首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mineralization and formation of metabolites and nonextractable residues of the herbicide [14C]bromoxyniloctanoate ([14C]3,5-dibromo-4-octanoylbenzonitrile) and the corresponding agent substance [14C]bromoxynil ([14C]3,5-dibromo-4-hydroxybenzonitrile) was investigated in a soil from an agricultural site in a model experiment. The mineralization of maize cell wall bound bromoxynil residues was also investigated in the agricultural soil material. The mineralization of [14C]bromoxynil and [14C]bromoxyniloctanoate in soil within 60 days amounted up to 42 and 49%, respectively. After the experiments, 52% of the originally applied [14C]bromoxynil and 44% of the [14C]bromoxyniloctanoate formed nonextractable residues in soil. Plant cell wall bound [14C]bromoxynil residues were also mineralized to an extent of about 21% within 70 days; the main portion of 76% persisted as nonextractable residues in the soil. In bacterial enrichment cultures and in soil two polar metabolites were observed; one of it could be identified as 3,5-dibromo-4-hydroxybenzoate and the other could be described tentatively as 3,5-dibromo-4-hydroxybenzamide.  相似文献   

2.
The degradation of the insecticide WL 41706, (±)-α-cyano-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate, (I), in two soils from Spain and one from the UK has been studied in the laboratory. Samples of (I) labelled separately with 14C in the benzyl ring (uniform labelling) and at C(1) of the cyclopropyl ring were used. The insecticide underwent degradation by hydrolysis at the cyano group to form the amide and carboxylic acid analogues. However, the major degradative route was hydrolysis at the ester linkage leading initially to the formation of 3-phenoxy-benzoic acid and 2,2,3,3-tetramethylcyclopropanecarboxylic acid. When a sandy clay soil was treated with [benzyl?14C]-WL 41706 under balance conditions, 14CO2 was evolved at a steady rate and 16 % of the applied radiolabel was detected as 14CO2 over a 26 week period. The rate of degradation of I was most rapid on a moist sandy clay (loss of 50 % initial quantity in 4 weeks) but it was considerably slower on dry sandy clay and moist clay soils (> 16 weeks). Under flooded, anaerobic conditions the rate of hydrolysis of the insecticide was slower than under aerobic conditions and the 3-phenoxybenzoic acid and 2,2,3,3-tetramethylcyclopropanecarboxylic acid were found to accumulate over the 24 weeks of the experiment.  相似文献   

3.
Aqueous suspensions and oil emulsions of a commercial [14C]diflubenzuron (N-[[(4-chlorophenyl)amino]carbonyl]-2,6-difluorobenzamide) formulation (Dimilin W-25) remained on the leaf surface of greenhouse-treated plant tissues. Absorption, translocation, and metabolism of the [14C]diflubenzuron were not significant. Less than 0.05% of the applied 14C was found in newly developed plant tissues 28 days after spray treatment. [14C]Diflubenzuron was degraded in soil. After 91 days, biometer flask studies showed that 28% of the 14C incorporated into the soil as [14C]diflubenzuron was recovered as 14CO2. Major dichloromethane-soluble soil residues were identified as unreacted [14C]diflubenzuron and [14C]4-chlorophenylurea. A minor unknown degradation product cochromatographed with 2,6-difluorobenzoic acid. Insoluble 14C-residues increased with time and represented 67.8% of the residual 14C in the soil 89 days after treatment. Cotton plants grown for 89 days in [14C]diflubenzuron-treated soil contained only 3% of the 14C applied to the soil. Small quantities of acetonitrile-soluble [14C]4-chlorophenylurea were isolated from the foliar tissues. Root tissues contained small amounts of [14C]diflubenzuron and trace quantities of a minor 14C-product that chromotographed similarly to 2,6-difluorobenzoic acid. Most of the 14C in the plant tissues (84–93%) was associated with an insoluble residue fraction 89 days after treatment.  相似文献   

4.
The degradation of the herbicide diclofop-methyl, ( ± )-methyl 2-[4-(2,4-dichloro-phenoxy)phenoxy]propionate, was investigated in two agricultural soils under aerobic and anaerobic conditions. Using two differently labelled forms of [14C]-diclofop-methyl the qualitative as well as the quantitative formation of extractable metabolites was followed for 64 days. The mineralisation of the uniformly labelled aromatic rings was pursued by monitoring the 14CO2 generated for 25 weeks. As a first step of the degradation a very rapid hydrolysis of the ester bond was detected under all conditions. Diclofop, the corresponding substituted propionic acid formed, was extensively degraded under aerobic conditions, the final product being 14CO2. As an intermediate, a compound later identified by GLC/MS to be 4-(2,4-dichlorophenoxy)phenol, was found in the extracts. Furthermore, traces of six other unknown metabolites were detected. Under anaerobic conditions the degradation proceeded to a small extent. At most 3% of the applied radioactivity was accounted for by the degradation product 4-(2,4-dichlorophenoxy)phenol. No other metabolite, including 14CO2, was observed, implying lack of any further degradation.  相似文献   

5.
Fluridone was applied to a 98-8-ha lake in Orange County, Florida, USA, in five different treatment plots between October 1982 and February 1983 to control a severe infestation of Hydrilla verticillata. Hydrosoil residues and submersed aquatic plant biomass were monitored within the lake. Fluridone did not affect the submersed vegetation during the 4-month fall-winter treatment period. As water temperatures increased during spring, Hydrilla biomass declined at an average of 0.178 kg m?2 per month. By summer (192 days after last treatment), the target species could not be found within the lake. Fluridone residues were detected in the hydrosoil immediately following treatments and generally peaked coinciding with the decline in aquatic plant biomass. The maximum fluridone detected in the hydrosoil was only 5% of the 2.25 kg ha?1 applied, and this amount was obtained from outside of a treatment area. Residue concentrations were highly variable between sampling sites and sampling periods and unexpectedly increased 14 months after treatment. Winter-killed marginal vegetation is a possible source of this increase. Detectable concentrations of fluridone, and vegetation control, persisted for a total of 86 weeks from the date of the last treatment and non-detectable residues may have persisted after 86 weeks. This study indicates that a lower application rate might have provided adequate control of Hydrilla and possibly decreased residue concentrations in non-target areas.  相似文献   

6.
The aerobic soil metabolism of [14C]flupropacil (isopropyl 2-chloro-5-(1,2,3,6-tetrahydro-3-methyl-2,6-dioxo-4-trifluoromethylpyrimidin-1-yl)benzoate) was determined in microbially active, sieved (2-mm) sandy loam soil with a soil moisture content of 75% at 1/3 bar. The soil was treated with [14C]flupropacil at 0·5 mg kg−1 (twice the field use rate) and placed in incubation flasks connected to a series of traps (50 g litre−1 NaOH, 0·5M H2SO4, ethylene glycol) and incubated at 25(±1)°C. Soil was sampled at 0, 3, 9, 20, 30, 48, 76, 120, 181 and 238 days of aerobic incubation. Volatiles were collected once every two weeks and on the day of soil sampling. Flupropacil metabolized with a half-life of 79 days under aerobic conditions. The major metabolite was flupropacil acid which accounted for up to 69·1% of the initially applied radioactivity at Day 238. Each of the two minor metabolites detected at the end of the study accounted for less than 0·5%. One of the minor metabolites was identified as C4242 acid (2-chloro-5-(1,2,3,6-tetrahydro-2,6-dioxo-4-trifluoromethylpyrimidin-1-yl)benzoic acid). Only a negligible portion (less than 0·3%) of the applied flupropacil was mineralized to [14C]carbon dioxide. Extractable radioactivity ranged from 78·9% to 95·5%, with bound residues accounting for 3·2%–23·4%. The material balance ranged from 91·6% to 104·4%.  相似文献   

7.
[14C]Diflubenzuron is readily degraded in various agricultural soils and in hydro-soil; 50% of the applied dose of 1 mg kg−1 was metabolised in 2 days or less. The chief products of hydrolysis were identified as 4-chlorophenylurea and 2, 6-difluorobenzoic acid. A part of the radioactivity, increasing with incubation time, could not be extracted. Release from the soil of [14C]carbon dioxide, derived from both labelled phenyl rings, points to the ultimate mineralisation of diflubenzuron.  相似文献   

8.
The β-D -glucoside conjugate of [14C]‘hydroxymonolinuron’, [phenyl-14C]-3-(4- chlorophenyl)-1-(hydroxymethyl)-1-methoxyurea-β-D -glucoside (HM-β-G) and its soil-bound residues, prepared as described, were used to estimate its bioavailability to earthworms and ryegrass plants. The results demonstrate that these bound residues were available to both earthworms and ryegrass. The concentration in the earthworms, expressed on a dry weight basis after 42 days of exposure, was equal to the surrounding soil. The earth worms were found to be more efficient in remobilising and absorbing soil-bound residues than ryegrass plants after 59 days of cultivation. Fractionation of the soil-bound residues showed that 29% of the radiocarbon was associated with fulvic acid, 20% with humic acid and 9% with the humin fraction. 4-Chlorophenylurea, a metabolite of HM-β-G proved to be a key compound in the formation of soil-bound residues. The amount of radioactivity (bound residues), recovered from soil through solubilisation by means of 0.5M -acid and alkali, seems to be a criterion for predicting the bioavailability of bound phenylurea residues. The half-life of soil-bound residues was estimated to be about 4.6 years.  相似文献   

9.
This paper describes the residue analysis of water and hydrosoil samples taken from two separate large-scale aquatic ecotoxicology trials designed to assess the environmental fate and effects of the pyrethroids lambda-cyhalothrin and cypermethrin. Comparison of the results demonstrates the high degree of reproducibility of the chemical residue found the day after treatment using experimental mesocosms (lambda-cyhalothrin) as opposed to an in-use farm pond (cypermethrin). Both studies showed that pyrethroid residues were rapidly lost from the water column: residues of lambda-cyhalothrin were less than 2 ng litre?1 following the final application of a cumulative seasonal exposure equivalent to twelve ?drift’? and six ?run-off’? events, each delivering a dose equivalent to that expected from a typical event under field conditions. Hydrosoil appeared to act as a sink for pyrethroid residues and, under the stringent test conditions of the mesocosm study, lambda-cyhalothrin residues reached 3.2 μg kg?1 following the seasonal exposure described above. The cypermethrin farm-pond study illustrated the localised pattern of exposure expected under natural field conditions, with site topography and cultivation practices which represent an average ?worst case’?. Residues in hydrosoil reached a maximum level of approximately 25 μg kg?1 in one sampling zone at one interval, and thereafter declined to a level of < 9 μg kg?1 within four months.  相似文献   

10.
Summary. The metabolism of monuron in excised leaves of bean (Phaseolus vulgaris L., var. Black Valentine) and corn (Zea mays L., var. Batam Cross) were studied with carbonyl-14C-labelled monuron. The metabolic conversions of monuron in both plant species were exponential and followed first order reaction kinetics. The metabolism of monuron can be divided into two major pathways: demethylation and hydroxylation. At a monuron concentration of 16 ppm the hydroxylation was dominant in the bean leaves. As the concentration of monuron was increased the participation of the hydroxylation pathway became less probably due to the inhibition of enzymes involved by monuron. The demethylation pathway was not affected by higher monuron concentration. In the corn leaf, however, sequential demethylation was always the major pathway of monuron transformation and there was no inhibitory effect observed on either pathways as the concentration of monuron increased. The following radioactive metabolites were found in the alcohol extract of bean and com leaves receiving carbonyl-14C-labelled monuron: N′-(4-chlorophenyl)-N-methylurea, p-chlorophenylurea, two polypeptide complexes of monuron, one polypeptide complex of N′-(4-chlorophenyl)-N-methylurea and β-D-glucosides of N-(2-hydroxy-4-chlorophenyl) urea, N′-(2-hydroxy-4-chlorophenyl) N-methylurea, and N′-(2-hydroxy-4-chlorophenyl)-N,N-dimethylurea. In addition, one minor radioactive peak was found only in the alcohol extract of corn leaves, which yielded four unidentified radioactive metabolites after acid or enzyme hydrolysis with β-glucosidase. Métabolisme du monuron dans des feuilles excisés de maïs et de haricot  相似文献   

11.
The carbamoyloxime pesticides methomyl, oxamyl and aldicarb, together with the oxidation products of aldicarb, are known to break down much more rapidly in certain anaerobic subsoils than in the aerobic topsoils from the same site. Ferrous ions have now been shown to be involved in this reaction. Oxamyl was degraded in aqueous solutions at 30°C containing 250 μg ml?1 Fe2+ with a half-life of about 10 h, independent of pH in the range of 5.65–7.66; the observed products of this reaction were N,N-dimethyl-l-cyanoformamide and methanethiol. These same products, rather than the oximino hydrolysis product observed from degradation in aerobic soils, were rapidly and quantitatively formed from oxamyl in suspensions of anaerobic reduced subsoils (Fe2+ concentration 27–41 μg ml?1 soil water), but oxamyl was rather stable in water-saturated Vredepeel subsoil (Fe2+ concentration 0.65 μg ml?1) in which the redox potential was much higher. Methomyl behaved similarly. The rates of reaction in the suspensions of anaerobic subsoils were greater than expected from the concentrations of Fe2+ in the soil water, but most of the Fe2+ present in soil was bound to the soil particles by cation exchange and this bound Fe2+ may have participated. Breakdown of aldicarb was accelerated both in solutions of Fe2+ and in the suspensions of anaerobic reduced subsoils, though the rate enhancement was less than observed with methomyl and oxamyl; 2-methyl-2-methylthiopropionitrile and 2-methyl-2-methylthiopropionaldehyde were the observed products from aldicarb in anaerobic soil but only the former was produced in Fe2+ solutions; the corresponding nitriles and aldehydes were also yielded by aldicarb sulphoxide and aldicarb sulphone in the anaerobic, reduced subsoils.  相似文献   

12.
[14C]Monolinuron was added to soil which was then successively cropped with spinach, cress, and potatoes. Incubation was carried out in a closed system which allowed recoveries even of volatile degradation products and gave an overall recovery of 96% of the applied radioactivity at the end of the experiment. The spinach was found to contain 4.1% of the applied activity; the cress, 5.6%; old potatoes + leaves, 9.5%; new tubers, 1%; and the soil, 68.6%. The total amount of [14C]carbon dioxide liberated was 5.3%. The quantitative separation and characterization of the extractable radioactivity in spinach yielded 10.6% as unaltered monolinuron, 12% as 4-chlorophenylurea plus 4-chlorophenyl-hydroxymethylurea, 3.7% as 4-chlorophenylmethylurea, 1.4% as 4-chlorophenyl-hydroxymethyl-methoxyurea, 1.1% as 4-chlorophenyl-methoxyurea, and 71.2% as polar metabolites. Of these polar metabolites, 67.1% were cleaved with β-glucosidase, resulting in 2.9% unknown aglucone, 48.1% 4-chlorophenyl-hydroxymethyl-methoxyurea, and 16.1% 4-chlorophenyl-hydroxymethylurea. Similar results have been obtained in cress and potatoes. The soil contained 58% of monolinuron residues and 4.7?6.5% of the same types of metabolites as were found in plants. Twenty-one percent were found as polar metabolites.  相似文献   

13.
The metabolism of [14C]phenoxyacetic acid (POA) was studied in cell suspension culture of soybean (Glycine max). POA was metabolized to 4-HO-POA, 4-HO-POA glucoside and 4-HO-POA glycosidic ester. A large part of the 4-HO-POA glucoside and small amounts of the glycosidic ester were recovered in the medium. POA was also converted to non-extractable residues bound to cell walls. Sequential extraction of cell-wall polymers showed that non-extractable residues, partly identified with 4-HO-POA and POA, were mainly associated with hemicelluloses and lignin. Comparison of the metabolism of [carboxy-14C]- and [phenyl-14C]POA revealed some degradation of the POA side-chain, followed in all probability by the incorporation of the aromatic moiety into cell walls. However, the sturdiness of the resulting bonds prevented precise identification of these bound aromatic structures. In summary, the degradation of POA in soybean cell culture provided a good model to study the formation of non-extractable residues of pesticides. © 1999 Society of Chemical Industry  相似文献   

14.
The microbial degradation of [14C]paraquat using cultures from two agricultural soils was investigated. The experiments were carried out in the absence of light, under aerobic conditions. Degradation was rapid, with 50% mineralisation to [14C]carbon dioxide occurring within three weeks. HPLC, capillary electrophoresis and mass spectroscopy confirmed that the majority (>85%) of the remaining radiochemical in solution was [14C]oxalic acid, and that no paraquat remained.  相似文献   

15.
2,6-Difluorobenzoic acid, one of the two primary diflubenzuron metabolites, is rapidly and completely degraded in soil. Times to 50% disappearance were 9 and 12 days in two agricultural soils. [14C]Carbon dioxide was an ultimate product of the ring-14C-labelled compound. A part of the radioactivity, increasing with time to one third of the applied dose of 1 mg kg?1, could not be extracted from the soil.  相似文献   

16.
The degradation of the pyrethroid insecticide cypermethrin and the geometric isomers NRDC 160 (cis-) and NRDC 159 (trans-) in three soils has been studied under laboratory conditions. Samples of the insecticides labelled separately with 14C in the cyclopropyl and benzyl rings were used. The rate of degradation was most rapid on sandy clay and sandy loam soils, 50% of the NRDC 160 and NRDC 159 applied to both soils being decomposed in 4 weeks and 2 weeks respectively. The major degradative route in all soils was hydrolysis of the ester linkage leading to the formation of 3-phenoxybenzoic acid and 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid; soil treated with the cis-isomer (NRDC 160) was found to contain both cis- and trans-isomer forms of the cyclopropanecarboxylic acid. Further degradation of these carboxylic acids was evident since 14CO2 was released from cyclopropyl- and benzyllabelled cypermethrin in amounts equivalent to 24 and 38% of the applied radioactivity over a 22 week period. A minor degradative route was ring-hydroxylation of the insecticide to give an α-cyano-3-(4-hydroxyphenoxy)benzyl ester followed by hydrolysis of the ester bond. Under waterlogged conditions the rate of hydrolysis of cypermethrin on sandy loam soil was slower than under aerobic conditions and 3-phenoxybenzoic acid accumulated in the anaerobic soil.  相似文献   

17.
Isolated rat hepatocytes were incubated for 4 hr with [phenyl-U-14C]2,4,5-trimethyl-N-phenyl-3-furancarboxamide ([14C]methfuroxam). 14C-Labeled metabolites were isolated by solvent extraction, column chromatography, and high-pressure liquid chromatography, and were then characterized by analysis of infrared and mass spectra. Metabolism of [14C]methfuroxam by isolated hepatocytes included: (1) hydroxylation of the 2-, 4-, and 5-methyl groups on the furan ring; (2) hydroxylation at the para position of the benzene ring; (3) combinations of 1 and 2; (4) the addition of a sulfur-containing adjunct to the methylfuran moiety; and (5) conjugation of 1–4. Rats given a single intragastric dose of [14C]methfuroxam excreted 56% of the 14C in the urine and 42% in the feces within 54 hr. Metabolism of [14C]methfuroxam by the intact rats included: (1) hydroxylation of the methylfuran moiety; (2) hydroxylation of the benzene ring; (3) the addition of S-methyl, methyl sulfoxide, and other sulfur-containing groups to methfuroxam; (4) combinations of 1–3; and (5) conjugation of 1–4.  相似文献   

18.
The degradation of the wild-oat herbicide flamprop-isopropyl, [isopropyl (±)-N-benzoyl-N-(3-chloro-4-fluorophenyl)alaninate], in four soils has been examined under laboratory conditions with sampling times of up to 45 weeks after treatment. The major degradation product of [14C]flamprop-isopropyl in all soils at up to 10 weeks after treatment was the carboxylic acid (±)-N-benzoyl-N-(3-chloro-4-fluorophenyl)alanine. This compound in turn underwent degradation by loss of the benzoyl group and the propionic acid moiety, with evolution of [14C]carbon dioxide to form 3-chloro-4-fluoroaniline (CFA). The CFA was formed slowly in soil and occurred mainly as a bound form. There was evidence to show that the CFA was subsequently converted into other polar products. The time for depletion of 50% of the applied herbicide was approximately 10 weeks in sandy loam and medium loam soils, 11 weeks in a clay loam soil and 23 weeks in a peat soil.  相似文献   

19.
The tissue distribution and excretion of 14C-labeled propham and chlorpropham were investigated in the adult female rat after a single oral dosage. The average 3-day urinary excretions of radioactivity were 55.9%, 82.6%, 79.5%, and 85.4% of an oral dose of chain [14C] chlorpropham, ring [14C] chlorpropham, chain [14C] propham, and ring [14C] propham, respectively. With chain [14C] chlorpropham 35.4 ± 7.5% of the administered radioactivity appeared in the respired air, whereas only 5.0 ± 0.8% was found in CO2 from chain [14C] propham. There was no significant difference in the rate of excretion or the route of elimination among rats receiving different oral dosages, ranging from less than 4 mg/kg to 200 mg/kg. The radioactivity was distributed in all tissues with highest concentration found in the kidney. The average biological half-life of 14C from chlorpropham and propham in most organs was short, ranging between 3 and 8 hr; however, in brain, fat, and muscle, the half-life was about twice the value for other organs.Both compounds were metabolized by hydrolytic and oxidative mechanisms and the resulting metabolites were excreted either as free forms or as conjugates.Subcellular distribution of 14C in the rat liver and kidney after an oral administration of chlorpropham and propham was investigated. The percentage distribution of 14C in the particulate and soluble fractions was dependent on the elapsed time after dosing.  相似文献   

20.
Diflubenzuron, 1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea was used to control the pine looper population in about 1160 ha of Scots pine stand in eastern Finland in summer 1984. The control measure was effective, resulting in the collapse of the population in the treated area. Residues of diflubenzuron and two of its metabolites, 4-chloroaniline and 4-chlorophenylurea, were determined in water, pine needles, litter, humus, boleti and other wild mushrooms, bilberry (Vaccinium myrtillus L.) and cowberry (Vaccinium vitis-idaea L.) samples taken from this area. In water samples taken from the treated area diflubenzuron was still detected at concentrations of 0.1 μg litre?1 2 months after application. No diflubenzuron was detected in this area the following year, nor outside the treated area. Neither metabolite was detected at any time. The sum of diflubenzuron and its metabolites in the litter layer was, on average, 0.7mg kg?1 both 1 week and 1 month after the application. The next year, however, it had increased to 1.4 mg kg?1. Diflubenzuron and its metabolites were not detected in the humus layer. The amount of diflubenzuron residues in the pine needles was, on average, 3.0 mg kg ?1 1 day after the application, but in 2 months the level had decreased to 0.2-0.3 mg kg ?1 or was not detectable. The following year the sum of diflubenzuron and its metabolites in two pine-needle samples was 0.3 and 1.6 mg kg ?1. The sum of diflubenzuron and its metabolites in wild mushrooms was, on average, 0.07 mg kg ?1 1 week after the application, but the following year no residues were detected. No residues were found in the boletus samples. The residues of diflubenzuron and its two metabolites in bilberries totalled, on average, 0.2 mg kg ?1 1 day after the application, and 6 μg kg ?1 the following year. The sum of diflubenzuron and metabolites in cowberries was, on average, 0.2 mg kg ?1 1 month after application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号