首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of photoperiod (12, 13, 14, 15 or 16 h), day temperature (12, 15, 18, 24 or 27 °C) and night temperature (6, 9 or 12 °C) and their interactions on flower and inflorescence emergence were investigated by exposing 4 week old runner plants of strawberry cvs. Korona and Elsanta during a period of 3 weeks. A daily photoperiod of 12 or 13 h resulted in the highest number of plants with emerged flowers. A photoperiod of 14 h or more strongly reduced this number, while no flowers emerged at a photoperiod of 16 h. Plants exposed to photoperiods of 12 or 13 h flowered earlier and had longer flower trusses. A day temperature of 18 °C and/or a night temperature of 12 °C were optimal for plants to emerge flowers and resulted in the shortest time to flowering. A night temperature of 6 °C strongly reduced the number of plants that emerged flowers, especially when combined with lower day temperatures. Photoperiod and temperature had no effect on the number of inflorescences, all flowering plants produced on average one inflorescence. The number of flowers on the inflorescence increased with decreasing day temperature and when photoperiod was raised from 12 to 15 h. In general, ‘Korona’ was more sensitive to photoperiod and temperature as ‘Elsanta’, and had a lower optimal day temperature for flower emergence. Results of this experiment may be used to produce high quality plant material or to define optimal conditions when combining flower induction and fruit production.  相似文献   

2.
The effects of photoperiod (10, 12, 16, 20 or 24 h), day-temperature (12, 15, 18, 24 or 30 °C), the number of short days (14, 21 or 28 days), plant age (4, 8 or 12 weeks) and their interactions on flower and inflorescence emergence were investigated in strawberry cv. Korona. No flowers emerged in plants exposed to photoperiods of 16, 20 or 24 h or to a short-day treatment for 14 days. All plants exposed to short days at daily photoperiods of 10 or 12 h for 21 days or longer, emerged flowers at temperatures between 12 and 18 °C. A further increase in temperature led to a drastic decrease in the total number of flowers per plant. A short-day treatment (10 or 12 h photoperiod) of 28 days resulted in highest numbers of inflorescences and flowers per plant, while a short-day treatment of 21 days resulted in the highest numbers of flowers per inflorescence. Complete flower induction was observed in only 4-week-old runner plants. The number of inflorescences and the number of flowers per inflorescence increased with plant age. However, the start of flowering was delayed with increasing plant age.  相似文献   

3.
The plants of two onion cultivars Sturon and Stuttgarter were raised from sets and placed in a growth room at 12 °C, a light flux density of 120 μmol m−2 s−1 and a 16 h photoperiod. Cultivar Stuttgarter took 195 days to initiate, whereas time for initiation in cv. Sturon was 201 days. After initiation the plants were transferred to wide range of photo-thermal regimes consisting of six set point temperatures (6, 10, 14, 18, 22 and 26 °C) and four photoperiods (8, 11, 14 and 17 h day−1). An overall mean temperature for all developmental stages under each photo thermal combination was 12.2, 12.4, 15.9, 17.8, 23 and 24.4 °C. Time to inflorescence appearance, spathe opening and floret opening decreased linearly as temperature and photoperiod increased. At low to mild temperatures (12.2–17.8 °C), longer photoperiod enhanced florets per umbel, whereas at higher temperatures (23–24.4 °C), the floret number declined with lengthening photoperiods. As the photoperiod extension in each temperature advanced inflorescence appearance, spathe opening and floret opening and this would be beneficial in a programme to accelerate seed production in onion.  相似文献   

4.
The flowering responses of Brunonia australis (blue pincushion) and Calandrinia sp. to vernalization, photoperiod, temperature and plant age were investigated to provide a foundation for manipulating flowering in these potential potted plants. Plants were vernalized at 4.8 °C for 0, 3 or 6 weeks at the plant age of 1–4 or 8–14 leaves. Following vernalization, plants were grown at 25/10 or 35/20 °C (day/night) under short days (11 h, ambient daylight averaged 380 ± 44 μmol m−2 s−1) or long days (16 h) provided by an additional 5 h night break (21:00–2:00 h at <4.5 μmol m−2 s−1 from incandescent lamps), for 85 days. This is the first work to investigate flowering of these ornamental species. Both species showed enhanced flowering following vernalization and a quantitative requirement for long days. The reduction of the time until the first visible inflorescence (Brunonia) or flower (Calandrinia) buds by 8–13 days was affected by vernalization for 3 or 6 weeks, respectively. Long days were effective for reducing the time to first visible floral bud and increasing the number of inflorescence or flowers per plant for both species. For Brunonia, LDs replaced vernalization when applied to plants with 1–4 leaves. Raising temperature from 25/10 to 35/20 °C increased the number of flowers per plant of Calandrinia by 2–2.5-fold for plants with 1–4 or 8–14 leaves respectively.  相似文献   

5.
This report describes advances in the anther culture of Zantedeschia aethiopica. Important factors for improvement as compared to the earlier procedure were: (1) using flowers from inflorescences developed at relatively low temperature during winter, (2) high temperature stress treatment at 32 °C for 2 days in the beginning of the culture, (3) use of Gamborg B5 as anther culture medium, and (4) addition of sucrose at high concentration of 8% in the culture medium. Plants were obtained via a callus phase. Frequency of anthers producing calli was around 4–5%. About 87% of the calli gave regenerants, of which 52% were haploid, 36% were diploid and the rest had other ploidy levels. In addition to chromosome counting, cytological examination of the microspore development and amplified fragment length polymorphism (AFLP) analysis of the regenerants showed that haploid as well as diploid plants originated from the microspores. Finally, 12 doubled haploid (DH) plants could be produced from each inflorescence. One quarter of the DHs equaled the original cultivar in growth vigor, while more than one third showed good fertility, indicating that inbreeding depression was not so severe in this heterozygous species. The improved protocol now enables production of sufficient number of DHs for application of haploid technology in genetic improvement and breeding of Z. aethiopica.  相似文献   

6.
Post-harvest performance of cut viburnum inflorescences was examined in the present study. Harvesting viburnum at three developmental stages resulted in significant differences on flower opening rate (FOR) and flower abscission rate (FAR), but not on vase life. Harvesting at Stage III (>50% open flowers) resulted in highest flower opening percentage, whereas harvesting at Stage I (10–30% open flowers) in significantly lower flower abscission percentage. Pulsing with 20 or 40 mg/l AgNO3 for 24 h extended vase life by 1.6 and 1.9 days, respectively, compared to the controls. Furthermore, flower abscission was significantly reduced after 20 or 40 mg/l AgNO3 treatments by 51 and 62%, respectively, compared to the controls. In contrast, vase solutions containing 100 mg/l DICA or 100 and 200 mg/l methanol did not extend vase life of cut viburnum inflorescences, but significantly reduced flower abscission. Vase solutions containing 1 or 2% (w/v) sucrose negatively affected vase life, flower opening and flower abscission of viburnum inflorescence. Post-harvest treatments with 1-MCP at 10 μl/l in an ethylene-free environment resulted in extension of vase life and in significant reduction of FAR and respiration rates compared to the controls. Vase life of 1-MCP treated inflorescences was increased by 4.2 days compared to the controls. FAR of 1-MCP treated inflorescences remained significantly lower from the second to the eighth day of the vase life period.  相似文献   

7.
8.
Plant florogenesis is determined by the interaction between the genetics of the individual plant and environmental factors. Flower initiation and development of many studied plant species require low temperatures. However, some geophytes form flowers within the bulb during the summer quiescence period and do not require low temperatures for florogenesis. Narcissus tazetta was employed to study, in detail, the stages of flower development during the summer period, with special emphasis on the effect of temperature on inflorescence initiation. The sequence of morphological processes occurring during floral initiation and development was observed by SEM. During 3 years, the bulbs were subjected to different storage temperatures during the summer, and records were taken of the percentage of apical meristems that shifted from vegetative to reproductive development. Flowering and inflorescence quality were recorded after planting. It was concluded that, under natural conditions, the temperature increase in June, during the growth of the mother plant, leads to the transition of the apical meristem to the reproductive stage. Floral initiation and reproductive development in N. tazetta is promoted by high temperatures with an optimum of 25 °C. Sub- and supra-optimal temperatures (20 and 30 °C) delayed differentiation, while lower temperatures (12 °C) inhibited florogenesis completely.  相似文献   

9.
High temperatures are known to reduce fruit size and fruit weight in strawberry, but cultivar differences in the response to high temperature stress during the reproductive stage up to the second inflorescence have not been sufficiently reported. We examined the effect of two day/night temperature regimes on fruit set and fruit growth in two cultivars, ‘Nyoho’ and ‘Toyonoka’. A high day/night temperature of 30/25 °C reduced the number of inflorescences, flowers, and fruits in both cultivars compared with plants grown at 23/18 °C. The percentage of fruit set in ‘Nyoho’ was not significantly different between the two temperature treatments, while that in ‘Toyonoka’ was much lower at 30/25 °C than at 23/18 °C. Days to ripening was shorter at 30/25 °C than at 23/18 °C, and no cultivar differences were observed. Fresh weight of primary, secondary, and tertiary fruits was greater at 23/18 °C than at 30/25 °C in both cultivars, and no cultivar differences were observed, except in tertiary fruits. The diameter of fruits from all positions was also reduced at 30/25 °C in both cultivars. Relative growth rates of fruits showed two peaks in both cultivars and in both temperature treatments. Both peaks appeared earlier at 30/25 °C than at 23/18 °C. Percentage of fruit set at 30/25 °C in the second inflorescence was also significantly lower in ‘Toyonoka’ than in ‘Nyoho’. These results indicate that high temperature stress negatively affects the reproductive process in strawberry and that plant response to high temperature stress is cultivar-related in such responses.  相似文献   

10.
One-year-old scale and stem bulblets of Lilium longiflorum Thunb. ‘Nellie White’ (Easter lily) were grown under constant and variable growth chamber conditions and greenhouse conditions to compare growth and development and bulb production. Eight temperatures regimes were established using the following: six growth chambers set to provide day/night temperature regimes of 30/26, 26/22, 22/18, 18/14, 14/10 and 10/6 °C; a seventh growth chamber (VAR) programmed to begin at 22/18 °C, then decline in three 4–5 week steps to 10/6 °C, and subsequently increase in three 4–5 week steps to 22/18 °C to simulate seasonal field temperatures in the coastal bulb production area of northern California and southern Oregon; and a double layer polyethylene greenhouse (GH) set to begin cooling at 22 °C and heating at 18 °C. Ten percent of the scale bulblets and 35% of the stem bulblets failed to develop shoots (“no-shows”). “No-shows” increased with increasing temperature with a significant number starting at 18/14 °C. The moderately high GH temperature also induced “no-shows”. Maximum basal bulb (the main planted bulb) weight occurred at 26/22 °C for both bulblet types. Scale bulblets not only produced heavier basal bulbs with a larger circumference than stem bulblets, but also produced heavier stem bulbs. Stem bulb formation and production was maximized in the range of 18/14–26/22 °C and in the GH for scale bulblets. Stem bulb production from stem bulblets did not differ from zero. Scale bulblets produced more basal and stem roots than the stem bulblets at the end of the early growth period, but there was no significant difference at the end of the study. Root fresh weight was greatest in the range of 14/10–18/14 °C and declined at higher or lower temperatures. The VAR and GH treatments had similar root weights to those at 18/14 °C. Shoot length was maximized at 22/18 °C for stem bulblets and in the GH and at 22/18 °C for scale bulblets. Stem plus leaf (shoot) fresh weight was not statistically different between bulblet types with the exception of an increased weight for stem bulblets grown at 22/18 °C. Scale bulblets in the GH had greater stem plus leaf weights than scale bulblets in the other temperature regimes. Shoot leaf number was highest in stem bulblets at 22/18 °C and in the GH. In these two temperature treatments, more leaves were produced by stem bulblets than scale bulblets. In all other treatments, there was no significant difference in leaf number. Bulblet type had no effect on number of flowers produced. Flower number was maximum in the range 10/6–22/18 °C, decreased at 26/22 °C and in the GH, and was absent at 30/26 °C. For bulb production, reduced flowering is desired since flowers are generally removed during the outdoor bulb production period. Meristem abortion, which also causes a desirable reduction in flowers, was greater in scale bulblets. It occurred at 26/22 °C and was greater at 30/26 °C. Scale bulbs produced the largest main bulbs, with a maximum yield at 26/22 °C.  相似文献   

11.
Worldwide, gibberellic acid (GA3) is used routinely to increase fruit number and size of seedless mandarins. The efficacy of seven combinations of GA3 concentrations and application times to maximize total yield and yield of commercially valuable fruit (diameter 57.2–76.2 mm) of ‘Nules’ Clementine mandarin (Citrus reticulata Blanco) was determined in a commercial orchard. GA3 applied during the period of intense flower abscission failed to reduce the total number of abscised flowers in both the light off- and heavy on-bloom years. No GA3 treatment reduced fruit abscission when trees were setting the low yield off-crop. However, all trees receiving GA3 in the high yield on-crop year had fewer abscised fruit than untreated control trees (P = 0.0188) and GA3 applied 10 days after 75% petal fall and in July increased the number of fruit retained on tagged branches >20% compared to control trees (P = 0.0005). Maximum air temperature was not related to flower or fruit abscission. In the off-crop year (548 fruit per untreated control tree), it was necessary to apply 15 or 25 mg L−1 GA3 at 60% bloom, 90% bloom, 75% petal fall and 10 days after 75% petal fall to significantly increase the number of fruit per tree and yield of commercially valuable fruit (kilograms and number per tree) (P < 0.0001) above that of control trees, with no reduction in total kilograms per tree. In the following on-crop year, it was better not to apply GA3: no treatment increased total yield or fruit size and five of seven GA3 treatments tested reduced total yield as kilograms and number of fruit per tree (P = 0.0003). The results provide strong evidence that GA3 efficacy is crop load-dependent and dictate that crop load should be considered when using GA3 to increase fruit set or fruit size of mandarins.  相似文献   

12.
The effects of temperature and ethylene on the quality of snapdragon flowers (Antirrhinum majus L. cvs. ‘Potomac Pink’ and ‘Rocket’) after harvest were investigated. The flowers were stored dry or wet at 6 temperatures ranging from 0 to 12.5 °C for 5 days. Vase life and gravitropic bending were measured at 20 °C after storage. Respiration rates of flowers at 8 different temperatures (0, 2.5, 5, 7.5, 10, 12.5, 15 and 20 °C) were measured continually using a computerized system. The respiration of cut snapdragon flowers increased exponentially as the temperature increased from 0 to 20 °C, with a mean Q10 of 2.6. The vase life of flowers of the ‘Potomac Pink’ cultivar stored dry at 0 °C was 10.8 days, similar to that of freshly harvested controls (10.6 days), and 4.4 days longer than that of flowers stored at 7.5 °C. When spikes were placed horizontally at 20 °C, growth became negatively gravitropic within 20 min. Bending was significantly higher than controls (stored vertically) in all flowers stored horizontally at temperatures above 5 °C. Vase life of flowers stored for 5 days at a range of temperatures then placed in an interior environment was directly correlated with respiration rate at the storage temperature. Wet storage of cut snapdragon flowers reduced the loss of quality at storage temperatures above 5 °C but the vase life of flowers stored in water at 12.5 °C was less than half that of flowers stored dry at 0 °C. Ethylene treatment caused 100% floret abscission which was prevented by pre-treatment either with 1-methycyclopropene (1-MCP) or with silver thiosulfate (STS), but neither of these inhibitors prevented gravitropic bending.  相似文献   

13.
Three experiments were conducted in growth chambers to observe effects of air and soil temperatures in early and mid-winter on flower development and morphology of satsuma mandarin (Citrus unshiu Marc. cv. Okitsu Wase) budded on trifoliate orange. Four year old trees were used in Experiments I and III, and one year old ones in Experiment II. In Experiments I and II, air and soil temperature treatments of 15/15, 15/30, 30/15 and 30/ 30°C were started on 16 December, 1988. The trees sprouted flowers within seven days at 30/30°C, 11 days at 30/15°C, 21 days at 15/30°C, and 33 days at 15/15°C, respectively. There were few flowers at 30/30°C, extremely few at 30/15°C and many at both 15/15°C and 15/30°C. The days required to flowering and the flowering period were longer at the low air temperature. The number of flowers per tree, the number of flowers per node and the sprouting rate were greater at the low air temperature. A combination temperature of 30/15°C greatly decreased sprouting rate, the number of flowers per node and the number of flowers per tree. It seems likely that the chilling requirement might not be satisfied by mid-December. The trees might continue to accumulate chilling temperature at 15°C in the growth chamber. The trees at the high air temperature developed smaller flowers and ovaries. At an air temperature of 15°C, higher soil temperature resulted in bigger flowers and ovaries. In Experiment III, temperature treatments of 25/15,25/25 and 25/30°C were imposed on 6 January, 1989. The trees at 25/15°C required longer days to sprout and to blossom than at 25/25 and 25/30°C. The last two treatments did not differ in their effects. Soil temperature treatments did not result in significant effects on flower morphology, when they were applied after the chilling requirement was satisfied.  相似文献   

14.
The efficiency of different temperature cycles in inducing budburst of one-year-old shoots of the apricot cultivar ‘Palsteyn’ from dormancy was evaluated. Three replications of shoots were collected during two consecutive years from adult trees, following the accumulation of different amounts of chilling in the field. Thereafter, shoots were exposed to different temperature cycles in growth chambers, for 60 days. The temperature treatments included a continuous temperature of 5 °C; daily temperature cycles of 19/5 h at 5/15 °C, at 5/20 °C, and at 5/25 °C; and the same temperature cycles for the remainder of the 60-day period, after pretreatment at 5 °C for 30 or 45 days. After the temperature treatments, shoots were forced at 25 °C until budburst. The mean time to budburst (MTB) (in days) of lateral vegetative, terminal vegetative and reproductive buds was evaluated. The efficiency of the different treatments was greatly influenced by the date on which shoots were cut. High temperatures had a more positive effect on the reduction of MTB when chilling accumulation had occurred in the field instead of the growth chamber. After partial chilling accumulation in the field, high temperatures (25 °C) combined with low temperatures are more efficient than cycles of moderate temperatures (15 or 20 °C) to induce an earlier budburst. In view of these results, a parallel accumulation of both chilling and heat requirements after partial chilling accumulation is suggested. The application of these results could assist in the development of more accurate models for the prediction of the overcoming of dormancy and blooming.  相似文献   

15.
Energy utilization for heating is one of the most expensive greenhouse climate control operations. The temperature set-point is determined by many interrelated environmental, physiological, and economic factors but is fundamentally driven by the required growth rate of the plant or crop for quality and profitability. Temperatures are maintained to maximize production and affect timing of harvest of greenhouse-grown crops. In general, winter greenhouse environments for most cut-flower roses are heated to a target temperature of 16–18 °C. For rose, such temperature targets are based on grower experience along with horticultural research and should be considered a compromise across all factors. In the current research we studied the concept of “potential growth rate” (PGR), based on a thermodynamic growth model and how PGR relates to the typical temperature recommendation (TTR) for set-points for greenhouse heating and cooling in commercial horticultural production. PGR of specific growing organs (leaves, shoot tips, roots, etc) can be deduced using calorespirometric measurements in relation to various environmental factors such as temperature effect on biomass production. This research consisted of two facets: (1) determination of cultivar-specific alternate TTRs based on calorimetric PGR measurement and then (2) testing these TTRs in greenhouse rose flower production. The results of this study suggested that TTRs for the cultivar ‘Kardinal’ can be lowered at the time of bud emergence, when this cultivar can tolerate a lower temperature. Also, since the cultivar ‘Milva’ can tolerate lower temperature at time of leaflet unfolding, the current TTR can be adjusted to reflect this. We investigated a set of alternate TTRs by growing rose plants on movable carts and shifting them to various pre-determined night temperature conditions. During the relevant growing stages, half of the plants were given a cold night temperature (14 °C) treatment, while control plants were left in the normal greenhouse temperature (18 °C). This procedure was repeated for three flushes of flowering rose shoots. Flower shoots were counted and weighed (fresh and dry); shoot length was measured several times per week. It was found that the predictions were valid and (with one exception) no significant effect on the number of flowers, their quality or biomass was caused by this procedure. The implication of this work is that heating cost can be reduced for some rose cultivars by allowing night temperatures to be lower than the typical recommendations for those cultivars that show high metabolic activity at such cooler conditions.  相似文献   

16.
The state of Morelos, Mexico has gradually become an important producer of gladiolus. Some preconditioning treatments of corms are empirically done causing uneven emergence and low quality of flowers. In this investigation, before planting, gladiolus corms var. ‘Blanca Borrego’ were dipped in chitosan (chitosan reagent and commercial chitosan Biorend®), in hot water at various temperatures and in treatments combined with Biorend® at 1.5% and hot water. Results indicated that the most influenced variables were corm germination, number of flowers per spike, number of cormlets and vase life. Overall, the commercial product Biorend® at 1.5% accelerated corm emergence in approximately 4 days, the number of flowers increased by 2–7 and the vase life extended for 3 days. The number of cormlets was also duplicated. Corms dipped in the commercial chitosan Biorend® at 1.5% at different intervals of time were not greatly affected except for the emergence and number of cormlets. However, for this experiment there were significant effects on the number of leaves and flowers because of the interactions between chitosan and the immersion time. The temperature of 55 °C affected plant development because emergence was delayed by 6 days; and there were less number of leaves, flowers and cormlets. On the other hand, the incidence of Fusarium oxysporum in naturally infected corms was 0% at temperatures of 55 °C and 50 °C. Immersion times (0, 10, 15 and 20 min) in hot water at 50 °C did not show significant effects on plant development and vase life. Corms dipped in Biorend® at 1.5% and hot water at 50 °C accelerated their emergence for about 1–7 days, the number of flowers increased by two, extended the storage life for 1–3 days and increased the number of cormlets. The integration of these two treatments -Biorend® and hot water- might be a good option for increasing the gladiolus plant quality and vase life.  相似文献   

17.
One-year old scale bulblets of Lilium longiflorum Thunb. ‘Nellie White’ (Easter lily) were grown for 107 days during growth period 1 (GP-1) in six growth chambers under constant day/night temperature regimes of 30/26, 26/22, 22/18, 18/14, 14/10 and 10/6 °C. Subsequently, half of the plants in each temperature regime were transferred to 18/14 °C and the other half continued at the six constant temperature regimes. Both groups of plants were grown for an additional 89 days in growth period 2 (GP-2). Continuous temperatures of 26/22, 26/22–22/18 and 26/22–18/14 °C produced the greatest increase in basal bulb fresh weight (the main planted bulb), basal bulb circumference and stem bulb fresh weight, respectively. However, shifting these optimal temperatures to 18/14 °C during GP-2 resulted in a lower increase in basal bulb fresh weight and circumference. The optimum range for stem bulb production was expanded to 30/26–14/10 °C by shifting to 18/14 °C. The greatest increase for basal root growth occurred at 14/10–10/6 °C and for stem root growth at 14/10 °C. The temperature shift did not affect either root type. Maximum increase for stem length was at 26/22 and 22/18 °C and for stem plus leaf weight at 14/10 °C under constant temperature regimes. Transferring the plants from 10/6 to 18/14 °C resulted in the greatest increase in stem length and from 10/6 and 14/10 to 18/14 °C in the greatest increase in stem plus leaf weight. The greatest increase in the number of leaves occurred at 26/22 and 10/6 °C, but this growth parameter was unaffected by shifting to 18/14 °C, indicating that leaf number was determined in GP-1. Bulbils developed only when bulbs at high GP-1 temperature regimes (30/26 and 26/22 °C) were transferred to 18/14 °C during GP-2. Lower temperatures tended to favor an increase in flower bud production under continuous temperature regimes, while shifting to 18/14 °C increased flower bud production after initially high and low temperatures. Meristem abortion was greatest at 30/26 °C followed by 26/22 °C, but was not affected by temperature shifts in GP- 2. Thus, it is concluded that the abortion was induced or initiated during GP-1.  相似文献   

18.
The Orchidaceae contains a large number of threatened species that could benefit from seed banking. However, successful seed storage requires a greater understanding of the enigmatic seed biology of orchids. In particular, there is little documentation of the presence or timing of the maturation drying that has been shown to be critical for longevity of agricultural seeds in storage. The aims of this work were to document seed water content, germinability and desiccation tolerance as a function of maturation in developing capsules of hand-pollinated flowers of Phalaenopsis hybrids. Lengthening of capsules was complete by 50 DAP, but capsule diameter continued to increase up to a maximum at 70 DAP. Relative water content rapidly declined from 75% moisture content (fresh weight basis) at 150 DAP to 50% moisture content at 165 DAP where it remained until dehiscence. Seed germinability remained high (75–99.5%) throughout the harvesting period (90–216 DAP), but desiccation tolerance only developed 165 days after pollination. Therefore, if Phalaenopsis seeds are to be stored, we propose that their harvest should be delayed until moisture content drops below 50%.  相似文献   

19.
Factors influencing the number of flowers produced in Pelargonium × domesticum cultivar ‘Lavender Grand Slam’, and their rate of development after the plants had been given a period of low-temperature flower induction, were studied.Under short days progressive abortion reduced flower numbers as the temperature regime during the forcing-period was increased. Under long days this effect was less marked and the high-temperature regime advanced flowering by over a month. When long days and high temperatures were used for forcing, it was necessary to maintain a high light intensity, 335 J/cm2/day giving the best results in terms of earliness of flowering and the number of flowers produced. At lower irradiance there was some risk of flower abortion, particularly in the first inflorescence.  相似文献   

20.
This paper reports the results of a 2 × 2 factorial experiment on bush snap beans ‘Oregon 1604’. The treatments were 2 contrasted irrigation regimes and 2 contrasted plant densities, and were applied in 1978 and repeated in 1979. Data were collected on the number of flowers and pods, and pod size, at each node of the terminal inflorescence (6-T) of the main stem, and at each node of the oldest inflorescence (2-A) at Node 2. High and low plant densities were 45 and 18 plants m?2 in 1978 and 54 and 33 plants m?2 in 1979. High temperatures, frequently above 32°C, prevailed during bloom and pod development in 1978, but for the most part occurred only during the week prior to bloom in 1979. Inflorescences 6-T and 2-A usually formed 4 and 3 RN's, respectively, in 1978 and 3 and 2 RN's in 1979. The flowers at the proximal nodes of each inflorescence all opened within a few days of one another (duration of flowering at proximal nodes between 3 and 5 days); the flowering-periods of adjacent nodes overlapped, and the flowering period increased acropetally within the inflorescence (duration of flowering at distal nodes between 7 and 13 days). In general, number of flowers, pods formed, pods harvested and percent set decreased acropetally within each inflorescence. The rate of acropetal decline was lessened by high irrigation or low plant density. In both years, high irrigation increased the percent set of all RN's of the 2-A inflorescences, but few other consistent effects between years were observed. The 2 most proximal RN's together produced 93% or more of the yield of each inflorescence. High irrigation significantly increased the total number of pods harvested from these RN's of inflorescences 6-T and 2-A, and low density had a similar effect on 2-A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号