首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Co)variance components and genetic parameters for various growth traits of Avikalin sheep maintained at Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India, were estimated by Restricted Maximum Likelihood, fitting six animal models with various combinations of direct and maternal effects. Records of 3,840 animals descended from 257 sires and 1,194 dams were taken for this study over a period of 32 years (1977–2008). Direct heritability estimates (from best model as per likelihood ratio test) for weight at birth, weaning, 6 and 12 months of age, and average daily gain from birth to weaning, weaning to 6 months, and 6 to 12 months were 0.28 ± 0.03, 0.20 ± 0.03, 0.28 ± 0.07, 0.15 ± 0.04, 0.21 ± 0.03, 0.16 and 0.03 ± 0.03, respectively. Maternal heritability for traits declined as animal grows older and it was not at all evident at adult age and for post-weaning daily gain. Maternal permanent environmental effect (c 2) declined significantly with advancement of age of animal. A small effect of c 2 on post-weaning weights was probably a carryover effect of pre-weaning maternal influence. A significant large negative genetic correlation was observed between direct and maternal genetic effects for all the traits, indicating antagonistic pleiotropy, which needs special care while formulating breeding plans. A fair rate of genetic progress seems possible in the flock by selection for all traits, but direct and maternal genetic correlation needs to be taken in to consideration.  相似文献   

2.
Data were collected over a period of 21 years (1988–2008) to estimate (co)variance components for birth weight (BWT), weaning weight (WWT), 6-month weight (6WT), 9-month weight (9WT), 12-month weight (12WT), average daily gain from birth to weaning (ADG1), weaning to 6WT (ADG2), and from 6WT to 12WT (ADG3) in Sirohi goats maintained at the Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India. Analyses were carried out by restricted maximum likelihood, fitting six animal models with various combinations of direct and maternal effects. The best model was chosen after testing the improvement of the log-likelihood values. Heritability estimates for BWT, WWT, 6WT, 9WT, 12WT, ADG1, ADG2, and ADG3 were 0.39 ± 0.05, 0.09 ± 0.03, 0.06 ± 0.02, 0.09 ± 0.03, 0.11 ± 0.03, 0.10 ± 0.3, 0.04 ± 0.02, and 0.01 ± 0.01, respectively. For BWT and ADG1, only direct effects were significant. Estimate of maternal permanent environmental effect were important for body weights from weaning to 12WT and also for ADG2 and ADG3. However, direct maternal effects were not significant throughout. Estimate of c 2 were 0.06 ± 0.02, 0.03 ± 0.02, 0.06 ± 0.02, 0.05 ± 0.02, 0.02 ± 0.02, and 0.02 ± 0.02 for 3WT, 6WT, 9WT, 12WT, ADG2, and ADG3, respectively. The estimated repeatabilities across years of ewe effects on kid body weights were 0.10, 0.08, 0.05, 0.08, and 0.08 at birth, weaning, 6, 9, and 12 months of age, respectively. Results suggest possibility of modest rate of genetic progress for body weight traits and ADG1 through selection, whereas only slow progress will be possible for post-weaning gain. Genetic and phenotypic correlations between body weight traits were high and positive. High genetic correlation between 6WT and 9WT suggests that selection of animals at 6 months can be carried out instead of present practice of selection at 9 months.  相似文献   

3.
《Livestock Science》2006,99(1):79-89
Genetic parameters and (co)variance components were estimated for weight at birth and at 15, 30, 45, 60 and 75 days of age for a flock of Muzaffarnagari sheep maintained at the Central Institute for Research on Goats, Makhdoom, Mathura over a period of 27 years (1976–2002). Records on 5201 lambs descended from 1568 ewes and 170 rams were included in the analysis. Analyses were carried out by REML fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits, and the best model was chosen after testing improvements in log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Direct heritability estimates were 0.08 ± 0.02 for birth weight and 0.02 ± 0.02, 0.02 ± 0.02, 0.27 ± 0.08, 0.09 ± 0.04, and 0.29 ± 0.08 for weights at 15, 30, 45, 60, and 75 days, respectively. Maternal genetic effects contributed only 4 to 8% of the total phenotypic variance from birth to 30 days of age, and this effect diminished further with increasing age. Maternal heritability was low for pre-weaning growth traits and should have only a small effect on selection response. Estimates of the fraction of variance due to maternal permanent environmental effects were 0.09 ± 0.02, 0.15 ± 0.04, 0.12 ± 0.03, 0.11 ± 0.04, 0.14 ± 0.02, and 0.08 ± 0.04 for body weights at birth and at 15, 30, 45, 60, and 75 days, respectively. These results indicate that selecting for improved maternal and/or direct effects in Muzaffarnagari sheep would generate only slow genetic progress in early growth traits.  相似文献   

4.
Tropical Animal Health and Production - Separation of autosomal and sex-linked direct additive genetic effects has significant role in sheep breeding programs. Hence, this study was conducted to...  相似文献   

5.
Genetic parameters and genetic trends for birth weight (BW), weaning weight (WW), 6-month weight (6MW), and yearling weight (YW) traits were estimated by using records of 5,634 Makooei lambs, descendants of 289 sires and 1,726 dams, born between 1996 and 2009 at the Makooei sheep breeding station, West Azerbaijan, Iran. The (co)variance components were estimated with different animal models using a restricted maximum likelihood procedure and the most appropriate model for each trait was determined by Akaike’s Information Criterion. Breeding values of animals were predicted with best linear unbiased prediction methodology under multi-trait animal models and genetic trends were estimated by regression mean breeding values on birth year. The most appropriate model for BW was a model including direct and maternal genetic effects, regardless of their covariance. The model for WW and 6MW included direct additive genetic effects. The model for YW included direct genetic effects only. Direct heritabilities based on the best model were estimated 0.15?±?0.04, 0.16?±?0.03, 0.21?±?0.04, and 0.22?±?0.06 for BW, WW, 6MW, and YW, respectively, and maternal heritability obtained 0.08?±?0.02 for BW. Genetic correlations among the traits were positive and varied from 0.28 for BW–YW to 0.66 for BW–WW and phenotypic correlations were generally lower than the genetic correlations. Genetic trends were 8.1?±?2, 67.4?±?5, 38.7?±?4, and 47.6?±?6 g per year for BW, WW, 6MW, and YW, respectively.  相似文献   

6.
Genetic and phenotypic parameters were estimated for lamb growth traits for the Dorper sheep in semi-arid Kenya using an animal model. Data on lamb growth performance were extracted from available performance records at the Sheep and Goats Station in Naivasha, Kenya. Growth traits considered were body weights at birth (BW0, kg), at 1 month (BW1, kg), at 2 months (BW2, kg), at weaning (WW, kg), at 6 months (BW6, kg), at 9 months (BW9, kg) and at yearling (YW, kg), average daily gain from birth to 6 months (ADG0–6, gm) and from 6 months to 1 year (ADG6–12, gm). Direct heritability estimates were, correspondingly, 0.18, 0.36, 0.32, 0.28, 0.21, 0.14, 0.29, 0.12 and 0.30 for BW0, BW1, BW2, WW, BW6, BW9, YW, ADG0–6 and ADG6–12. The corresponding maternal genetic heritability estimates for body weights up to 9 months were 0.16, 0.10, 0.10, 0.19, 0.21 and 0.18. Direct-maternal genetic correlations were negative and high ranging between −0.47 to −0.94. Negative genetic correlations were observed for ADG0–6–ADG6–12, BW2–ADG6–12, WW–ADG6–12 and BW6–ADG6–12. Phenotypic correlations ranged from 0.15 to 0.96. Maternal effects are important in the growth performance of the Dorper sheep though a negative correlation exists between direct and maternal genetic effects. The current study has provided important information on the extent of additive genetic variation in the existing flocks that could now be used in determining the merit of breeding rams and ewes for sale to the commercial flocks. The estimates provided would form the basis of designing breeding schemes for the Dorper sheep in Kenya. Implications of the study to future Dorper sheep breeding programmes are also discussed.  相似文献   

7.
SUMMARY: Field data on weight recordings provided by the Australian Simmental Breeders Association was analysed. From a data set of 64,962 animals, which had either birth (BW), weaning (WW), yearling (YW), or final weight (FW) records a subset of 17 herds comprising 18,083 animals was used to obtain uni- and bivariate estimates of variance components. This subset had to be subdivided into six further subsets, called group herds. The models used allowed for additive genetic, maternal genetic, and permanent environmental effects and for a covariance between additive direct and maternal genetic effects. Estimates were pooled across group herds. The results for BW, WW, YW, FW were .33, .35, .37, and .30, respectively, for heritabilities and .074, .18, and .11 for maternal heritabilities (not estimated for FW). Significant correlations between direct and maternal genetic effects (rAM) existed for WW and YW in the magnitude of -.39 and -.22. However, further research is needed due to the problems associated with the estimation of r(AM) . ZUSAMMENFASSUNG: Sch?tzung direkter und maternaler (Ko)Varianz-Komponenten für Wachstumsmerkmale bei australischem Fleckvieh Gegenstand der Untersuchung waren im Feld erhobene Gewichte, die von der Australischen Simmental Breeders Association bereitgestellt worden waren. Aus einer Datei von 64.962 Tieren, die entweder ein Geburtsgewicht (GG), ein Absetzgewicht (AG), ein J?hrlingsgewicht (JG) oder ein Endgewicht (EG) aufwiesen, wurde ein Teildatensatz von 18.083 Tieren extrahiert und einer uni- und bivariaten Sch?tzung von Varianzkomponenten unterzogen. Diese Datei mu?te weiterhin in sechs verschiedene Dateien aufgeteilt werden; diese wurden Gruppenherden genannt. Die verwendeten Modelle erlaubten additiv-genetische, maternal-genetische und permanente Umwelteffekte sowie das Vorhandensein einer Kovarianz zwischen additiv-genetischem und maternal-genetischem Effekt. Die Sch?tzwerte wurden über die Gruppenherden gepoolt. Die Ergebnisse in der Reihenfolge GG, AG, JG und EG waren 0,33, 0,35, 0,37 und 0,30 für die Heritabilit?ten sowie 0,074, 0,18 und 0,11 für die maternalen Heritabilit?ten (nicht gesch?tzt für EG). Signifikante Korrelationen zwischen direktem und maternal-genetischem Effekt (r(AM) ) existierten für AG und JG in der Gr??enordnung von -0,39 und -0,22. Trotz dieses Ergebnisses sind weitere Untersuchungen n?tig, weil die Sch?tzung von r(AM) problematisch ist.  相似文献   

8.
Direct and maternal (co)variance components and genetic parameters were estimated for growth and reproductive traits in the Kenya Boran cattle fitting univariate animal models. Data consisted of records on 4502 animals from 81 sires and 1010 dams collected between 1989 and 2004. The average number of progeny per sire was 56. Direct heritability estimates for growth traits were 0.34, 0.12, 0.19, 0.08 and 0.14 for birth weight (BW), weaning weight (WW), 12-month weight (12W), 18-month weight (18W) and 24-month weight (24W), respectively. Maternal heritability increased from 0.14 at weaning to 0.34 at 12 months of age but reduced to 0.11 at 24 months of age. The maternal permanent environmental effect contributed 16%, 4% and 10% of the total phenotypic variance for WW, 12W and 18W, respectively. Direct-maternal genetic correlations were negative ranging from −0.14 to −0.58. The heritability estimates for reproductive traits were 0.04, 0.00, 0.15, 0.00 and 0.00 for age at first calving (AFC), calving interval in the first, second, and third parity, and pooled calving interval. Selection for growth traits should be practiced with caution since this may lead to a reduction in reproduction efficiency, and direct selection for reproductive traits may be hampered by their low heritability.  相似文献   

9.
Estimates of (co)variance components and genetic parameters were calculated for birth weight (BWT), weaning weight (WWT), 6 month weight (6WT), 9 month weight (9WT), 12 month weight (12WT) and greasy fleece weight at first clip (GFW) for Malpura sheep. Data were collected over a period of 23 years (1985–2007) for economic traits of Malpura sheep maintained at the Central Sheep & Wool Research Institute, Avikanagar, Rajasthan, India. Analyses were carried out by restricted maximum likelihood procedures (REML), fitting six animal models with various combinations of direct and maternal effects. Direct heritability estimates for BWT, WWT, 6WT, 9WT, 12WT and GFW from the best model (maternal permanent environmental effect in addition to direct additive effect) were 0.19 ± 0.04, 0.18 ± 0.04, 0.27, 0.15 ± 0.04, 0.11 ± 0.04 and 0.30 ± 0.00, respectively. Maternal effects declined as the age of the animal increased. Maternal permanent environmental effects contributed 20% of the total phenotypic variation for BWT, 5% for WWT and 4% for GFW. A moderate rate of genetic progress seems possible in Malpura sheep flock for body weight traits and fleece weight by mass selection. Direct genetic correlations between body weight traits were positive and ranged from 0.40 between BWT and 6WT to 0.96 between 9WT and 12WT. Genetic correlations of GFW with body weights were 0.06, 0.49, 0.41, 0.19 and 0.15 from birth to 12WT. The moderately positive genetic correlation between 6WT and GFW suggests that genetic gain in the first greasy fleece weight will occur if selection is carried out for higher 6WT.  相似文献   

10.
The purpose of this study was to estimate the genetic parameters for birth weight of Karayaka lambs by separating direct genetic, maternal genetic, and maternal permanent environmental effects. Records of 1013 Karayaka lambs born between 2005 and 2010 were analyzed. Six different animal models were examined, all including direct additive genetic variance and various combinations of genetic and environmental maternal effects. The most appropriate model was chosen based on log-likelihood ratio tests. Since model 1 had the smallest likelihood value, it was chosen as the best model in this study. Depending on the model, direct heritability varied from 0.37 to 0.55 and maternal heritability ranged from 0.08 to 0.20 for birth weight.  相似文献   

11.
Variance components and genetic parameters for greasy fleece weights of Muzaffarnagari sheep maintained at the Central Institute for Research on Goats, Makhdoom, Mathura, India, over a period of 29 years (1976 to 2004) were estimated by restricted maximum likelihood (REML), fitting six animal models including various combinations of maternal effects. Data on body weights at 6 (W6) and 12 months (W12) of age were also included in the study. Records of 2807 lambs descended from 160 rams and 1202 ewes were used for the study. Direct heritability estimates for fleece weight at 6 (FW6) and 12 months of age (FW12), and total fleece weights up to 1 year of age (TFW) were 0.14, 0.16 and 0.25, respectively. Maternal genetic and permanent environmental effects did not significantly influence any of the traits under study. Genetic correlations among fleece weights and body weights were obtained from multivariate analyses. Direct genetic correlations of FW6 with W6 and W12 were relatively large, ranging from 0.61 to 0.67, but only moderate genetic correlations existed between FW12 and W6 (0.39) and between FW12 and W12 (0.49). The genetic correlation between FW6 and FW12 was very high (0.95), but the corresponding phenotypic correlation was much lower (0.28). Heritability estimates for all traits were at least 0.15, indicating that there is potential for their improvement by selection. The moderate to high positive genetic correlations between fleece weights and body weights at 6 and 12 months of age suggest that some of the genetic factors that influence animal growth also influence wool growth. Thus selection to improve the body weights or fleece weights at 6 months of age will also result in genetic improvement of fleece weights at subsequent stages of growth.  相似文献   

12.
The objective of this study was to estimate genetic parameters, in Katahdin sheep, for total weight of litter weaned per ewe lambing (TW) and its components, number of lambs born (NB), number of lambs weaned (NW), and average weight of lambs weaned (AW) measured as traits of the ewe. Weaning weights of lambs (WW) were adjusted to 60 d of age and for effects of ewe age, lamb sex, and type of birth and rearing and averaged over all lambs in the litter to obtain AW. The 60-d age-adjusted WW were adjusted for ewe age and lamb sex and summed over all lambs in the litter to obtain TW. A total of 2,995 NB and NW records, 2,622 AW, and 2,714 TW records were available from 1,549 ewes (progeny of 235 sires) over 4 yr. Heritabilities were initially estimated for each trait from univariate REML analyses. Estimates of genetic correlations were obtained from bi- and trivariate analyses. Models for NB, NW, AW, and TW included random ewe additive and permanent environmental effects. A random service sire effect was also fit for AW and TW. Heritabilities of TW, NB, NW, and AW from univariate analyses were 0.12, 0.12, 0.09, and 0.13 (all P < 0.01), respectively. Permanent environmental effects were significant (P < 0.01) for TW and AW. Genetic correlations of TW with NB, NW, and AW ranged from 0.27 to 0.33, 0.88 to 0.91, and 0.72 to 0.76, respectively; those of NB with NW and AW ranged from 0.70 to 0.75 and -0.01 to 0.02, respectively; and that between NW and AW ranged from 0.40 to 0.55. Genetic parameters were also obtained for lamb survival to weaning (LS) and WW measured as traits of the lamb, and the relationships between WW of the ewe as a lamb and her subsequent records for NB and NW were also estimated. A total of 5,107 LS and 5,444 WW records were available. Models for WW and LS included random animal and maternal genetic, maternal permanent environmental, and litter effects. Heritability of WW ranged from 0.15 to 0.20. There was no evidence of genetic effects on LS. Direct genetic correlations of WW with NB and NW were not significantly different from zero. The correlation between maternal genetic effects on WW, and animal genetic effects on NW, averaged 0.35. Results of this study indicate that there are no major antagonisms among TW and its components, so that selection for TW would not have adverse effects on any component traits and vice versa. Maternally superior ewes for WW appear to also be somewhat superior for NW.  相似文献   

13.
Tropical Animal Health and Production - The objective of the present study was to estimate variance components and genetic parameters for average daily gain from birth to weaning (ADGa), birth to...  相似文献   

14.
Estimates of genetic parameters for growth traits in Kermani sheep   总被引:3,自引:0,他引:3  
Birth weight (BW), weaning weight (WW), 6-month weight (W6), 9-month weight (W9) and yearling weight (YW) of Kermani lambs were used to estimate genetic parameters. The data were collected from Shahrbabak Sheep Breeding Research Station in Iran during the period of 1993-1998. The fixed effects in the model were lambing year, sex, type of birth and age of dam. Number of days between birth date and the date of obtaining measurement of each record was used as a covariate. Estimates of (co)variance components and genetic parameters were obtained by restricted maximum likelihood, using single and two-trait animal models. Based on the most appropriate fitted model, direct and maternal heritabilities of BW, WW, W6, W9 and YW were estimated to be 0.10 +/- 0.06 and 0.27 +/- 0.04, 0.22 +/- 0.09 and 0.19 +/- 0.05, 0.09 +/- 0.06 and 0.25 +/- 0.04, 0.13 +/- 0.08 and 0.18 +/- 0.05, and 0.14 +/- 0.08 and 0.14 +/- 0.06 respectively. Direct and maternal genetic correlations between the lamb weights varied between 0.66 and 0.99, and 0.11 and 0.99. The results showed that the maternal influence on lamb weights decreased with age at measurement. Ignoring maternal effects in the model caused overestimation of direct heritability. Maternal effects are significant sources of variation for growth traits and ignoring maternal effects in the model would cause inaccurate genetic evaluation of lambs.  相似文献   

15.
The objective of this study was to estimate variance and covariance components, in Iranian Cashmere goats, for birth weight (BWT) and weaning weight (WWT) performances of kids and total weight of kids weaned (TWW) per doe joined at first (TWW1), second (TWW2) and third (TWW3) parities by REML procedures using univariate and multivariate animal models. The analysis was based on 2313 records of kids and 940 records of does. Through ignoring or including maternal additive genetic or maternal permanent environmental effects, four different models were fitted for BWT and WWT performances. For TWW performances only two models (without or with service sire effect) were used. Models were compared using likelihood ratio test. Direct additive genetic and maternal permanent environmental effects had significant influence on BWT and WWT performances. These effects accounted for 9.4% and 15.6%, and 13.9% and 6.7% of phenotypic variation, respectively. No significant effect of service sire was observed on TWW. The estimates of heritabilities were 0.072, 0.109 and 0.082 for TWW1, TWW2 and TWW3, respectively. Direct genetic correlations among all performances were positive and low (for BWT with TWW) to high (for BWT with WWT and WWT with TWW). The corresponding estimates for phenotypic and residual correlations were moderate and lower than genetic correlations. The high genetic correlation among WWT and TWW suggests that direct selection on TWW1 or indirect selection on WWT would increase total weight of kids weaned per doe joined.  相似文献   

16.
Estimates of (co)variance components were obtained for weights at birth, weaning and 6, 9 and 12 months of age in Chokla sheep maintained at the Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India, over a period of 21 years (1980–2000). Records of 2030 lambs descended from 150 rams and 616 ewes were used in the study. Analyses were carried out by restricted maximum likelihood (REML) fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits. The best model was chosen after testing the improvement of the log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Heritability estimates for weight at birth, weaning and 6, 9 and 12 months of age were 0.20, 0.18, 0.16, 0.22 and 0.23, respectively in the best models. Additive maternal and maternal permanent environmental effects were both significant at birth, accounting for 9% and 12% of phenotypic variance, respectively, but the source of maternal effects (additive versus permanent environmental) at later ages could not be clearly identified. The estimated repeatabilities across years of ewe effects on lamb body weights were 0.26, 0.14, 0.12, 0.13, and 0.15 at birth, weaning, 6, 9 and 12 months of age, respectively. These results indicate that modest rates of genetic progress are possible for all weights.  相似文献   

17.
Several studies have noted high negative correlations between maternal genetic and direct additive effects and their influence on additive and maternal heritability of early growth traits in sheep. Multigeneration data from the Suffolk Sire Reference Scheme (SSRS) were used to investigate the effect of data structure on estimates of direct and maternal (co)variances for lamb 8-wk weight. In all analyses the additive, maternal genetic, maternal environmental, and residual effects were fitted along with the covariance between direct and maternal additive effects. The contributions of particular genetic relationships to the estimates were studied by analyzing subsets of the SSRS data. A further eight subsets were formed having 10% or 50% of the dams with their own records and having one or two, three or four, five or six, and more than six offspring per dam. Analysis of data having only 10% of the dams with their own record and one or two offspring records yielded a high negative correlation (-0.99) between direct and maternal genetic effects. However, the seven other data sets with more records per dam or a higher proportion of dams with their own records produced values of -0.35 to -0.51. Data structure and the number of dams and granddams with records are important determinants of estimated direct and maternal effects in early growth traits.  相似文献   

18.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

19.
The aim of this study was to estimate the (co)variance components and breeding values for birthweight (BW) in Nellore cattle by considering or not identical weights that exhibit a high frequency within the contemporary group (CG). A total of 175,258 BW records of Nellore cattle born between 2002 and 2018 were used. The CG was formed by farm, year of birth, sex and feeding regime at birth. CGs with more than 16% of identical BW values were eliminated, generating a data file called BWd. Another file was created without removing these animals (BWt). A mixed linear model was used for statistical analysis, which included fixed and random effects. In both data files analysed, single-trait analysis was performed by Bayesian inference. The mean direct and maternal heritability for BW and the correlation between direct and maternal effects were 0.27, 0.07 and −0.07 for BWt, respectively, and 0.30, 0.093 and −0.07 for BWd. This method should affect the estimation of genetic merits of animals for BW, providing greater safety in the choice of sires.  相似文献   

20.
The genotype of an individual and the environment as the maternal ability of its dam have substantial effects on the phenotype expression of many production traits. The aim of the present study was to estimate the (co)variance components for worm resistance, wool and growth traits in Merino sheep, testing the importance of maternal effects and to determine the most appropriate model for each trait. The traits analyzed were Greasy Fleece Weight (GFW), Clean Fleece Weight (CFW), average Fibre Diameter (FD), Coefficient of Variation of FD (CVFD), Staple Length (SL), Comfort Factor (CF30), Weaning Weight (WWT), Yearling Body Weight (YWT) and Faecal worm Egg Count (FEC). The data were recorded during a 15-year period from 1995 to 2010, from Uruguayan Merino stud flocks. A Bayesian analysis was performed to estimate (co)variance components and genetic parameters. By ignoring or including maternal genetic or environmental effects, five different univariate models were fitted in order to determine the most effective for each trait. For CVFD and YWT, the model fitting the data best included direct additive effects as the only significant random source of variation. For GFW, CFW, FD, SL and CF30 the most appropriate model included direct-maternal covariance; while for FEC included maternal genetics effects with a zero direct-maternal covariance. The most suitable model for WWT included correlated maternal genetic plus maternal permanent environmental effects. The estimates of direct heritability were moderate to high and ranged from 0.15 for log transformed FEC to 0.74 for FD. Most of the direct additive genetic correlation (rg) estimations were in the expected range for Merino breed. However, the estimate of rg between FEC and FD was unfavourable (−0.18±0.03). In conclusion, there is considerable genetic variation in the traits analyzed, indicating the potential to make genetic progress on these traits. This study showed that maternal effects are influencing most of traits analyzed, thus these effects should be considered in Uruguayan Merino breeding programs; since the implementation of an appropriate model of analysis is critical to obtain accurate estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号