首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet laser microprobe analyses of a calcium-aluminum-rich inclusion (CAI) from the Allende meteorite suggest that a line with a slope of exactly 1.00 on a plot of delta17O against delta18O represents the primitive oxygen isotope reservoir of the early solar nebula. Most meteorites are enriched in 17O and 18O relative to this line, and their oxygen isotope ratios can be explained by mass fractionation or isotope exchange initiating from the primitive reservoir. These data establish a link between the oxygen isotopic composition of the abundant ordinary chondrites and the primitive 16O-rich component of CAIs.  相似文献   

2.
Experimental evidence is presented which demonstrates a chemically produced, mass-independent isotopic fractionation of oxygen. The effect is thought to result from self-shielding by the major isotopic species (16)O(2), but other possible mechanisms such as molecular symmetry cannot be ruled out. In a three-isotope plot, the experimentally produced fractionation line is essentially equal in slope to the observed carbonaceous chondrite mixing line. The implications for the early history of the solar system are discussed.  相似文献   

3.
The delta (18)O of minerals from lunar gabbros and basalts are: plgioclases +6.06 to +6.33), pyroxenes (+5.70 to +5.95), and ilmenites (+3.85 to +4.12). The uniformity of these results indicates isotopic equilibrium in the mineral assemblages. Estimated plagioclase-ilmenite temperautres range from 1150 degrees C to 1340 degrees C. The bulk (18)/ (16)O and (30)Si/ (28)Si ratios of these lunar rocks are identical with ratios of terrestrial basalts, but the lunar glass, breccia, and dust are slightly enriched in the heavier isotopes. The lunar hydrogen (formed from solar wind) has a delta D/H of less than-873 per mil and the value may be even lower, as it is probably contaminated with terrestrial hydrogen. The delta (13)C of lunar dust and breccia is unusually high relative to reduced carbon in meteorites or on earth.  相似文献   

4.
Atmospheric carbon monoxide (CO) exhibits mass-independent fractionation in the oxygen isotopes. An 17O excess up to 7.5 per mil was observed in summer at high northern latitudes. The major source of this puzzling fractionation in this important trace gas is its dominant atmospheric removal reaction, CO + OH --> CO2 + H, in which the surviving CO gains excess 17O. The occurrence of mass-independent fractionation in the reaction of CO with OH raises fundamental questions about kinetic processes. At the same time the effect is a useful marker for the degree to which CO in the atmosphere has been reacting with OH.  相似文献   

5.
Green line emission at 557.7 nanometers arising from the O(1S - 1D) transition of atomic oxygen has been observed on the nightside of Venus with HIRES, the echelle spectrograph on the W. M. Keck I 10-meter telescope. We also observe optical emissions of molecular oxygen, consistent with the spectra from the Venera orbiters, but our green line intensity is so high that we cannot explain how it could be inconspicuous in the Venera spectra. An upper limit for the intensity of the O(1D - 3P) oxygen red line at 630 nanometers has also been obtained. The large green/red ratio indicates that the source is not associated with the Venus ionosphere. An important conclusion is that observation of the green line in a planetary atmosphere is not an indicator of an atmosphere rich in molecular oxygen.  相似文献   

6.
Alteration of the Allende meteorite caused shifts in oxygen isotope ratios along a single mass fractionation line. If alteration was caused by aqueous fluid, the pattern of oxygen isotope fractionation can be explained only by flow of reactive water down a temperature gradient. Down-temperature flow of aqueous fluid within planetesimals is sufficient to explain the mineralogical and oxygen isotopic diversity among CV, CM, and CI carbonaceous chondrites and displacement of the terrestrial planets from the primordial slope 1. 00 line on the oxygen three-isotope plot.  相似文献   

7.
YL Yung  CE Miller 《Science (New York, N.Y.)》1997,278(5344):1778-1780
We propose an isotopic fractionation mechanism, based on photolytic destruction, to explain the 15N/14N and 18O/16O fractionation of stratospheric nitrous oxide (N2O) and reconcile laboratory experiments with atmospheric observations. The theory predicts that (i) the isotopomers 15N14N16O and 14N15N16O have very different isotopic fractionations in the stratosphere, and (ii) laboratory photolysis experiments conducted at 205 nanometers should better simulate the observed isotopic fractionation of stratospheric N2O. Modeling results indicate that there is no compelling reason to invoke a significant chemical source of N2O in the middle atmosphere and that individual N2O isotopomers might be useful tracers of stratospheric air parcel motion.  相似文献   

8.
GI Gellene 《Science (New York, N.Y.)》1996,274(5291):1344-1346
Application of a theory of nuclear symmetry-based reaction restrictions to the O2 + O --> O3 reaction provides a potential explanation for the symmetry-induced isotopic enrichment observed for laboratory and atmospherically produced O3. Within this theory, the rate of formation of O3 from collisions of O and isotopically homonuclear O2 depends on whether the O2 molecule is in an f (allowed) or an e (restricted) parity label state. The restriction can be relaxed by various potential energy surface coupling terms, and the assumption that approximately 78 percent of the restricted O2(e) levels produce O3 with the same efficiency as the allowed O2(f) levels can account for laboratory-observed isotopic fractionation. In particular, the theory explains the special enhanced formation of the completely asymmetric isotopomer 16O17O18O.  相似文献   

9.
The exposure of a typical complex lunar breccia to hydrogen after a thorough outgassing produces a fully reduced surface state. Subsequent outgassing over a wide temperature range results in the production of water vapor formed from the chemisorbed hydrogen and oxygen from the lunar sample; the proposed mechanism has been confirmed in terms of the chemisorption of deuterium and the release of heavy water. Since the conditions of the experiments are consistent with those on the lunar surface, it is postulated that water vapor will be produced on the moon through the interaction of the solar wind with lunar soil. It is also proposed that such a process could play an important role in the early history of many planets where an oxygen-rich soil is exposed to a reducing atmosphere.  相似文献   

10.
The oxygen of anhydrous, high-temperature minerals in carbonaceous meteorites is strongly depleted in the heavy stable isotopes (17)O and (18)O. The effect is the result of nuclear rather than chemical processes and probably results from the admixture of a component of almost pure (16)O. This component may predate the solar system and may represent interstellar dust with a separate history of nucleosynthesis.  相似文献   

11.
The ratios of oxygen-18 to oxygen-16 ( (18)O/(16)O) of cellulose purified from two sets of wheat plants grown under conditions similar in all respects except for a large difference in the (18)O/(16)O ratios of the carbon dioxide supplied to them differ by only a small amount. The difference in the (18)O/(16)O ratios of the cellulose is similar to that observed for the (18)O/(16)O ratios of the water present in the plants. These results indicate that the oxygen derived from carbon dioxide undergoes complete exchange with the oxygen of the water in the plant during the synthesis of cellulose and that the (18)O/(16)O ratio of the water inside the plant is the primary influence on the (18)O/(16)O ratio of cellulose in terrestrial plants.  相似文献   

12.
Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface for hundreds of millions of years. Future work will require sampling distinctly different regions of the moon in order to provide data concerning other important lunar events, such as the time of formation of the highland regions and of the mare basins, and of the extent to which lunar volcanism has persisted subsequent to the first third of lunar history. This work will require a sufficient number of Apollo landings, and any further cancellation of Apollo missions will jeopardize this unique opportunity to study the development of a planetary body from its beginning. Such a study is fundamental to our understanding of the earth and other planets.  相似文献   

13.
An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (<0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains <100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.  相似文献   

14.
Petrographic and electron-microprobe studies combined with high pressure-temperature investigations of phase relationships in average Apollo 11 basalt and possible source material show that the lower parts of maria may be composed of eclogite (density 3.74 grams per cubic centimeter), thus explaining the existence of mascons. The Apollo 11 basalt was probably formed at depths of 200 to 400 kilometers by a small degree of partial melting from pyroxenitic source material [FeO/(FeO + MgO) = 0.25, A1(2)O(3) 4 percent, CaO 3 percent]. This composition may be representative of the lunar interior and yields the observed mean lunar density and moment of inertia. Present data are in conflict with fission, binary planet, and capture hypotheses of lunar origin but are consistent with Ringwood's (1966) precipitation hypothesis.  相似文献   

15.
Measurements of the oxygen isotope ratios (18O/16O and 17O/16O) in atmospheric nitrous oxide (N2O) from La Jolla, Pasadena, and the White Mountain Research Station (elevation, 3801 meters) in California and the White Sands Missile Range in New Mexico show that N2O has a mass-independent composition. These data suggest the presence of a previously undefined atmospheric process. The La Jolla samples can be explained by a mixing between an atmospherically derived source of mass-independent N2O and biologically derived mass-dependent N2O. Possible origins of the mass-independent anomaly in N2O are discussed.  相似文献   

16.
The lunar mare basalt 15555 from the edge of Hadley Rille has been dated at 3.3x10(9) years by both rubidium-strontium and potassium-argon techniques. Age and trace element abundances closely resemble those of the Apollo 12 mare basalts. Data from lunar basalts obtained thus far indicate that they cannot be derived by simple fractionation from a homogeneous source.  相似文献   

17.
All planetary materials sampled thus far vary in their relative abundance of the major isotope of oxygen, (16)O, such that it has not been possible to define a primordial solar system composition. We measured the oxygen isotopic composition of solar wind captured and returned to Earth by NASA's Genesis mission. Our results demonstrate that the Sun is highly enriched in (16)O relative to the Earth, Moon, Mars, and bulk meteorites. Because the solar photosphere preserves the average isotopic composition of the solar system for elements heavier than lithium, we conclude that essentially all rocky materials in the inner solar system were enriched in (17)O and (18)O, relative to (16)O, by ~7%, probably via non-mass-dependent chemistry before accretion of the first planetesimals.  相似文献   

18.
Abundance and distribution of iron on the moon   总被引:3,自引:0,他引:3  
The abundance and distribution of iron on the moon is derived from a near-global data set from Clementine. The determined iron content of the lunar highlands crust ( approximately 3 percent iron by weight) supports the hypothesis that much of the lunar crust was derived from a magma ocean. The iron content of lower crustal material exposed by the South Pole-Aitken impact basin on the lunar farside is higher ( approximately 7 to 8 percent by weight) and consistent with a basaltic composition. This composition supports earlier evidence that the lunar crust becomes more mafic with depth. The data also suggest that the bulk composition of the moon differs from that of the Earth's mantle. This difference excludes models for lunar origin that require the Earth and moon to have the same compositions, such as fission and coaccretion, and favors giant impact and capture.  相似文献   

19.
The thermal structure of the Pacific Ocean between water depths of about 1 and 4.5 kilometers is estimated from the oxygen isotopic ratio of benthonic foraminifera from deep-drilled and piston cores of early Pliocene age (about 3 to 5 million years ago). The ratio of oxygen-18 to oxygen-16 in the early Pliocene at each site varies by an average of only +/- 0.12 per mil (1 standard deviation). A plot of the oxygen isotopic ratio against modern bottom-water temperature is adequately fit by a line having a slope of - 0.26 per mil per degree Celsius (the equilibrium temperature dependence of calcite-water fractionation), suggesting that the temperature gradient of the Pacific Ocean during the early Pliocene was similar to that of today.  相似文献   

20.
We have identified six circumstellar silicate grains within interplanetary dust particles (IDPs). Their extrasolar origins are demonstrated by their extremely anomalous oxygen isotopic compositions. Three 17O-rich grains appear to originate from red giant or asymptotic giant branch stars. One 16O-rich grain may be from a metal-poor star. Two 16O-poor grains have unknown stellar sources. One of the grains is forsterite, and two are amorphous silicate "GEMS" (glass with embedded metal and sulfides), which is consistent with astronomical identifications of crystalline and amorphous silicates in the outflows of evolved stars. These observations suggest cometary origins of these IDPs and underscore the perplexing absence of silicates among circumstellar dust grains from meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号