the leaves were cultured on a transfer medium in the absence or in the presence of a growth regulator combination represented by N6-benzylaminopurine (BA) 2.66 μM + gibberellic acid 0.58 μM + indole-3-butyric acid 0.3 μM. The culture period for all the treatments was fixed to 52 days.  相似文献   

17.
Procedures for cold storage of in vitro cultures can delay subculturing, reducing production costs and risks of contamination and somaclonal variation. The present work investigates the effects of media with sorbitol (116.8 mM, medium SO) or sucrose (58.4 mM) alone (medium SU), or the latter in combination with mannitol (58.4 mM, medium M) on 7-month storage at 5 °C of apricot shoots, cv San Castrese and Boreale. Shoots in SO survived in lower percentages and grew less than in the other treatments during storage, and died in large numbers after transfer to standard culture conditions. In comparison to other treatments, survival was 100% in the presence of M and both shoot weight and number of surviving proliferated axillary shoots was increased. Moreover, M improved regrowth compared to SU under standard culture conditions. The SOD and CAT activity confirmed the higher stress of shoots stored in SO than controls, and in contrast, the low stress of shoots in M.  相似文献   

18.
The influence of IAA (1.0 mg dm−3), and IBA (1.16 mg dm−3), on the development of highbush blueberry (Vaccinium × covilleanum But. et Pl.) ‘Herbert’ in vitro shoot cultures was examined. Depending on the kind of auxin and 2iP concentration in vitro cultures consisted of various number of axillary (AX) and adventitious (AD) shoots. Three different categories of AD shoots were found: leaf shoots (AD-L), node-adjoin shoots (AD-P), and base-adjoin shoots (AD-M, madshoots). The AX shoots were the least habituated (towards auxins, cytokinins and vitamins) whereas the AD-M shoots (madshoots) the most. In comparison to IAA, IBA caused dying or callusing higher number of initial explants. However, IBA generally suppressed development of AD shoots, especially madshoots whereas slightly weakened multiplication of AX shoots. IBA significantly enhanced elongation of AX shoots also. Axillary shoots obtained on IBA-media had relative long internodes and rigid, well-developed leaves. The adventitious shoots, especially base-adjoin (AD-M) ones, were easily distinguishable as were more thin and fragile, more or less vitrified, and had short internodes and smaller, sometimes unfolded leaves. Development of blueberry in vitro cultures on auxin-free and IAA-supplemented media was similar. AX shoots grown on such media resembled AD shoots. 2iP applied in higher doses along with IAA promoted much proliferation of AD than AX shoots. In contrast, 2iP applied in higher doses together with IBA stimulated significantly only growth of AX shoots whereas in general, development of adventitious shoots was not affected. Micropropagation carried out through routine method based on subculturing of shoot explants or shoot clumps on the medium supplemented with IAA (4 mg dm−3) and 2iP (10–15 mg dm−3) as well as stimulation of shoot elongation on the blank medium causes in fact the propagation of highbush blueberry through highly habituated adventitious madshoots. Replacement of IAA by IBA facilitates micropropagation of highbush blueberry cv. Herbert through axillary shoots.  相似文献   

19.
Protocols are outlined for the regeneration of Curcuma soloensis, an attractive tropical ornamental plant, from young vegetative bud explants. We used both direct and callus-mediated regeneration techniques to produce material suitable for mass propagation and the development of transgenic plants. During direct plantlet propagation, the presence of thidiazuron (TDZ) in the growing medium induced more than three times as many shoots as 6-benzylaminopurine (BA), with a mean of 18.7 shoots per explant on MS medium containing 2.5 μM TDZ compared to 5.0 shoots with 40 μM BA. Subsequently, the shoots rooted readily on MS basal medium that was free of plant growth regulators. During indirect plantlet regeneration, TDZ combined with BA and 2,4-dichlorophenoxyacetic acid (2,4-D) had significant effects on embryogenic callus induction and multiplication. The frequency of callus formation was 91.1% for explants cultured on MS basal medium supplemented with 2.5 μM TDZ, 2.0 μM BA and 1.2 μM 2,4-D. On average 7.1 shoots were produced per callus mass cultured on MS medium supplemented with 2.5 μM TDZ, 9.0 μM BA and 1.2 μM naphthaleneacetic acid (NAA). Regenerated shoots were transferred to MS medium supplemented with 2.5 μM TDZ, to produce multiple shoots. In vitro cultured plantlets readily acclimatized to greenhouse conditions, showing 100% survival rates in a sphagnum, perlite and sand (1:1:1) medium. These plants were transplanted into pots or planted in the field. The ex vitro acclimated plants grew vigorously and produced showy inflorescences 5–6 months after planting. The high-frequency of shoot multiplication and rapid flowering of tissue-cultured plants indicate that C. soloensis has great potential in the floricultural market.  相似文献   

20.
The effects of cytokinins, carbohydrate sources and cold pretreatment on the conversion of protocorm-like bodies (PLBs) to shoots were investigated for the enhancement of micropropagation of Dendrobium huoshanense C.Z. Tang et S.J. Cheng, an endangered medicinal plant in China. The effects of cytokinins and carbohydrate sources on the conversion of PLBs to shoots depended on their types and concentrations. The best results in terms of shoot development from PLBs occurred on 1/2 MS medium supplemented with 20 μM kinetin and 10 g l−1 maltose. Cold pretreatment at 10 °C for 1–2 weeks significantly enhanced the conversion of PLBs to shoots, and over 1300 shoots were obtained from one gram of PLBs after 3 months of culture. The developed shoots were rooted on growth regulator-free MS medium supplemented with 8 g/l banana paste to give complete plantlets, which were successfully acclimatized with a survival rate of approximately 65%. The results indicate that a suitable cold pretreatment (10 °C for 1 week) followed by the use of 20 μM kinetin and 10 g/l maltose in 1/2 MS medium would produce a large number of shoots from PLBs for plantlet regeneration of D. huoshanense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号