首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coupling of atomic force microscopy (AFM) with nanothermal analysis (nTA) has the potential to assess material characteristics in soils on the lower µm‐scale, but has been shown to require additional characteristics for clear distinction of materials. The objective of this study was to evaluate to which extent the combination of AFM‐nTA with AFM adhesion force analysis and structural features allows distinction of organic materials in soils. Using soil samples from a chronosequence from the Damma Glacier forefield, Switzerland, as example, we tested a grid analysis approach for assessing distribution of adhesion forces and nanothermal characteristics. This approach was compared with an approach involving pre‐selection of structural features of interest via morphological criteria. Only three types of nanothermograms were distinguished in the soil samples based on different thermal expansion‐compression characteristics and phase transition temperatures. Combined evaluation of nanothermal characteristics, adhesion forces and morphological characteristics allowed distinction of a larger set of materials than using nanothermal analysis, adhesion force distribution or morphological characteristics separately. Part of the analyzed features showed a combination of characteristics similar to that of fresh bacterial cells which we analyzed as a potential reference material. Their stronger occurrence in the regions of interest of older samples than in those of younger samples may underline their relevance in soil development. Achieving the long‐term objective of identification of materials still requires more information on reference materials, understanding the impact of mixed layering of materials on thermal profiles and the assessment of variability of the characteristics within and between different material groups.  相似文献   

2.
The effect of different concentrations of monosilicic acid on the sorption capacity of quartz sand, diatomite, zeolite, and brown coal with respect to cadmium and arsenic has been studied in laboratory conditions. The applicability of different adsorption models, including exponential, semilogarithmic, and linear dependences, as well as the Langmuir and Freundlich equations, has been compared. An increase in monosilicic acid concentration from 0 to 2 mM increased the sorption capacity of all materials. It has been suggested that either the interaction of monosilicic acid with a pollutant takes place directly in the solution followed by sorption of the reaction products on the surface or in the pores of the sorbent, or first adsorption of the monosilicic acid by the sorbent occurs followed by interaction of the sorbed silicic acid with cadmium and arsenic; it is also possible that both process proceed in parallel.  相似文献   

3.

Purpose

Brazilian soils that present extremely hard sub-superficial horizons when dry and friable when humid are similar to the Australian and South African hardsetting horizons whose hardness can be mainly related to low crystallinity. Studies involving refinement by the Rietveld method with X-ray diffraction (RM-XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and their relation have not been carried out in hardsetting horizon soils. Thus, the objective of this study is to obtain information about the kaolinite in the hardsetting horizon of a Yellow Argisol clay fraction, taking into consideration the results of isomorphic substitution, crystallite average size, and microstrains, relating them to particle image analysis regarding their morphology and size.

Materials and methods

Soil samples were collected in the hardsetting horizon of a Yellow Argisol in the Coastal Tablelands region, which covers the whole Brazilian Northeast coast and part of the Southeast region. The sample was powdered, sieved, and submitted to dispersion and physical fractioning process by sedimentation. The clay fraction was analyzed by RM-XRD, AFM, and SEM techniques.

Results and discussion

The RM-XRD provided improvement of indices with isomorphic substitutions in the goethite [Fe0.70Al0.30O(OH)], kaolinite [Al1.44Fe0.56Si2O5(OH)4], and halloysite [Al1.42Fe0.58Si2O5(OH)4]; 29 nm crystallite average size; 5 × 10?3 microstrain; and 49.5% kaolinite. AFM analyses indicated particle average size from 80 to 250 nm and average height from 60 to 80 nm. By relating this data, it was possible to estimate that the particles under analysis are kaolinite composed of 3 to 9 crystallites and stacking of 88 to 112 layers.

Conclusions

The process, analyses, and comparisons such as crystallographic and morphologic information about the kaolinite mineral particles contribute to the comprehension of the hardsetting horizon soil nature as well as other soils that present minerals with a high degree of isomorphic substitution.
  相似文献   

4.
保水剂在尿素和阳离子溶液中的吸水性能及养分吸附特征   总被引:1,自引:0,他引:1  
【目的】电解质种类和浓度影响保水剂的吸水性能。探明保水剂与尿素、不同价态阳离子间的相互作用,对于正确使用和开发水肥调控性能优越的缓释材料具有重要意义。【方法】试验选用聚丙烯酰胺–丙烯酸盐型保水剂[P(AA-AM)]和聚丙烯酸盐型保水剂 (PAA)。以分析纯盐酸盐和尿素分别配置了浓度1~256 mmol/L的尿素、NH4+、Na+、K+、Mg2+、Ca2+、Fe3+、Al3+溶液。称取保水剂0.3000 g于75 μm尼龙袋中,分别置于以上各系列溶液和去离子水300 mL中,静置12 h。取出保水剂袋,沥水30 min,以差减法测定保水剂吸水倍率和对溶质的吸附量。【结果】在溶质浓度从1 mmol/L增加到256 mmol/L时,尿素溶液中保水剂的吸水倍率没有显著下降,而各阳离子溶液中保水剂的吸水倍率显著下降,保水剂的相对吸水倍率与尿素、各种离子浓度之间呈显著幂函数的减函数关系,最终下降幅度由小到大依次为尿素、一价阳离子、二价阳离子、三价阳离子。保水剂对溶液中尿素和各种阳离子的吸附量随溶液浓度的增加而增加,P(AA-AM) 的最大吸附量:尿素64.66 mmol/g、Na+ 45.24 mmol/g、K+ 34.26 mmol/g、NH4+ 32.63 mmol/g、Mg2+ 30.09 mmol/g、Ca2+ 23.96 mmol/g、Fe3+ 8.07 mmol/g、Al3+ 12.74 mmol/g。保水剂对尿素和一、二价阳离子的吸附特征可用Freundlich等温吸附模型表征,对三价阳离子的吸附特征可用Langmuir等温吸附模型表征。尿素和二、三价阳离子对P (AA-AM) 吸水倍率的影响均小于其对PAA的影响(P < 0.05),一价阳离子对P (AA-AM) 和PAA影响差异不明显(P > 0.05)。P (AA-AM) 吸附尿素和阳离子的能力要大于 PAA(P<0.05)。【结论】保水剂对尿素的吸附量远高于阳离子,而尿素浓度基本不影响保水剂的保水性能。三价、二价和一价阳离子可显著降低保水剂的吸水倍率,阳离子浓度与保水剂的吸水倍率之间呈幂函数关系。保水剂对一价阳离子的最大吸附量大于对二价阳离子的吸附量,也远大于对三价阳离子的吸附量。聚丙烯酰胺–丙烯酸盐型保水剂[P(AA-AM)]对溶质的吸附性能大于聚丙烯酸盐型保水剂 (PAA)。因此,把保水剂作为缓释包膜材料包裹尿素比较适宜,但不适宜包裹盐类肥料。  相似文献   

5.
6.
The effect of varying solution calcium (Ca) and magnesium (Mg) concentrations in the absence or presence of 10 μM aluminum (Al) was investigated in several experiments using a low ionic strength (2.7 × 10‐3 M) solution culture technique. Aluminium‐tolerant and Al‐sensitive lines of wheat (Triticum aestivum L.) were grown. In the absence of Al, top yields decreased when solution Ca concentrations were <50 μM or plant Ca concentrations were <2.0 mg/g. Top and root yields decreased when solution Mg concentrations were <50 μM or plant Mg concentrations were <1.5 mg/g. There were no differences between the lines in solution or plant concentrations at which yield declined. Increasing solution Ca concentrations decreased plant Mg concentrations in the tops (competitive ion effect) but increased plant Mg concentrations in the roots of wheat. This suggests that Ca is competing with Mg when Mg is transported from the roots. Increasing solution Mg concentrations decreased plant Ca concentrations in the tops and the roots (competitive ion effect). In the roots, increasing solution Mg concentrations decreased plant Ca concentrations at a lower solution Ca concentration in the Al‐sensitive line than the Al‐tolerant line. In the presence of Al, increasing solution Ca and Mg concentrations increased yield (Ca and Mg ameliorating Al toxicity). Yield increased until the sum of the solution concentrations of the divalent cations (Ca+Mg) was 2,000 μM for the Al‐tolerant line or 4,000 μM for the Al‐sensitive line. The exception was that yield decreased when solution Mg concentrations were > 1,500 μM and the solution Ca concentration was 100 μM (Mg exacerbating Al toxicity). The ameliorative effects of solution Ca or Mg on Al tolerance were not related to plant Ca or Mg concentrations per se.  相似文献   

7.
The antioxidant activity of the phenolic fraction of extra virgin olive oil was assessed in samples that had a decreasing content of antioxidants in the presence and absence of copper ions as a catalyst of autoxidation. The oxidation process was evaluated by measuring primary and secondary oxidation products. Changes in phenols and tocopherols were investigated by high-performance liquid chromatography. Both the total phenol content and their antioxidant activity were monitored by spectrophotometric assays (with Folin-Ciocalteu and ABTS*+ reagents). The important role of phenolic compounds (particularly the o-diphenols) in protection from autoxidation was confirmed. However, the tocopherols were more quickly consumed in oils that had the lowest content of o-diphenols, which also showed evidence of an ability to chelate copper. In particular, a dramatic decrease was observed in the isomeric form of decarboxymethyl-oleuropein aglycone after addition of the metal, despite its significant increase in samples stored in the absence of copper.  相似文献   

8.
(+)-catechin was separately incubated with furfural or with 5-(hydroxymethyl)furfural, and the formation of new oligomeric bridged compounds having flavanol units linked by furfuryl or 5-hydroxymethylfurfuryl groups was observed. LC/ESI-MS analyses detected four dimeric adducts along with intermediate adducts in each solution, and reaction was faster with furfural than with hydroxymethylfurfural. In addition, new compounds exhibiting the same UV--visible spectra as xanthylium salts with absorption maxima around 440 nm were also detected. When malvidin 3-O-glucoside or cyanidin 3-O-glucoside was added to the mixtures, new oligomeric colorless and colored pigments involving both (+)-catechin and anthocyanin moieties were detected, showing thus that the two polyphenols competed in the condensation process. Among the obtained colored pigment adducts, two dimeric compounds in which the flavanol was bridged to the anthocyanin were observed. Their UV-visible spectra were similar to the spectrum of malvidin 3-O-glucoside, but their maximum in the visible region was bathochromically shifted.  相似文献   

9.
Surimi and natural actomyosin (NAM) from ling cod (Ophiodon elongatus) were subjected to frozen storage in the absence or presence of cryoprotectants (sorbitol, sucrose, lactitol, and Litesse, either individually or in combination). Effects of frozen storage were studied for NAM frozen at -10 degrees C for 10 days and for surimi after eight freeze-thaw cycles. A commercial blend cryoprotectant (4% sucrose and 4% sorbitol), individual cryoprotectants at 8%, and optimal blends at 4, 5.5, 6, and 8%, were effective in maintaining the gel strength of surimi and NAM gels. Surimi or NAM frozen in the absence of cryoprotectants or with only 4% individual cryoprotectants, showed increased percent alpha-helical content by Raman analysis. Increased disulfide content was also observed in the treatment without cryoprotectants by the Raman SS stretching band and by chemical determination. Tyrosine residues were in a buried environment before and after freezing for all treatments, and surface hydrophobicity measured by 1-anilinonaphthalene-8-sulfonate decreased after frozen storage in the absence of cryoprotectants.  相似文献   

10.
《CATENA》2001,45(1):73-84
Twenty-three pedons from six salt marshes in SE Spain, occurring under a semiarid Mediterranean climate, were classified according to various FAO and USDA Soil Survey Staff (SSS) systems. In each salt marsh, the sampling sites were selected to represent seven different plant communities. For the plant communities studied, less diversity of soil classes was observed at the Unit level using the 1998 version of the FAO soil classification system than the 1994 edition and less at the Great Group level for the 1996, 1998 and 1999 versions of the USDA system than the 1992 version. The FAO 1988 version defines the characteristics of these soils better than the 1994 edition because the former includes the possibilities of classifying at the third level and of using salic and sodic phases. The 1998 version offers greater possibilities for expressing the characteristics of these soils, but two considerations would improve the results: (i) the use of the term Hyposalic instead of Endosalic in the Calcisols group; (ii) the possibility of using the petrocalcic horizon in the Solonchak group. The main shortcomings of the 1996 and 1998 versions of the USDA system for classifying these soils are: (i) the lack of a class to indicate a high concentration of salts in the Mollisol Order independently of the presence of a natric horizon and/or aquic conditions; (ii) failure to indicate the existence of a petrocalcic horizon at the Salids Great Group level. These two problems can be overcome in the 1999 version by the use of the adjectives Halic and Petrocalcic, respectively.  相似文献   

11.
Non-legume crops grown in rotation with legumes usually have reduced N-fertilizer requirement, which has both economic and environmental benefits. In this study, we aimed to assess the indirect effect of Phaseolus vulgaris inoculation with two indigenous rhizobia strains on potato growth promotion and disease control in relation to inoculation effects on soil bacterial communities. T-RFLP profiling demonstrated that inoculation significantly increased the phylotype richness of the bacterial communities at the end of P. vulgaris life cycle. A significant difference in richness between simple and dual inoculation was found. Effects on bacterial structure are clearly sensed with both inoculants. Various bacteria like Halomonas, Arthrobacter, Rahnella, Actinobacterium and Frankia were enhanced by inoculation irrespective of the inoculant type. However, other bacteria like Clostridium, Bacillus, Stenotrophomonas and Xanthomonas were enhanced by rhizobial mono-inoculation only and not by co-inoculation with both strains. Some bacteria may potentially behave like plant growth promoting rhizobacteria (PGPR) towards potatoes grown in rotation with common bean, as indicated by the 32% increase observed in potato yield, and also by the 56% decrease in potato wireworm infection. Therefore, rhizobia inoculation may contribute to the rotational benefits of legumes in potato cropping systems not only by providing fixed nitrogen, but also by increasing microbial diversity and structure, potentially stimulating plant growth promoting rhizobacteria and enhancing disease control. However, these effects depend largely on inoculant formulation.  相似文献   

12.
The total phenolic and flavonoid content of the aerial parts of five aromatic plants harvested at different periods was estimated, and their antioxidant capacity was evaluated. Major phenolic compounds present in their extracts were determined by RP-HPLC. The results demonstrated different amounts of total phenolic compounds and various degrees of antioxidant activity depending on the plant species, the time of harvest, and the drying method employed. Extracts from air-dried Mentha viridis L., Origanum majorana L., and Rosmarinus officinalis L. demonstrated the greatest efficacy during the flowering stage, in which the identified flavonoids were found in significantly higher amounts, whereas phenolic acids were found in their lowest concentration. Extracts from air-dried Laurus nobilis L. and Foeniculum vulgare Mill were less efficient in terms of antioxidant activity, with the highest values being observed during the early fruiting stage. This stage was characterized by the lowest flavonoid content and high phenolic acid content, except for L. nobilis L. extracts. Overall, the amount of identified phenolic acids did not vary considerably within the investigated year. The total phenolic concentration in all plant extracts decreased significantly when freeze-dried rather than air-dried samples were used. The HPLC analysis further supported the above for most of the phenolic compounds present in the extracts, except for hydroxybenzoic acids, which were better retained during the freeze-drying process.  相似文献   

13.
Sharp peaks in nitrous oxide (N2O) fluxes under no-tillage in wet conditions appear to be related to near surface soil and crop cover conditions. Here we explored some of the factors influencing tillage effects on short-term variations in gas flux so that we could learn about the mechanisms involved. Field investigations revealed that a cumulative emission of 13 kg N2O–N ha−1 over a 12-week period was possible under no-tillage for spring barley. We investigated how reducing crop cover and changing the structural arrangement of the water-filled pore space (WFPS) by short-term laboratory compaction influenced N2O and carbon dioxide (CO2) fluxes in upward and downward directions in core samples from tilled and untilled soil. Increasing the downward flux of N2O within a soil profile by changing soil or moisture conditions may increase the likelihood of its further reduction to N2 or dissolution. We took undisturbed cores from 3 to 8 cm depth, equilibrated them to −1 or −6 kPa matric potential, incubated them and measured N2O and CO2 fluxes from the upper and lower surfaces in a purpose-designed apparatus before and after compaction in an uniaxial tester. We also measured WFPS, air permeability, bulk density and air-filled porosity before and after compaction. Spring barley was tested in 1999 and winter barley in 2000.Fluxes of N2O were from 1.5 to 35 times higher from no-tilled than ploughed even where the soil was of similar bulk density. Reduction of the crop cover increased CO2 flux and could reduce N2O flux. The effects of structural changes induced by laboratory compaction on the fluxes of N2O and CO2 were not influenced greatly by the tillage and crop cover treatments. Fluxes from the upper surfaces of cores (corresponding to 3 cm soil depth, upwards direction) could be up to 100 times greater (N2O) or 8 times (CO2) than from the lower surfaces (8 cm depth, downwards direction). These differences between surfaces were greatest when N2O fluxes were very high in no-tilled soil (4.2 mg N2O–N m−2 h−1) as occurred when WFPS exceeded 80% or became blocked with water, an effect that was increased by our compaction treatment. In general N2O fluxes increased with WFPS. The production and emission of N2O were strongly influenced by the soil physical environment, the magnitude of the water-filled pore space and continuity of the air-filled pore space in particular, produced in no-till versus plough cultivation.  相似文献   

14.
High rates of cattle slurry application induce NO inf3 sup- leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO inf3 sup- leaching after heavy slurry applications on grassland.  相似文献   

15.
Self-diffusion coefficients of sodium and calcium were measured on a range of moist subsoils. The ratio of concentrations of each isotope in the liquid phase and on the surface at the water content of the diffusion run was obtained from both the extrapolation of ratios measured at a range of soil:solution ratios, and, where possible, by measurement on expressed soil solution.
The diffusion coefficients were considerably greater than would be predicted if only the liquid phase contributed to diffusion. Surface phase impedance factors, f s, were calculated for each soil. f s for sodium was between 1/5 and 1/2 of the liquid phase impedance factor, f L; f s for calcium was between 1/9 and 1/20 of f L. Values of f s were not obviously related to the clay mineralogy, the proportion of internal to external cation adsorption, the volumetric water content, or the pH.  相似文献   

16.
Metal cations were quantitatively detected by atomic absorption spectrometry in samples of olive oil mill waste waters obtained by a pressure process (omww(1)) (K, 17.1; Mg, 2.72; Ca, 2.24; Na, 0.40; Fe, 0.123; Zn, 0.0630; Mn, 0.0147; Cu, 0.00860 g L(-)(1)) and a centrifugation process (omww(2)) (K, 9.80; Mg, 1.65; Ca, 1.35; Na, 0. 162; Fe, 0.0330; Zn, 0.0301; Mn, 0.00910; Cu, 0.00980 g L(-)(1)). The inorganic anions, determined in the same samples by ion chromatography, proved to be Cl(-), H(2)PO(4)(-), F(-), SO(4)(2)(-), and NO(3)(-) (1.61, 1.05, 0.66, 0.52, and 0.023 g L(-)(1), respectively, in omww(1) and 0.61, 0.40, 0.25, 0.20, and 0.0090 g L(-)(1), respectively, in omww(2)). Most of the metal cations were revealed to be bound to the omww organic polymeric fraction (opf), composed of polysaccharides, phenol polymers, and proteins. Opf relative molecular weight was substantially estimated in the range between 1000 and 30000 Da for approximately 75% and in the range from 30000 to 100000 Da for approximately 25%. The free residual cations pool proved to be neutralized by the inorganic counteranions. Finally, the possible exploitation of this material in agriculture and in environmental biotechnology processes is also discussed in the light of its chemical and biochemical oxygen demand parameters.  相似文献   

17.
Earthworms burrow through the soil thereby accumulating many lipophilic organic pollutants from the surrounding environment, so they could be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo[a]pyrene (BaP), with or without added Eisenia fetida and biosolid or vermicompost. Concentrations of PAHs were monitored in soil and earthworms for 70 days. Removal of PAHs increased in soil with earthworms added as 91% of Anth, 16% BaP and 99% Phen was dissipated compared to 42%, 3% and 95% in unamended soil. The microorganisms in the gut of the earthworm contributed to PAHs removal and 100% of Phen, 63% of Anth and 58% of BaP was removed from sterilized soil with E. fetida added. Biosolid and to lesser extent vermicompost accelerated removal of PAHs from soil. Applying earthworms to a contaminated site might be an environmentally friendly way to remove hydrocarbons from soil. However, a limitation might be the cost of the large amounts of earthworms required to remove PAHs from soil and the necessity to supply them with sufficient substrate while maintaining the water content of the soil high enough for their normal functioning.  相似文献   

18.
Climate change has serious impacts on ecosystems, e.g. species diversity and abundance. It is well known that changes in temperature may have a pronounced influence on the reproductive output, growth and survival of various terrestrial species. However, much less is known on to how changes in temperature combined with exposure to pollution will influence biodiversity, the interaction between species, and the resulting change in species composition. In order to understand the effects of changes in temperature and copper pollution (individually and in combination) on soil communities and processes, a factorial multispecies experiment was performed. Six animal species (representing different functional groups) were exposed in control (30 mg Cu/kg) and copper-contaminated soil (1000 mg Cu/kg) to four temperatures (10, 14, 19, and 23 °C) representing the “summer” range (low to high) for Denmark, and three exposure periods (28, 61, and 84 days). The species composition, feeding activity and OM turnover were assessed throughout. Multivariate analysis displayed significant changes in the food-web both with different copper levels and temperatures, resulting in different species composition for each exposure scenario. The most important species were Enchytraeus crypticus (most sensitive to copper and temperature) and Folsomia candida (most abundant). Major changes in abundance due to temperature occurred in the first 28 days of exposure, where population growth was higher. A temperature dependent population growth rate could be modeled for an exposure period of 28 days, whereas after 61 and 84 days of exposure the data did not fit the model. Especially for treatments that also included Cu, modeling of the population growth was no longer possible. The results of our study indicate that when climate change occurs in polluted areas, the consequences on populations cannot be predicted based on data from non-polluted areas. The risk may be synergistic for certain species, as indicated in the present study, and the final balance may depend on the particular species composition of that ecosystem.  相似文献   

19.
The likelihood ratio test (LRT) for the equality of EC50 values using a probit model that has parallel slopes is implemented in a variety of software packages. A preliminary LRT can be used to ascertain the plausibility of parallel slopes. Testing for equal EC50 values is not as straightforward if the preliminary test rejects that the slopes are equal or, equivalently, if a practitioner would rather not deal with the implications on the size of the test in the presence of the preliminary test. An LRT for testing equal EC50 values is not available in software packages for the case of arbitrary slopes. In this article, we describe a simple and effective algorithm for implementing the LRT procedure in this case. We also derive a quadratic form test procedure for the same hypothesis and compare the two tests (size and power) in the context of our application that deals with comparing the toxicity of four different types of selenium. The R-code is available as supplemental material online.  相似文献   

20.
Glucosinolates, present in Brassica vegetables, are thought to contribute to human health prevention because of their enzymatically induced breakdown products, primarily isothiocyanates (ITCs). ITCs are reactive substances that readily react with nucleophilic (food) compounds. The reactivity of allyl-ITC and 4-(methylsulfinyl)butyl-ITC (sulforaphane) toward thiol and amino groups of cysteine and lysine derivatives was studied in buffered model systems as well as broccoli sprouts. The thiol group is the preferred reaction site, and it was demonstrated that even endogenously released sulforaphane is able to react very fast with cysteine in broccoli sprouts. Amino groups reacted slower and only under basic conditions. However, great differences in the reactivity between the different amino compounds were revealed. The aliphatic allylamine reacted very fast with allyl-ITC, forming N,N'-diallylthiourea, a compound identified as a main thermal degradation product of allyl-ITC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号