首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of different fertilisation (i.e. broadcast application and fertigation) and irrigation practices (tank sprinkler and drip irrigation) on yield, yield quality (nitrate content), nitrogen uptake of white cabbage (Brassica oleracea var. capitata L.) and the potential for N losses was assessed on sandy-loam agricultural soil. 15N-labelled fertiliser was used as a tracer. It was found that different practices significantly affected yield, nitrate content in plants, N uptake, as well as fertiliser use efficiency. The highest yield (93 t ha−1), plant N uptake (246 kg ha−1), and fertiliser use efficiency (42%) were obtained under treatment with broadcast fertilisation with farmer's practice of irrigation (tank sprinkler). The N surplus after harvest was −41 kg N ha−1, indicating the lowest potential for N losses. Treatment by fertigation and drip irrigation covering 100% of the crop's water requirements did not result in the highest yield as expected (72 t ha−1), the N surplus after harvest was about +38 kg ha−1. The lowest yield (58 t ha−1), fertiliser use efficiency (30%) and hence the highest potential for N losses (N surplus after harvest +68 kg ha−1) were found in treatment with broadcast fertilisation and drip irrigation covering 50% of the crop's water requirements.  相似文献   

2.
Greenhouse field experiments on tomato were carried out at Shouguang, Shandong province, over four double cropping seasons between 2004 and 2008 in order to understand the effects of manipulating root zone N management (RN) on fruit yields, N savings and N losses under conventional furrow irrigation. About 72% of the chemical N fertilizer used in conventional treatment (CN) inputs could be saved using the RN treatment without loss of yield. The cumulative fruit yields were significantly higher in the RN treatment than in the CN treatment. Average seasonal N from irrigation water (118 kg N ha−1), about 59% of shoot N uptake, was the main nitrogen source in treatments with organic manure application (MN) and without organic manure or nitrogen fertilizer (NN). N losses in the RN treatment were lowered by 54% compared with the CN treatment. Lower N losses were found in the MN and NN treatments due to excessive inputs of organic manure and fruit yields were consequently substantially affected in the NN treatment. The critical threshold of Nmin supply level in the root zone (0–30 cm) should be around 150 kg N ha−1 for sustainable production. April to May in the winter–spring season and September to October in the autumn–winter season are the critical periods for root zone N manipulation during crop growth. However, control of organic manure inputs is another key factor to further reduce surplus N in the future.  相似文献   

3.
In newly planted orchards, special attention must be paid to fertilization to build up the permanent structure of the trees so that high yield and fruit quality can be reached later on. Nitrogen (N) plays a major role in the fertilization plan, although few studies have assessed its use efficiency in young non-bearing trees, especially in field conditions. In this work, 1–3 years old ‘Rocha’ pear trees, grafted on quince BA29, were planted in a Mediterranean region, and fertigated with 6 g N tree−1 year−1 as ammonium nitrate with 5 at.% 15N enrichment to study the fertilizer N uptake during the vegetative cycle, the overall fertilizer N use efficiency at the end of each year, and the plant–soil N balance for this period. Nitrogen remobilization and the re-cycling of N from senescent leaves were also studied by fertilizing some pear trees with 10 at.% 15N enrichment.  相似文献   

4.
Sweet cherry (Prunus avium L.) is a fruit of increasing economic importance though it is less significant than other stone fruit species such as peach. Cherry has received little attention concerning nitrogen (N) uptake and dynamics in mature trees. The aim of this work was to determine N uptake and partitioning as influenced by the timing of fertilizer application in 7-year-old sweet cherry trees cultivated in a cold region (Los Antiguos, Santa Cruz, Argentina; 71°38′ W, 46°32′ S). Nitrogen (95 kg ha−1) was applied as ammonium nitrate to a soil with ‘Bing’ sweet cherry trees grafted onto Prunusmahaleb rootstocks. Fertilization was split into two equal applications per treatment, involving either the commercial fertilizer ammonium nitrate or the same fertilizer labelled with 15N isotope (10% atom.). Treatments consisted of one early spring (full bloom, October 2005) or one summer (late January 2006, 15 days after harvest) application of 15N ammonium nitrate to three replicate trees. Fruit were harvested in early January and leaves were collected at both full canopy and leaf fall. All trees were excavated in winter (August, 2006). Trees were partitioned into their components: trunk, branches (current-season shoots, 1-year-old and over-1-year-old branches), buds of the same age, small roots (less than 1 mm thick), large roots, leaves (sampled in February and April), and fruit (collected at harvest). Those components were dried and analysed for total N and 15N content. Total N per tree and N content derived from the fertilizer did not differ between treatments. Summer postharvest 15N application partitioned not only to structural components (trunk and roots) but also to buds and leaves. Uptake efficiency was significantly (p = 0.0113) higher in the spring than in the summer application (65.7% vs. 37.44%). Nevertheless, 52.5% of N applied in spring was lost due to harvest and summer pruning. This emphasizes the importance of the postharvest N fertilization which increases N accumulation in both reserve organs and buds though, according to our data, it is less efficiently used. The extent of nitrogen uptake, efficiency of use and partitioning in the following growing seasons are still open questions that deserve further research.  相似文献   

5.
The aim of this research was to determine the influence of various forms, diverse doses, and dates of application of nitrogen fertilizers and foliar nutrition on the concentration of sugars, carotenoids and phenolics compound in carrot. Two field experiments (Experiment I in 2003–2005 and Experiment II in 2004–2005) with carrot ‘Kazan F1’ were conducted in Trzciana (50°06′N; 21°85′E) in Poland. Both experiments were arranged in a split-plot design with four replications. Two sub-blocks were identified in both experiments: sub-block (A) without foliar nutrition and sub-block (B) with plant foliar nutrition. In sub-block (B), plants were sprayed three-times with: 2% (w/v) urea, a 1% (v/v) solution of multi-component ‘Supervit R’ fertilizer, and again with 2% (w/v) urea. Combinations with diversified nitrogen fertilization were distinguished within both sub-blocks. The treatments in Experiment I consisted of: (1) Control, (2) 70 kg N ha−1 as Ca(NO3)2, (3) 70 + 70 kg N ha−1 as Ca(NO3)2, (4) 70 kg N ha−1 as (NH4)2SO4 and (5) 70 + 70 kg N ha−1 as (NH4)2SO4, where 70 kg N ha−1 was used preplant and 70 + 70 kg N ha−1 was applied preplant and as a top dressing, respectively. The treatments in Experiment II consisted of: (1) Control, (2) 35 + 35 kg N ha−1 as ENTEC-26, (3) 70 + 70 kg N ha−1 as ENTEC-26, (4) 105 + 105 kg N ha−1 as ENTEC-26, (5) 35 + 35 kg N ha−1 as NH4NO3, (6) 70 + 70 kg N ha−1 as NH4NO3, (7) 105 + 105 kg N ha−1 as NH4NO3, where 35 + 35, 70 + 70, 105 + 105 kg N ha−1 was applied preplant and as top dressing, respectively. Solid nitrogen fertilizer was added to the soil, as produced: Ca(NO3)2—Yara International ASA (Hydro), (NH4)2SO4—Zak?ady Azotowe w Tarnowie, Poland, NH4NO3—Zak?ady Azotowe w Pu?awach, Poland and ENTEC-26–COMPO GmbH & Co., KG, Germany. In Experiment I, the highest sugar concentrations were found in carrot fertilized with (NH4)2SO4 70, while in Experiment II in the control and after fertilization with ENTEC-26 35 + 35 kg N ha−1. In both experiments N-fertilization affected an increase in phenolic compound concentrations in comparison with the control. Experiment I revealed no significant effect of N-fertilization on carotenoid concentrations in carrot, however in Experiment II the highest concentration of these compounds was characteristic for the control plants and carrot fertilized with ENTEC-26 35 + 35. The foliar nutrition applied in Experiment I caused a decline in sugar concentration and an elevated carotenoid concentration, however it had no influence on the phenolic compound concentrations in carrot. Yet the foliar nutrition in Experiment II led to a decrease in phenolic and carotenoid compound concentrations, but it did not affect sugar concentration in carrot.  相似文献   

6.
Zucchini squash (Cucurbita pepo L.) is an economically important vegetable crop in Florida. Typically, it is intensively managed with high inputs of fertiliser and irrigation water. Our objectives were to evaluate the interaction between fertilisation rates and irrigation treatments, and to quantify nitrate leaching in a plastic mulched/drip irrigated zucchini squash production systems. Three studies were carried out. The first study evaluated different depth placement of drip and fertigation lines on plant growth and fruit yield. Treatments included SUR (both irrigation and fertigation drip lines placed on the surface); S&S (both lines buried 0.15 m deep); and SDI (irrigation line placed 0.15 m below the fertigation line on the surface). The second and third studies compared three different N-rates and different soil moisture sensor-based irrigation strategies. Nitrate-N leaching was monitored by zero tension drainage lysimeters and soil samples. N leaching increased when irrigation and N-rates increased, with values ranging from 2 to 45 kg ha−1 of N. Use of SDI increased yields by 16% compared to the S&S treatment, and reduced nitrate leaching by 93% while increasing the water use efficiency by 75% compared to a fixed 2-h irrigation event per day treatment. Application of N above the standard recommended rate of 145 kg ha−1 did not increase yield, although yields were reduced at the lowest N-rate. The use of soil moisture sensors for automatic irrigation control reduced irrigation application and minimized nitrogen leaching. In addition, combining the soil moisture controlled SDI system that had surface applied fertigation resulted in similar or higher yields, while reducing both water use and potential N leaching because of improved nutrient retention in the root zone.  相似文献   

7.
Soils in central Florida citrus production region are very sandy, hence are vulnerable to leaching of soluble nutrients and chemicals. The objective of this study was to develop nitrogen (N) and irrigation best management practices for citrus in sandy soils to maintain optimal crop yield and quality, and to minimize N leaching below the rootzone. A replicated plot experiment was conducted in a highly productive 20+ year-old ‘Hamlin’ orange [Citrus sinensis (L.) Osbeck] trees on ‘Cleopatra mandarin’ [(Citrus reticulata Blanco)] rootstock grove located on a well drained Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) in Highland County, FL. Nitrogen rates (112–280 kg ha−1 year−1) were applied as fertigation (FRT), water soluble granular (WSG), a combination of 50% FRT and 50% WSG, and controlled release fertilizer (CRF). Tensiometers were used to monitor the soil moisture content at various depths in the soil profile as basis to optimize irrigation scheduling. Fruit yield and quality and nutritional status of the trees were reported in a companion paper. Soil solution was sampled at 60, 120, and 240 cm depths under the tree canopy using suction lysimeters. Concentrations of NO3-N in the soil solution at 240 cm deep, which is an indicator of NO3-N leaching below the tree rootzone, generally remained below the maximum contaminant limit (MCL) for drinking water quality (10 mg L−1) in most samples across all N sources and rates, but for few exceptions. Total N in the fruit was strongly correlated with fruit load, thus, at a given N rate N removal by the fruit was lower during years of low fruit yield as compared to that during the years of high fruit yield. Furthermore, there was a strong linear relation between N and K in the fruit. This supports the need to maintain 1:1 ratio between the rates of N and K applications. In a high fruit production condition, the N in the fruit accounted for about 45% of the total N input on an annual basis. Fifteen percent of the total N input at 280 kg N ha−1 year−1 was not accounted for in the citrus N budget, which could be due to leaching loss. This estimate of potential leaching was very close to that predicted by LEACHM simulation model. The improved N and irrigation management practices developed in this study contributed to an improved N uptake efficiency and a reduction in N losses.  相似文献   

8.
Feasibility of peach bloom thinning with hand-held mechanical devices   总被引:1,自引:0,他引:1  
The use of hand-held mechanical devices to thin blooms of peach trees trained into the “free Italian vase” form was studied. Three devices were tested, and no differences were found among them in terms of thinning time and number of fruits per cm2 of trunk cross-sectional area (TCSA) at harvesting. Thinning, by hand or mechanically, reduced the yield per tree by 26–33% with respect to not thinning; however, thinning increased the fruit size. In both years, the yields of fruit >67 mm in the thinned trees ranged from 40.4 to 53.4 kg tree−1, respectively, whereas in the un-thinned trees, it was 25.1 and 18.2 kg tree−1 in 2009 and 2010, respectively. Hand thinning took 385 h ha−1, and mechanical thinning reduced this time by 89%. The cost of hand thinning was 4.8 € tree−1, whereas the cost of mechanical thinning ranged from 0.4 to 1.1 € tree−1. The economic study showed that the total yield value was similar with hand and mechanical thinning, but the cost of mechanical thinning was only 10–18% that of hand thinning.  相似文献   

9.
Elevated levels of nitrate-nitrogen (NO3-N) in the surficial aquifer above the drinking water quality standard, i.e. maximum contaminant limit (MCL; 10 mg L−1), have been reported in some part of central Florida citrus production regions. Soils in this region are very sandy (sand content >95%), hence are vulnerable to leaching of soluble nutrients and chemicals below the rooting depth of the trees. The objective of this research was to develop N and irrigation best management practices for citrus in sandy soils to maintain optimal crop yield and quality, and to minimize potential leaching of nitrate below the root zone. Six years of field experiment was conducted in a high productive (mean fruit yield > 80 Mg ha−1yr−1) >20-year-old ‘Hamlin’ orange trees [Citrus sinensis (L.) Osbeck] on ‘Cleopatra mandarin’ (Citrus reticulata Blanco) rootstock grown on a well drained Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) in Highland county, FL. Nitrogen rates ranged from 112 to 280 kg ha−1 yr−1 applied as fertigation (FRT), water soluble granular (WSG), 50:50 mix of FRT and WSG, and controlled-release fertilizer (CRF). Tensiometers were used to monitor the soil water content as a basis to schedule optimal irrigation. Fruit yield response over the entire range of N rates was greater for the FRT and WSG sources as compared to that for the WSG + FRT or CRF sources. Using the regression analysis of the fruit yield in relation to N rate, the optimum N rate appeared to be at 260 kg ha−1 yr−1. Based on fruit production response in this study, the N requirement for production of 1 Mg of fruit varied from 2.2 to 2.6 kg across four N sources. This study demonstrated an increased N uptake efficiency, as a result of best management of N and irrigation applications. The optimal N and K concentration in the 4–6-month-old spring flush leaves were 26–30, and 15–18 g kg−1, respectively. However, fruit yield response showed no significant relationship with concentrations of P in the 4–6-month-old spring flush leaves over a range of 0.8–2.4 g kg−1. The results of fate and transport of N in soil and in soil solution with application of different rates and sources of N, and components of citrus tree N budget, are reported in a companion paper.  相似文献   

10.
Two field experiments were carried out at the Experimental Field, Department of Food Science (TE, Italy) in 2004 and 2005 to evaluate the effects of genotypes, different N forms and N rates on yield, safety and nutritional features of processing spinach. Experiment 1, as treatments, included spinach genotypes and N forms (CO(NH2)2; Agricote; NH4NO3); experiment 2 included three N forms (Ca(NO3)2; (NH4)2SO4; NH4NO3) applied at rates of 0, 75, 150, 200 kg N ha−1. This research work confirmed differences among spinach genotypes in terms of efficiency in N use and oxalate and nitrate accumulation. Spinach accumulated much more nitrate in petioles and much more oxalate in blades indicating that nitrate and oxalate might play a counterrole to each other. Fertilizers containing N under forms not readily available to the crop, i.e. Agricote, CO(NH2)2 and (NH4)2SO4, increased nitrate and oxalate accumulations less than fast N-release fertilizers, but their effect on yield was limited. Highest yield with contents of nitrate and oxalate lower than the limits imposed to avoid health problems, were achieved with Ca(NO3)2, at rates of 130 and 150 kg N ha−1 NH4NO3.  相似文献   

11.
In conservation tillage systems based on legume mulches it is important to optimize N management strategies. The present study evaluated the effect of some winter legume cover crops converted into mulches on the following no-tillage tomato (Solanum Lycopersicum L.) yield, tomato nitrogen uptake, tomato use efficiency (NUE), soil nitrate and the apparent N remaining in the soil (ARNS) in a Mediterranean environment. Field experiments were carried out from 2002 to 2004 in a tomato crop transplanted into: four different types of mulches coming from winter cover crops [hairy vetch (Vicia villosa Roth.), subclover (Trifolium subterranem L.), snail medic (Medicago scutellata L. Miller), and Italian ryegrass (Lolium multiflorum Lam.)]; a conventional tilled soil (CT); and a no-tilled bare soil (NT). All treatments were fertilized with three different levels of nitrogen (N) fertilizer (0, 75, and 150 kg N ha−1). Cover crop above-ground biomass at cover crop suppression ranged from 4.0 to 6.7 t ha−1 of DM and accumulated from 54 to 189 kg N ha−1, hairy vetch showed the highest values followed by subclover, snail medic and ryegrass. The marketable tomato yield was higher in no-tilled legume mulched soil compared to no-tilled ryegrass mulched soil, CT, and NT (on average 84.8 vs 68.7 t ha−1 of FM, respectively) and it tended to rise with the increase of the N fertilization level. A similar trend was observed on tomato N uptake. Hairy vetch mulch released the highest amount of N during tomato cultivation followed by subclover, snail medic, and ryegrass (on average 141, 96, 90 and 33 kg N ha−1). The tomato NUE tended to decrease with the increase of the N fertilization rates, it ranged from 39 to 60% in no-tilled legume mulched soil and from −59 to 30% in no-tilled ryegrass mulched soil when compared to the CT. The soil NO3-N content and the ARNS was always higher in the soil mulched with legumes compared to the soil mulched with ryegrass and in NT and CT. This study shows that direct transplanting into mulches coming from winter legume cover crops could be useful for improving the yield and the N-uptake in a no-tillage tomato crop. Furthermore, considering the high N content in the upper soil layer and the remaining N content in the organic mulch residues after tomato harvesting, there is a large amount of N potentially available which could be immediately used by an autumn–winter cash crop.  相似文献   

12.
Elucidation of the effects of different quantities of nitrogen (N) and water applied through drip and furrow irrigation on fruit yield and water use efficiency (WUE) in eggplant is essential for formulating proper management practices for sustainable production. The present investigation was undertaken to evaluate the independent and interactive effects of four levels of N and different quantities of water applied through drip as well as furrow irrigation on eggplant fruit yield, agronomic efficiency of N and WUE. In the present field investigation, ridge planting with each furrow and alternate furrow irrigation were compared with drip irrigation at three levels of water: 100%, 75% and 50% of each furrow irrigation (designated as D1.0, D0.75 and D0.5). The four levels of N studied were 90, 120, 150 and 180 kg N ha−1 (designated as N90, N120, N150 and N180). The eggplant hybrid BH-1 was transplanted on August 5, 2004 at the spacing of 60 cm × 45 cm.  相似文献   

13.
A field experiment was conducted in Southern Italy to investigate the effect of different nitrogen (N) rates (0, 100 or 300 kg ha−1) on the number of branchings and leaves per plant, plant height, yield of above-ground fresh biomass, total leaf area, dry weight, leaf-to-stem ratio, leaf essential oil content and the essential oil quality at commercial harvest (full bloom) of the three cultivars of basil (Ocimum basilicum L.): (i) “Mostruoso mammouth” (MM); (ii) “Genovese profumatissimo” (GP); (iii) “Napoletano a foglia di lattuga” (NFL). Nitrogen fertilization up to 300 kg ha−1 increased yield of above-ground and leaf fresh biomass, leaf essential oil yield, but it did not affect leaf-to-stem ratio, plant height and the number of branchings per plant. The increase in essential oil yield induced by N fertilization depended on an increase in both leaf essential oil concentration and leaf biomass. The increase in LAI with increasing N fertilization was due to an increase in leaf number per plant rather than in individual leaf expansion. The cultivar GP was different in morphology from MM and NFL, since it had greater leaf number and plant height, but lower leaf-to-stem ratio and LAI. The physiological efficiency of N use (PE) in producing above-ground biomass was not related to N application whereas PE in producing essential oil (PE-oil) tended to increase with increasing levels of N applied. With regard to the effect of the cultivar, GP was less efficient in N use for oil production than MM and NFL since PE-oil of GP was lower while leaf N and PE-biomass were higher than the other cultivars. NFL was the richest in methyl chavicol but the lowest in linalool, whereas MM and GP contained linalool and eugenol.  相似文献   

14.
Nutrient elements and lipoxygenase (LOX) activity were determined in strawberry fruit to establish a relationship, if it exists, between nutrient ratios (N/Ca and K/Ca), and lipoxygenase activity with albinism disorder. About 33% strawberry fruit were affected by albinism. Etna had highest incidence of albinism (48.6%) and Sweet Charlie the lowest (16.2%). Dry matter content (%) was lower in albino fruit (5.23%) than normal fruit (7.36%). The concentration of N, P, and Mg did not differ significantly, but that of K (1.87 mg g−1 fresh weight) was notably higher and of Ca (0.105 mg g−1 fresh weight) was lower in albino fruit than normal fruit. Consequently, the nutrient ratios, N/Ca (9.78) and K/Ca (16.96) were higher in albino fruit than normal fruit. Cultivars differed widely in respect to dry matter (%), mineral content and nutrient ratios. LOX activity determined on dry weight or fresh weight basis was significantly higher in albino fruit than normal fruit, with significant differences among cultivars. Positive correlations existed between nutrient ratios and albinism incidence (r = +0.338), LOX activity and albinism incidence (r = +0.412), and LOX and nutrient ratios (r = +0.448). Thus, it appears from the study that calcium and LOX activity may not the basic cause of albinism in strawberry, but these may be involved in senescence or fruit ripening process, as LOX activity was lower in albino than in normal fruit.  相似文献   

15.
Effects of the commercial product TrichoFlow WP™ (Agrimm Technologies Ltd., New Zealand), based on the fungus Trichoderma harzianum, on quality characteristics and yield of bulb onion was investigated. Bulb sets of the local cultivar Kantartopu was planted in soil with in and between row distances of 0.15 m and 0.40 m, respectively. The product, at considerably high dosages of 5 g m−2, 10 g m−2 and 15 g m−2, was mixed with water and sprinkled once to the plots at planting. Analyses of data at harvest did not show statistical significance for Trichoderma effect on total bulb yield, bulb diameter, leaf length, number of shoot apex, %titratable acidity, number of internal (fleshy) leaves, number of external (papery) leaves, %soluble solids and %bulbs with diameters of 20–39 mm, 40–69 mm and ≥70 mm. The yields obtained from the plots treated with the dosages of 5 g m−2, 10 g m−2 and 15 g m−2 and the control plots were 1063.7 kg da−1, 1051.0 kg da−1, 1066.5 kg da−1 and 985.0 kg da−1, respectively. Our results showed that high dosages of the Trichoderma product were not effective in enhancing onion bulb and yield characteristics under the given conditions.  相似文献   

16.
We assessed the effect of soil-applied derivatives of melia (Melia azedarach L.) and neem (Azadirachta indica A. Juss) on nitrogen (N) soil availability, root uptake and peach (Prunus persica L.) growth. First we evaluated the effectiveness of experimentally prepared amendments made with fresh ground melia leaves or commercial neem cake incorporated into the soil as nitrification inhibitors, then we evaluated the effect of fresh ground melia fruits and neem cake on growth and N root uptake of potted peach trees, and on soil microbial respiration. Soil-applied fresh ground melia leaves at 10 and 20 g kg−1 of soil as well as commercial neem cake (10 g kg−1) were ineffective in decreasing the level of mineral N after soil application of urea-N as a source of mineral N, rather they increased soil concentration of nitric N and ammonium N. The incorporation into the soil of fresh ground melia fruits (at 20 and 40 g kg−1) and neem cake (at 10 and 20 g kg−1) increased N concentration in leaves of GF677 peach × almond (Prunus amygdalus) hybrid rootstock alone or grafted with one-year-old variety Rome Star peach trees. An increase in microbial respiration, leaf green color and plant biomass compared to the control trees were also observed. The Meliaceae derivatives did not affect, in the short term (7 days), N root uptake efficiency, as demonstrated by the use of stable isotope 15N, rather they promoted in the long term an increase of soil N availability, N leaf concentration and plant growth.  相似文献   

17.
During 2003 and 2005, plant growth promoting effects of two Bacillus strains OSU-142 (N2-fixing) and M3 (N2-fixing and phosphate solubilizing) were tested alone or in combinations on organically grown primocane fruiting raspberry (cv. Heritage) plants in terms of yield, growth, nutrient composition of leaves and variation of soil nutrient element composition in the province of Erzurum, Turkey. The results showed that Bacillus M3 treatment stimulated plant growth and resulted in significant yield increase. Inoculation of raspberry plant roots and rhizosphere with M3 and/or OSU-142 + M3, significantly increased yield (33.9% and 74.9%), cane length (13.6% and 15.0%), number of cluster per cane (25.4% and 28.7%) and number of berries per cane (25.1% and 36.0%) compared with the control, respectively. In addition, N, P and Ca contents of raspberry leaves with OSU-142 + M3 treatment, and Fe and Mn contents of the leaves of raspberry with M3 and OSU-142 + M3 applications significantly improved under organic growing conditions. Bacterial applications also significantly effected soil total N, available P, K, Ca, Mg, Fe, Mn, Zn contents and pH. Available P contents in soil was determined to be increased from 1.55 kg P2O5/da at the beginning of the study to 2.83 kg P2O5/da by OSU-142, to 5.36 kg P2O5/da by M3 and to 4.71 kg P2O5/da by OSU-142 + M3 treatments. The results of this study suggest that Bacillus M3 alone or in combination with Bacillus OSU-142 have the potential to increase the yield, growth and nutrition of raspberry plant under organic growing conditions.  相似文献   

18.
A tomato (Solanum lycopersicum L.) crop was grown in four greenhouses during the dry season 2005/06 in Central Thailand. Sidewalls and roof vents of two greenhouses were covered with nets and these greenhouses were mechanically ventilated when air temperature exceeded 30 °C (NET). The other two greenhouses were covered with polyethylene film and equipped with a fan and pad cooling system (EVAP). Overall mean air temperature was significantly reduced by 2.6 and 3.2 °C (day) and 1.2 and 2.3 °C (night) in EVAP as compared to NET and outside air, respectively. Temperature maxima in EVAP averaged about 4 °C lower than in NET and outside. The relative humidity was around 20 and 30% (day) and 10 and 15% (night) higher in EVAP than in NET or outside, respectively. Vapour pressure deficit averaged 0.25 kPa in EVAP, 1.03 kPa in NET and 1.48 kPa outside. The crop water-consumption was significantly lower in EVAP (1.2) than in NET (1.8 L plant−1 day−1), which is ascribed to reduced transpiration in EVAP. Total fruit yield was similar in NET (6.4 kg plant−1) and EVAP (6.3 kg plant−1). The quantity of undersized (mostly parthenocarpic) and blossom-end rot (BER)-affected fruits was reduced in EVAP. However, the proportion of marketable yield was significantly higher in NET (4.5 kg plant−1) than in EVAP (3.8 kg plant−1), owing largely to an increased incidence of fruit cracking (FC) in EVAP. Higher FC but lower BER incidence coincided with higher fresh weight and Ca concentration in the fruits in EVAP. It is concluded that in regions with high atmospheric relative humidity evaporative cooling without technical modifications allowing dehumidification will not improve protected tomato production.  相似文献   

19.
Final fruit diameter is the prime determinant of sweet cherry fruit value. Previous research has shown that mesocarp cell size accounts predominantly for variability in final fruit size, within a genotype. Our research program evaluated the potential to improve sweet cherry fruit size/weight with growth regulators to affect cell division and/or cell expansion stages. In the current study we screened 8 plant growth regulators (PGRs), including cytokinins, gibberellins, and auxins, and their combinations for their ability to increase ‘Bing’ fruit weight. Each PGR was mixed in lanolin paste and applied to fruit pedicels at 9 or 30 days after full bloom (DAFB), to coincide with estimated peak in cell division and cell expansion activity, respectively. Several cytokinins applied 30 DAFB improved fruit weight significantly (ca. +15%) with N-(2-Chloro-4-pyridyl)-N′-phenylurea (CPPU) and 6-(3-hydroxybenzylamino) purine (mt-Topolin) at 100 mg l−1 being the most effective. Gibberellins, applied alone, improved fruit size and delayed fruit maturation and exocarp coloration. GA3 at 200 mg l−1 applied at 9 DAFB was the most effective and improved final fruit weight by 15%. Fifty-six percent of the fruit from this treatment were ≥9 g compared to 15% of similar weight fruit from untreated limbs. Both GA3 and GA4/7 treatments applied 9 DAFB increased fruit radial expansion. 4-Chlorophenoxyacetic acid, a synthetic auxin, also stimulated higher fruit growth rates at stage I and stage II, and fruit color development, but did not improve final fruit size.  相似文献   

20.
Cucumber fruits (Cucumis sativus L., cv. Trópico F1) grown on perlite substrate and NFT (Nutrient Film Technique) were harvested during two seasons (winter and spring) to monitor the effects of climatic conditions and hydroponic growth systems on fruit quality at harvest. The best fruit quality at harvest, as measured by lightness and hue angle parameters, was obtained during the 3 weeks following the first winter picking. When values of a parameter of preharvest climate value called G* were lower than 0.4 MJ m−2 °C day−1 interval−1, the cucumber achieved its optimum quality at harvest, as measured by the dark green color of the skin. NFT-grown fruits showed darker and greener skin color (higher hue angle and lower lightness) compared with perlite-grown fruit, irrespective of the season considered. During the winter season, the plant transpiration rate was 30% higher in perlite than in NFT culture, which correlates with higher differences in G* and 40% additional yield in perlite. However, in spring G* was not sensitive enough to discriminate between the two hydroponic systems. In general, fruit quality at harvest in spring was lower than during the winter, due to flesh whitening, higher longitudinal and equatorial calibers, and slightly higher pH, as well as worse epidermal color coordinates (ranging from the dark and dull green color typical of winter fruit to light and a vivid green-yellow color). During the spring season, NFT-grown fruit were less acid than perlite-grown fruit with no apparent correlation with the climatic conditions or fruit nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号