首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photosynthetic characteristics, chlorophyll index and leaf area were examined in selected leaves of cucumber (Cucumis sativus L. cv. Euphorbia). In the first experiment, plants of cucumber were grown horizontally at a lighting period of 20 h day−1. Photosynthetic measurements in horizontally growing cucumbers showed that there was no decline in photosynthetic capacity when cucumber leaves are developing under good light conditions. In a second experiment, plants were grown in a traditional high-wire cultivation system under 20 h day−1 lighting period until they reached final height and then exposed to different lighting periods (20 and 24 h day−1) for 3 weeks. In stands of cucumber plants photosynthetic measurements showed that the lower leaves have a significant reduction in photosynthetic capacity due to reduced light conditions. Three weeks exposure to 24 h day−1 lighting period reduced leaf area by 20%. Plant grown under continuous light had also lower chlorophyll index compared to plants grown under 20 h day−1 lighting period.  相似文献   

2.
Plants of cucumber (Cucumis sativus L. cv. Euphorbia) were grown in a traditional high-wire cultivation system to investigate the effects of three lighting regimes on photosynthetic characteristics, leaf area and yield. The lighting regimes included overhead lighting (OH), where all the lamps were mounted above the canopy and overhead + intracanopy lighting (OH + IC) which comprised 65% of overhead lamps and 35% of lamps mounted vertically along the plant rows. All overhead lighting was provided for 20 h day−1 and intracanopy lighting was provided for either 20 h or 24 h day−1 lighting period. Intracanopy lighting improved the light distribution in the canopy. Gas exchange measurements showed that intracanopy lighting increased net photosynthesis (PN) and photosynthetic capacity (Pmax). Parameters calculated from CO2 response (A/Ci) curves showed that in vivo estimate of the maximum rate of Rubisco carboxylation (Vcmax) and the maximum rate of electron transport (Jmax) were affected by light regime. Intracanopy light increased yield by 11% compared to traditional overhead light.  相似文献   

3.
Cucumber (Cucumis sativus L.), which is a vegetable crop, has served as the model system for sex expression in flowering plants, and the inheritance of sex expression in cucumber is well documented. However, the genetics of subgynoecism expression in cucumber had rarely been described. In this study, we investigated the inheritance of subgynoecious traits in cucumber plants with the inbred cucumber lines of subgynoecious (C. sativus L. var sativus cv 97-17 and S-2-98) as the materials. Genetic analysis had showed the two subgynoecious inbred lines were controlled by one pair of recessive gene and one pair of incompletely dominant gene, which were designated presently as mod-F2 and Mod-F1, respectively. Furthermore, the mod-F2 and Mod-F1 loci, which enhance the intensity of femaleness, also inherited independently with F and M genes.  相似文献   

4.
Salicylic acid (SA) plays a critical role in plant development and defense responses to biotic and abiotic stresses. Sugars can act as osmotic adjustors or nutrient and metabolic signals in the activation of plant defense responses. To uncover the effects of SA on sugar metabolism, we assayed the altered components and levels of sugars in cucumber seedlings treated with SA. After SA treatment, the levels of glucose, fructose, raffinose and stachyose were increased in both leaves and roots. In contrast, sucrose and starch responded differently in leaves and root, decreasing in leaves but accumulating in roots. These changes could be due to the effects of SA on the activities of metabolism-related enzymes. In leaves, SA promoted the activities of sucrose phosphate synthase (SPS), sucrose synthase (SS) and amylases, while the SA-treated root showed a reduced amylase activity and an unchanged activity in SPS. The changes in various sugar contents resulted in the accumulation of soluble sugars in SA-treated cucumber seedlings, especially non-reducing sugars in roots. These increased sugars could function as osmotic regulators and facilitate water uptake and retention in plant cells, thereby conferring seedlings an enhanced tolerance to salinity stresses caused by NaCl treatment. Taken together, our findings provide an important insight into the effects of SA on sugar metabolism, and a protective mechanism for SA against water deficiency is discussed.  相似文献   

5.
Different fertilizers may affect soil enzymatic activity and soil fertility dynamics. These effects were investigated in a field experiment with cucumber (Cucumis sativus L.) and the relationship with yield and soil nutrient availability was assessed. Soil enzymatic activity, measured as phosphatase, catalase, invertase and urease activities, decreased in the early growth stages of cucumber, but increased in the late ones, when plant were supplied with partially decomposed horse manure. Chemical N fertilizer inhibited soil enzymatic activity but P and K fertilizers enhanced it. Activity of different soil enzymes was positively correlated with soil NH4+–N and available P concentration, but negatively correlated with leaf N and P concentration. Cucumber yield was also positively correlated with the soil enzymatic activity. Our results demonstrate that soil enzymatic activity acted as a useful indicator of soil fertility dynamics.  相似文献   

6.
Organogenic callus induction and high frequency shoot regeneration were achieved from cotyledon explants of cucumber. About 86.2% of cotyledon explants derived from 5-day-old in vitro raised seedlings produced green, compact nodular organogenic callus in MS medium containing NAA (2.69 μM) and BA (4.44 μM) after two successive transfers at 20 days interval. Adventitious shoots were produced from the organogenic callus when it was transferred to MS medium supplemented with NAA (1.34 μM), BA (8.88 μM), zeatin (0.91 μM) and l-glutamine (136.85 μM) with shoot induction frequency of 75.6%. Shoot proliferation occurred when callus with emerging shoots was transferred in the same medium at an interval of 20 days. Shoots (1.0 cm length) were excised from callus and were elongated in MS medium fortified with GA3 (1.44 μM) and BA (4.44 μM). The elongated shoots were rooted in MS medium supplemented with IBA (3.42 μM) and BA (4.44 μM). Rooted plants were acclimatized in green-house and subsequently established in soil with a survival rate of 80%. This protocol yielded an average of 35 shoots per cotyledon explant in a culture duration of 120–140 days.  相似文献   

7.
We investigated the hypothesis that split root fertigation (SRF) approach could provide complementary benefits over traditional fertigation (TF) in terms of water use, vegetative growth and yield formation in the high radiation season and under two atmospheric conditions in a greenhouse. Plants of cucumber (Cucumis sativus L. cv. Cumuli) were grown in a traditional high-wire cultivation system in a peat growing medium. In the SRF method the root system of a plant was separated into two compartments over the crop cycle. One compartment received fertigation solution with low EC (1.2 dS m−1) and the other compartment solution with high EC (3.5 dS m−1) value. In the TF method the EC value of fertigation solution was 2.4 dS m−1. The atmospheric conditions included an open (ventilated) and a semi-closed (cooled) greenhouse. The employment of cooling resulted in an enhancement of the average CO2 in a semi-closed (810 ppm) over an open (530 ppm) greenhouse resulting in a yield improvement (37%). SRF improved water uptake in both atmospheric conditions and water use efficiency (WUE) in an open greenhouse. The water uptake in SRF was highest in the root part with the low EC values, namely 61% in the open and 66% in the semi-closed greenhouse. In both atmospheric conditions, SRF decreased flower abortion, leading to an improved fruit set with a small effect on vegetative growth. SRF increased yield by 21% in the open and 17% in the semi-closed greenhouse compared to TF in corresponding greenhouses.  相似文献   

8.
A continuous CO2 measurement system was developed to monitor the CO2 exchange rate of the whole canopy of grafted transplants using semi-open multiple chambers. Air heating or cooling and humidification inside a healing box were under control, if needed. To test the system, the gas exchange rate of the cucumber (Cucumis sativus L.) transplants grafted onto pumpkin (Cucurbita maxima cv. ‘New-Shintozwa’) was analysed. During the healing and acclimatisation of the grafted cucumber plants, the air temperature in the box remained constant at night but ranged above 1 °C of a set value under high humidity in daytime. The relative humidity was kept within the set point during the daytime, and it nearly reached 100% at night when not controlled. The cucumber seedlings were exposed to different water stresses before grafting, and the water potentials of each treatment were −0.579 (non-stressed), −0.814 (mildly water-stressed), and −0.870 MPa (strongly water-stressed) on grafting. At the water-stressed scions, leaf expansion was inhibited by 30.9–53.3% compared with the non-stressed scions. Therefore, the gas exchange rates of the strongly water-stressed scions based on the leaf area were decreased to 72.7% compared with the non-stressed scions. After grafting, the apparent photosynthesis of the transplants of all treatments was negative, with higher respiration in the strongly water-stressed scions during the initial period of healing. However, they turned to positive values and exceeded those of the non-stressed scions from three days after grafting. This result provides critical information that the water column is physiologically connected between the stock and scion within two days after grafting. As a result of water stress, the leaf area and dry weight of the transplants in the strongly water-stressed scions were inhibited by 67.5% and 83% compared with the non-stressed scions at the end of acclimatisation. In contrast, the relative growth rate and graft-take of the strongly water-stressed transplants were slightly increased, which suggests that the water stress prior to grafting alleviated the water demand of the scion. This system may provide useful information for diagnosis at the early stage by monitoring the whole canopy's photosynthesis over a long term.  相似文献   

9.
The effects of interlighting and of the proportion of interlight on the yield and fruit quality of year-round cultivated cucumber (Cucumis sativus L. cv. Cumuli) were investigated for this study. Artificial lighting was provided by high pressure sodium (HPS) lamps and the lighting regimes included top lighting (TL), top + interlighting 24% (T + IL24) and top + interlighting 48% (T + IL48). In TL, all of the lamps were mounted above the canopy. In T + IL24 and T + IL48, top lamps covered 76 and 52% of the lighting, respectively, while 24 and 48% of the lighting came from interlighting lamps which were mounted vertically 1.3 m above the ground between the single plant rows. The outdoor daily light integral (DLI) varied greatly during the cultivation periods; the mean values were 36.8, 5.3 and 19.9 mol m−2 day−1 for the summer, autumn–winter and spring stands, respectively. Lighting regime affected both yield and external fruit quality. Interlighting increased first class yield and decreased unmarketable yield, both in weight and number. The increase in the annual first class yield in weight was 15% in the two T + IL regimes. Interlighting improved energy use efficiency in lighting, being for the whole year 120, 130 and 127 g total yield kW h−1 in TL, T + IL24 and T + IL48, respectively. Interlighting increased the fruit skin chlorophyll concentration in all seasons, but had only a minor effect on the fruit dry matter concentration. The mean total chlorophyll concentration in fruit skin was 70.8, 76.7 and 82.2 μg cm−2 in TL, T + IL24 and T + IL48, respectively. In addition, interlighting extended the post-harvest shelf life of cucumber fruits in spring. Besides interlighting per se, also the higher proportion of interlight tended to further improve the fruit quality. For example, the fruit skin chlorophyll concentration increased along with the higher proportion of interlighting. In general, the effects of lighting regime were more prominent in lower natural light conditions in winter and spring. It is concluded that interlighting is a recommendable lighting method in cucumber cultivation, especially in lower natural light conditions.  相似文献   

10.
Several factors, i.e. the duration of thermal shock pretreatment at 35 °C, the concentrations of TDZ and the silver nitrate were investigated for their effects on embryo formation in a variety of cucumber (Cucumis sativus L) ovary culture. The results showed that a thermal shock for 3 days at 35 °C at the start of the culture resulted in higher frequency of embryo formation than 2 or 4 days. TDZ had a positive effect on the embryo formation. Highest embryo formation frequency (72.7%) was recorded by adding 0.04 mg/L TDZ into the induction medium. The results found that addition of AgNO3 to induction medium had no significant effect on frequency of embryo formation but shortened embryo sprouting period and improved number of embryos formed in each ovary slice. All the experiment materials responded well to ovary culture, and there were no difference among genotypes used in this study. Among the forty regenerated plants obtained, two were identified as haploid plants (2n = x = 7), five were tetraploid plants (2n = 4x = 28), and the rest were diploid plants. Microsatellite markers (SSR) were used to analyze the homozygosity of the diploid plants, the putative chromosome-doubled haploids. Of the 33 diploid plants, 17 (51.5%) were identified as double haploids. Based on the above results, we have established a useful protocol for production of cucumber doubled haploids with ovary culture.  相似文献   

11.
Cucumber chilling-resistant cultivar Changchun mici and -sensitive cultivar Beijing jietou were used in this study to investigate the effects of exogenous PAs on protection against chilling injury as well as on changes of physiological features, and the fluctuation of free PAs content in the leaves under chilling stress. Upon chilling treatment, free spermidine (Spd), spermine (Spm) and putrescine (Put) were remarkably induced in the leaves of cv. Changchun mici 1 day after treatment. The induction of Put declined thereafter, whereas Spd and Spm levels increased steadily. In the leaves of cv. Beijing jietou, Put content was increased only at 1 day after chilling while Spd content decreased significantly upon chilling treatment. Chilling reduced soluble protein content, and decreased the activities of antioxidant enzymes, including superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) only in Beijing jietou. However, these changes could be renovated by exogenous application of Put and Spd. It was also found that pretreatment with Put and Spd diminished the increased electrolyte leakage and malondialdehyde (MDA) content caused by chilling in the leaves of both cultivars. Pretreatment of methyglyoxal-bis-(guanylhydrazone) (MGBG), the PAs biosynthetic inhibitor cancelled the effects of PAs in most of the treatments. Moreover, histochemical staining and quantitative measurements showed that exogenous application of Put and Spd eliminated but MGBG exaggerated the hydrogen peroxide (H2O2) accumulation caused by chilling stress, especially in leaves of Beijing jietou. Interestingly, Changchun mici was found to contain higher endogenous free PAs contents compared to Beijing jietou. While no significant difference of SOD, POD and CAT activities was found between non-chilling Changchun mici and Beijing jietou seedlings, the former exhibited higher APX activity than the latter. These results suggest that PAs play important roles in the tolerance of cucumber against chilling stress, which is most likely achieved by acting as oxidative machinery against chilling injury.  相似文献   

12.
Different N sources (NO3, NH4+, or NH4NO3) at different relative addition rates (RAR) were supplied to cucumber (Cucumis sativus L.), a species sensitive to NH4+ toxicity. For comparison, cucumber plants were also grown at constant concentrations of 1 and 5 mM NH4+ or 5 mM NO3. The fresh weight of NH4+-fed plants at RAR 0.15 and RAR 0.25 day−1 was similar to that of NO3-fed plants, while at RAR 0.35 or RAR 0.45 day−1 growth reduction occurred. When available as a constant concentration, NH4+ decreased plant growth at 5 mM. It is concluded that at low rates of N supply the relative addition rate technique can be used for growing cucumber plants with NH4+ as sole N source without deleterious effects.  相似文献   

13.
14.
Arbuscular mycorrhizal fungi have been widely used in agriculture to improve the cultivation of many crops. One of the aims of this study was the isolation and molecular identification of arbuscular mycorrhizal fungi isolated from mountain areas of Northern Greece (Ritini Pieria, Elatochori Pieria, Ambelakia Ossa). Only three isolates were obtained; two of Glomus etunicatum and one of G. lamellosum. The second objective of this study was to investigate the effect of these arbuscular mycorrhizal fungi on the concentration of macro- and micronutrients in tissues, the quantity and quality of essential oils and the growth of oregano and mint plants (two widely used aromatic plants in Greece). It was found that mycorrhizal oregano and mint plants had a higher content of essential oils and nutrient elements, and grew better than non-mycorrhizal plants. In addition, the composition of the essential oil in mycorrhizal plants differed from the oil of non-mycorrhizal plants. These results suggest that the use of mycorrhizal fungi may allow plant growth in low fertility soils, reduce fertilizer inputs and increase aromatic plant production of essential oils, They also indicate that it may be possible to use mycorrhizae to affect the quality of the essential oil produced.  相似文献   

15.
Tetraploid muskmelon plants were induced successfully from diploid Cucumis melo inbred M01-3 (2n = 24) by colchicine. The morphological characteristics and fruit qualities of diploid and tetraploid muskmelons were investigated. The results showed that the leaves and flowers of the tetraploid plants were markedly larger, the plants were obviously higher, and the stems were thicker than those of the diploid plants. Transmission electron microscope observation revealed that the numbers of chloroplast, granule and grana, and the length of chloroplast and granule of the tetraploid plant leaves were significantly more or longer than those of the diploid plants. The soluble solid, soluble sugar and vitamin C contents in the tetraploid fruit were distinctly higher than those in the diploid fruit. The weight of the tetraploid fruit was 30% heavier than that of the diploid fruit. And the seeds from the tetraploid plants were broader and thicker than those from the diploid plants. Together, our results suggest that the tetraploid muskmelon exhibited better agronomical characteristics than the diploid muskmelon and the tetraploid muskmelon could be used as the improved variety and a potential germplasm for the development of triploid fruit.  相似文献   

16.
‘Picual’ olive cuttings were grown in a greenhouse under saline conditions in 2 L plastic pots containing perlite. Plants were irrigated with a nutrient solution plus 75 mM NaCl and 0, 2.5, 10 or 40 mM CaCl2. Vegetative growth, leaf and root Na+ and Ca2+ concentrations were measured. Na+ toxicity symptoms were observed in plants non-treated with Ca2+. Shoot length was higher in Ca2+ treated plants, although shoot growth was reduced at 40 mM CaCl2, probably due to the high total ion concentration reached in the external solution. Ca2+ supply linearly increased leaf and root Ca2+ concentration and decreased leaf Na+ concentration. However, there were no differences in root Na+ concentration. Results indicate Ca2+ may take part in the Na+ exclusion mechanism, mainly preventing Na+ transport to the shoot, that may be an important ability for survival under saline conditions.  相似文献   

17.
18.
The regenerability of three ornamental species—Lysimachia christinae, Lysimachia rubinervis and Lysimachia nummularia ‘Aurea’, were investigated using in vitro leaves and shoot tips. 6-Benzylaminopurine (BAP) and α-naphthalene acetic acid (NAA) added to Murashige and Skoog (MS) medium were tested for their effect on organogenesis. On the medium, shoot regeneration occurred directly without callus formation. In these species, L. christinae developed the highest regeneration rate and numbers of shoots/explant from shoot tips (100%, 12.25) and leaf bases (100%, 13.01) on the MS medium containing 3.0 mg l−1 BAP and 0.1 mg l−1 NAA. For L. rubinervis, the highest shoot induction rate and number of shoots/explant were obtained from shoot tip (100%, 16.87–17.20) on the MS medium with 0.1 mg l−1 NAA and 3.0–5.0 mg l−1 BAP. L. nummularia ‘Aurea’, however, showed the highest regeneration rate and number of shoots/explant (100%, 12.73) from leaf bases on MS medium supplemented with 1.0 mg l−1 BAP and 0.1 mg l−1 NAA. All in vitro shoots rooted well on half macronutrient MS medium containing 0.1 mg l−1 NAA. After acclimatization, transplanted plantlets grew normally and flowered in the field.  相似文献   

19.
The effects of silicon (Si) application on plant growth, pigments, photosynthetic parameters, chlorophyll a (Chl a) fluorescence parameters and nitrogen metabolism were studied in Cucumis sativus L. under cadmium (Cd) toxicity. Compared with the control, 100 μM CdCl2 treatment caused dramatic accumulation of Cd in cucumber leaves, greatly induced chlorosis, and the transmission electron microscope (TEM) analysis indicated that Cd treatment cucumber chloroplast showed obvious swollen, thylakoids and chloroplast membrane were seriously damaged, and could not be observed clearly. Application of Si reversed the chlorosis, protected the chloroplast from disorganization, and significantly increased the pigments contents, which might be mainly responsible for the higher photosynthetic rate and accumulation of biomass under Cd stress. Further investigation of chlorophyll a fluorescence indicated that Cd treatment decreasing photosynthesis was not due to stomatal restriction, while was closely related integrity damage or function lost of the photosynthetic machinery which can be concluded from the higher intercellular CO2 concentration (Ci) and lower Fv/Fm and ΦPSII. Application of Si alleviated the inhibited level of photosynthesis and Fv/Fm and ΦPSII by Cd, which might imply that Si plays important roles in protecting photosynthetic machinery from damaging. The Cd treatment also greatly inhibited the enzymes of nitrogen metabolism including nitrogen reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH), and Si supply decreased the inhibiting effects of Cd.  相似文献   

20.
The Spanish type cultivar ‘Piel de Sapo’ (Cucumis melo L. var. saccharinus), has a limited compatibility with the Cucurbita maxima × Cucurbita moschata hybrids currently used as rootstocks. Double grafting can be used to improve compatibility between rootstock and scion by means of an intermediate rootstock compatible with both. Non-grafted, single, and double grafted melon plants of the cultivar Piel de Sapo were evaluated for water, nutrient absorption, photosynthesis activity, biomass production in early phases, as well as for yields and fruit quality in a long term trial. The hybrid ‘Shintoza’ (C. maxima × C. moschata) was used as rootstock, and the cantaloupe type melon cultivar ‘Sienne’ as an intermediate scion. Grafting did not affect net photosynthetic values, yet increased water use efficiency (35%). Double grafted plants increased aerial dry weights (66% and 31% with respect to non-grafted and simple graft plants, respectively), and also increased capacity for uptaking beneficial minerals (between 61% and 13% and particularly for NO3, P, K, Ca, Mn, and Zn) with respect to non-grafted and single grafted plants. The quantum efficiency PSII photochemistry values increased in double grafted plants (12%) with respect to the control plants. Consequently, double grafting on a vigorous rootstock such as ‘Shintoza’, with an intermediate scion, results in improved mineral and water absorption and achieves an increase in ion influx to the scion – so enabling an increase in light photosynthetic reaction and biomass. Double grafted plants increased fruit yield when compared to simple grafted and non-grafted plants (12% and 56%, respectively) and did not affect fruit quality in terms of °Brix and colour. In conclusion, double grafting presents several beneficial aspects that are counter-balanced by the extra cost of the technique. The difference in yields reflects compatibility problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号