首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiotic cohesin complexes at centromeres behave differently from those along chromosome arms, but the basis for these differences has remained elusive. The fission yeast cohesin molecule Rec8 largely replaces its mitotic counterpart, Rad21/Scc1, along the entire chromosome during meiosis. Here we show that Rec8 complexes along chromosome arms contain Rec11, whereas those in the vicinity of centromeres have a different partner subunit, Psc3. The arm associated Rec8-Rec11 complexes are critical for meiotic recombination. The Rec8-Psc3 complexes comprise two different types of assemblies. First, pericentromeric Rec8-Psc3 complexes depend on histone methylation-directed heterochromatin for their localization and are required for cohesion during meiosis II. Second, central core Rec8-Psc3 complexes form independently of heterochromatin and are presumably required for establishing monopolar attachment at meiosis I. These findings define distinct modes of assembly and functions for cohesin complexes at different regions along chromosomes.  相似文献   

2.
Mammalian kinetochores contain the centromere-specific histone H3 variant CENP-A, whose incorporation into limited chromosomal regions may be important for centromere function and chromosome segregation during mitosis. However, regulation of CENP-A localization and its role have not been clear. Here we report that the fission yeast homolog SpCENP-A is essential for establishing centromere chromatin associated with equal chromosome segregation. SpCENP-A binding to the nonrepetitious inner centromeres depended on Mis6, an essential centromere connector protein acting during G1-S phase of the cell cycle. Mis6 is likely required for recruiting SpCENP-A to form proper connection of sister centromeres.  相似文献   

3.
Cohesins keep sister chromatids associated from the time of their replication in S phase until the onset of anaphase. In vertebrate cells, two distinct pathways dissociate cohesins, one acts on chromosome arms and the other on centromeres. Here, we describe a third pathway that acts on telomeres. Knockdown of tankyrase 1, a telomeric poly(ADP-ribose) polymerase caused mitotic arrest. Chromosomes aligned normally on the metaphase plate but were unable to segregate. Sister chromatids separated at centromeres and arms but remained associated at telomeres, apparently through proteinaceous bridges. Thus, telomeres may require a unique tankyrase 1-dependent mechanism for sister chromatid resolution before anaphase.  相似文献   

4.
Chromosome alignment on the mitotic spindle is monitored by the spindle checkpoint. We identify Sgo1, a protein involved in meiotic chromosome cohesion, as a spindle checkpoint component. Budding yeast cells with mutations in SGO1 respond normally to microtubule depolymerization but not to lack of tension at the kinetochore, and they have difficulty attaching sister chromatids to opposite poles of the spindle. Sgo1 is thus required for sensing tension between sister chromatids during mitosis, and its degradation when they separate may prevent cell cycle arrest and chromosome loss in anaphase, a time when sister chromatids are no longer under tension.  相似文献   

5.
During meiosis, two chromosome segregation phases follow a single round of DNA replication. We identified factors required to establish this specialized cell cycle by examining meiotic chromosome segregation in a collection of yeast strains lacking all nonessential genes. This analysis revealed Sgo1, Chl4, and Iml3 to be important for retaining centromeric cohesin until the onset of anaphase II. Consistent with this role, Sgo1 localizes to centromeric regions but dissociates at the onset of anaphase II. The screen described here provides a comprehensive analysis of the genes required for the meiotic cell cycle and identifies three factors important for the stepwise loss of sister chromatid cohesion.  相似文献   

6.
Cell division depends on the separation of sister chromatids in anaphase. In yeast, sister separation is initiated by cleavage of cohesin by the protease separase. In vertebrates, most cohesin is removed from chromosome arms by a cleavage-independent mechanism. Only residual amounts of cohesin are cleaved at the onset of anaphase, coinciding with its disappearance from centromeres. We have identified two separase cleavage sites in the human cohesin subunit SCC1 and have conditionally expressed noncleavable SCC1 mutants in human cells. Our results indicate that cohesin cleavage by separase is essential for sister chromatid separation and for the completion of cytokinesis.  相似文献   

7.
Genomic and genetic definition of a functional human centromere   总被引:1,自引:0,他引:1  
The definition of centromeres of human chromosomes requires a complete genomic understanding of these regions. Toward this end, we report integration of physical mapping, genetic, and functional approaches, together with sequencing of selected regions, to define the centromere of the human X chromosome and to explore the evolution of sequences responsible for chromosome segregation. The transitional region between expressed sequences on the short arm of the X and the chromosome-specific alpha satellite array DXZ1 spans about 450 kilobases and is satellite-rich. At the junction between this satellite region and canonical DXZ1 repeats, diverged repeat units provide direct evidence of unequal crossover as the homogenizing force of these arrays. Results from deletion analysis of mitotically stable chromosome rearrangements and from a human artificial chromosome assay demonstrate that DXZ1 DNA is sufficient for centromere function. Evolutionary studies indicate that, while alpha satellite DNA present throughout the pericentromeric region of the X chromosome appears to be a descendant of an ancestral primate centromere, the current functional centromere based on DXZ1 sequences is the product of the much more recent concerted evolution of this satellite DNA.  相似文献   

8.
The higher-order assembly of chromatin imposes structural organization on the genetic information of eukaryotes and is thought to be largely determined by posttranslational modification of histone tails. Here, we study a 20-kilobase silent domain at the mating-type region of fission yeast as a model for heterochromatin formation. We find that, although histone H3 methylated at lysine 9 (H3 Lys9) directly recruits heterochromatin protein Swi6/HP1, the critical determinant for H3 Lys9 methylation to spread in cis and to be inherited through mitosis and meiosis is Swi6 itself. We demonstrate that a centromere-homologous repeat (cenH) present at the silent mating-type region is sufficient for heterochromatin formation at an ectopic site, and that its repressive capacity is mediated by components of the RNA interference (RNAi) machinery. Moreover, cenH and the RNAi machinery cooperate to nucleate heterochromatin assembly at the endogenous mat locus but are dispensable for its subsequent inheritance. This work defines sequential requirements for the initiation and propagation of regional heterochromatic domains.  相似文献   

9.
In eukaryotic cells, sister DNA molecules remain physically connected from their production at S phase until their separation during anaphase. This cohesion is essential for the separation of sister chromatids to opposite poles of the cell at mitosis. It also permits chromosome segregation to take place long after duplication has been completed. Recent work has identified a multisubunit complex called cohesin that is essential for connecting sisters. Proteolytic cleavage of one of cohesin's subunits may trigger sister separation at the onset of anaphase.  相似文献   

10.
11.
Proper chromosome segregation requires the attachment of sister kinetochores to microtubules from opposite spindle poles to form bi-oriented chromosomes on the metaphase spindle. The chromosome passenger complex containing Survivin and the kinase Aurora B regulates this process from the centromeres. We report that a de-ubiquitinating enzyme, hFAM, regulates chromosome alignment and segregation by controlling both the dynamic association of Survivin with centromeres and the proper targeting of Survivin and Aurora B to centromeres. Survivin is ubiquitinated in mitosis through both Lys(48) and Lys(63) ubiquitin linkages. Lys(63) de-ubiquitination mediated by hFAM is required for the dissociation of Survivin from centromeres, whereas Lys(63) ubiquitination mediated by the ubiquitin binding protein Ufd1 is required for the association of Survivin with centromeres. Thus, ubiquitinaton regulates dynamic protein-protein interactions and chromosome segregation independently of protein degradation.  相似文献   

12.
大别山五针松的染色体基数X=12,除了第12对染色体最短且具亚中部着丝点以外,其余11对染色体长度相近且具中部着丝点。大别山五针松在核型上与红松、新疆五针松和华山松相似。  相似文献   

13.
The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.  相似文献   

14.
植物着丝粒区串联重复序列的研究进展   总被引:1,自引:0,他引:1  
着丝粒是细胞染色体的重要结构组成,控制姊妹染色单体的结合、动粒的组装和纺锤丝的附着,确保真核生物细胞在有丝分裂和减数分裂过程中染色体的正常分离及遗传信息的稳定传递。植物着丝粒DNA序列主要由反转录转座子和串联重复序列构成。串联重复序列在着丝粒功能实现和基因组进化过程中起重要作用。随着测序技术的成熟,近年来对串联重复序列的研究取得了很大的进展。综述了植物串联重复序列结构、分析方法及在进化中的作用,以期为相关研究提供参考。  相似文献   

15.
Jia S  Noma K  Grewal SI 《Science (New York, N.Y.)》2004,304(5679):1971-1976
At the silent mating-type interval of fission yeast, the RNA interference (RNAi) machinery cooperates with cenH, a DNA element homologous to centromeric repeats, to initiate heterochromatin formation. However, in RNAi mutants, heterochromatin assembly can still occur at low efficiency. Here, we report that Atf1 and Pcr1, two ATF/CREB family proteins, act in a parallel mechanism to the RNAi pathway for heterochromatin nucleation. Deletion of atf1 or pcr1 alone has little effect on silencing at the mating-type region, but when combined with RNAi mutants, double mutants fail to nucleate heterochromatin assembly. Moreover, deletion of atf1 or pcr1 in combination with cenH deletion causes loss of silencing and heterochromatin formation. Furthermore, Atf1 and Pcr1 bind to the mating-type region and target histone H3 lysine-9 methylation and the Swi6 protein essential for heterochromatin assembly. These analyses link ATF/CREB family proteins, involved in cellular response to environmental stresses, to nucleation of constitutive heterochromatin.  相似文献   

16.
Eukaryotic genomes are organized into discrete structural and functional chromatin domains. Here, we show that distinct site-specific histone H3 methylation patterns define euchromatic and heterochromatic chromosomal domains within a 47-kilobase region of the mating-type locus in fission yeast. H3 methylated at lysine 9 (H3 Lys9), and its interacting Swi6 protein, are strictly localized to a 20-kilobase silent heterochromatic interval. In contrast, H3 methylated at lysine 4 (H3 Lys4) is specific to the surrounding euchromatic regions. Two inverted repeats flanking the silent interval serve as boundary elements to mark the borders between heterochromatin and euchromatin. Deletions of these boundary elements lead to spreading of H3 Lys9 methylation and Swi6 into neighboring sequences. Furthermore, the H3 Lys9 methylation and corresponding heterochromatin-associated complexes prevent H3 Lys4 methylation in the silent domain.  相似文献   

17.
逊克产中国林蛙的染色体组型   总被引:1,自引:1,他引:1  
采用骨髓细胞制片法,对逊克产中国林蛙(Rana chensinensis)的染色体组型分析表明,其染色体数目为2n=24,分为3组,A组(第1-5对);B组(第6对);C组(第7-12对)。第1-5对染色体的短臂上告近着丝粒部位往往有一次缢痕。第2、8、10、12对染色体的长臂上也往往有次缢痕,而第10对染色体的长臂上次缢痕是衡定的,雌雄具体间未见异型染色体。  相似文献   

18.
中性/碱性转化酶(Alkaline or neutral invertase,N/A-lnv)是木薯淀粉合成过程中的一种关键酶。笔者以木薯华南6号古铜期嫩叶为材料制备染色体标本,利用荧光原位杂交和原位PCR技术对N/A-lnv基因家族的11个成员进行了物理定位。结果表明,基因MeNINV5,MeNINV9和MeNINV10均位于第4号染色体上,其中基因MeNINV9和MeNINV10位于短臂上,到信号点的百分距离分别为68.52和95.35,基因MeNINV5位于长臂上,到着丝粒的百分距离为22.71;基因MeNINV4和nINV1均位于第6号染色体长臂上,到着丝粒的百分距离分别为43.16和80.71;基因MeNINV6和MeNINV7分别位于第7号和第17号染色体的长臂上,信号点到着丝粒的百分距离分别是15.38和57.97;基因MeNINV1,MeNIN,V2,MeNINV3和MeNINV8分别位于第11号、第9号、第5号和第16号染色体的短臂上,信号位点到着丝粒的百分距离分别是40.10,51.88,91.75和76.33。中性/碱性转化酶基因家族内部部分成员之间存在连锁关系。研究结果可为木薯淀粉的高效积累机制及木薯种质遗传改良提供分子细胞遗传学依据。  相似文献   

19.
20.
High-precision genetic mapping was used to define the regions that contain centromere functions on each natural chromosome in Arabidopsis thaliana. These regions exhibited dramatic recombinational repression and contained complex DNA surrounding large arrays of 180-base pair repeats. Unexpectedly, the DNA within the centromeres was not merely structural but also encoded several expressed genes. The regions flanking the centromeres were densely populated by repetitive elements yet experienced normal levels of recombination. The genetically defined centromeres were well conserved among Arabidopsis ecotypes but displayed limited sequence homology between different chromosomes, excluding repetitive DNA. This investigation provides a platform for dissecting the role of individual sequences in centromeres in higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号