首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spanish Cydia pomonella (L.) field populations have developed resistance to several insecticide groups. Diagnostic concentrations were established as the LC90 calculated on a susceptible strain (S_Spain) for five and seven insecticides and tested on eggs and neonate larvae field populations, respectively. The three most relevant enzymatic detoxification systems (mixed-function oxidases (MFO), glutathione S-tranferases (GST) and esterases (EST)) were studied for neonate larvae.In eggs, 96% of the field populations showed a significantly lower efficacy when compared with the susceptible strain (S_Spain) and the most effective insecticides were fenoxycarb and thiacloprid. In neonate larvae, a significant loss of susceptibility to the insecticides was detected. Flufenoxuron, azinphos-methyl and phosmet showed the lowest efficacy, while lambda-cyhalothrin, alpha-cypermethrin and chlorpyrifos-ethyl showed the highest. Biochemical assays showed that the most important enzymatic system involved in insecticide detoxification was MFO, with highest enzymatic activity ratios (5.1-16.6 for neonates from nine field populations). An enhanced GST and EST activities was detected in one field population, with enzymatic activity ratios of threefold and fivefold for GST and EST, respectively, when compared with the susceptible strain. The insecticide bioassays showed that the LC90 used were effective as diagnostic concentrations. Measures of MFO activity alongside bioassays with insecticide diagnostic concentrations could be used as tools for monitoring insecticide resistance in neonate larvae of C. pomonella.  相似文献   

2.
Summer-form pear psylla, Psylla pyricola Foerster, from sprayed pear were resistant to endosulfan (2·4-fold), methiocarb (2·5-fold), ethylan (5·8-fold), azinphos-methyl (7·7-fold), and fenvalerate (40·1-fold). Esterase (3·8-fold), glutathione transferase (1·8-fold), and cytochrome P-450 monooxygenase (1·6-fold) detoxification enzyme activity was higher in resistant than in susceptible summer forms. Synergism by piperonyl butoxide and S,S,S-tributylphosphorotrithioate (DEF) was added evidence for cytochrome P-450 monooxygenases and esterases as resistance mechanisms. Reduced penetration may also have contributed to resistance, as indicated by a 1·6-fold slower penetration of azinphos-methyl in resistant than susceptible summer-forms. Similar differences in insecticide toxicity and esterase and glutathione transferase activities were observed between winter-forms of resistant and susceptible pear psylla. Winter-forms of P. pyricola were up to three times more tolerant to insecticides than summer-forms. Higher cytochrome P-450 monooxygenase activity (1·7-fold) and slower azinphosmethyl penetration (2·1-fold) in winter-forms may have contributed to their greater insecticide tolerance; however, sequestration may also have been involved.  相似文献   

3.
A strain of the fall armyworm, Spodoptera frugiperda (J.E. Smith), collected from corn in Citra, Florida, showed high resistance to carbaryl (562-fold) and methyl parathion (354-fold). Biochemical studies revealed that various detoxification enzyme activities were higher in the field strain than in the susceptible strain. In larval midguts, activities of microsomal oxidases (epoxidases, hydroxylase, sulfoxidase, N-demethylase, and O-demethylase) and hydrolases (general esterase, carboxylesterase, β-glucosidase) were 1.2- to 1.9-fold higher in the field strain than in the susceptible strain. In larval fat bodies, various activities of microsomal oxidases (epoxidases, hydroxylase, N-demethylase, O-demethylases, and S-demethylase), glutathione S-transferases (CDNB, DCNB, and p-nitrophenyl acetate conjugation), hydrolases (general esterase, carboxylesterase, β-glucosidase, and carboxylamidase) and reductases (juglone reductase and cytochrome c reductase) were 1.3- to 7.7-fold higher in the field strain than in the susceptible strain. Cytochrome P450 level was 2.5-fold higher in the field strain than in the susceptible strain. In adult abdomens, their detoxification enzyme activities were generally lower than those in larval midguts or fat bodies; this is especially true when microsomal oxidases are considered. However, activities of microsomal oxidases (S-demethylase), hydrolases (general esterase and permethrin esterase) and reductases (juglone reductase and cytochrome c reductase) were 1.5- to 3.0-fold higher in the field strain than in the susceptible strain. Levels of cytochrome P450 and cytochrome b5 were 2.1 and 1.9-fold higher, respectively, in the field strain than in the susceptible strain. In addition, acetylcholinesterase from the field strain was 2- to 85-fold less sensitive than that from the susceptible strain to inhibition by carbamates (carbaryl, propoxur, carbofuran, bendiocarb, thiodicarb) and organophosphates (methyl paraoxon, paraoxon, dichlorvos), insensitivity being highest toward carbaryl. Kinetics studies showed that the apparent Km value for acetylcholinesterase from the field strain was 56% of that from the susceptible strain. The results indicated that the insecticide resistance observed in the field strain was due to multiple resistance mechanisms, including increased detoxification of these insecticides by microsomal oxidases, glutathione S-transferases, hydrolases and reductases, and target site insensitivity such as insensitive acetylcholinesterase. Resistance appeared to be correlated better with detoxification enzyme activities in larval fat bodies than in larval midguts, suggesting that the larval fat body is an ideal tissue source for comparing detoxification capability between insecticide-susceptible and -resistant insects.  相似文献   

4.
为明确联苯肼酯对二斑叶螨Tetranychus urticae体内解毒酶系的影响,采用叶片浸渍法测定联苯肼酯对二斑叶螨的亚致死质量浓度LC10和LC30,用这2种浓度分别处理二斑叶螨,并测定60 h内二斑叶螨体内谷胱甘肽S-转移酶(glutathione S-transferase,GST)、羧酸酯酶(carboxylesterase,CarE)和多功能氧化酶(multifunctional oxidase,MFO)的比活力,以及米氏常数Km及最大反应速率vmax的变化。结果显示,经LC10和LC30剂量处理二斑叶螨后,其体内CarE、GST和MFO的活性在6~60 h均受到明显诱导。其中,GST和MFO的比活力在12 h最大,分别为对照的1.25倍、1.60倍和1.63倍、1.84倍,CarE的比活力在48 h最大,为对照的1.27倍和1.37倍;与对照组相比,CarE的Km显著减小,vmax显著升高,而GST和MFO的Km显著增大,vmax显著减小。表明3种酶均参与了二斑叶螨对联苯肼酯的解毒代谢,其中CarE与底物的亲和力最大,反应速率最快,其对联苯肼酯的解毒代谢起主导作用。  相似文献   

5.
The western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is a serious pest on a wide range of crops throughout the world. F. occidentalis is difficult to control with insecticides because of its thigmokinetic behaviour and resistance to insecticides. Pesticide resistance can have a negative impact on integrated pest management programmes with chemical control as one of the components. Resistance to a number of different insecticides has been shown in many populations of F. occidentalis. This flower thrips has the potential of fast development of resistance owing to the short generation time, high fecundity, and a haplodiploid breeding system. The mechanisms conferring insecticide resistance in insects can be divided into four levels. First, an altered behaviour can aid the insect to avoid coming into contact with the insecticide. Second, a delayed penetration through the integument will reduce the effect of the insecticide at the target site. Third, inside the insect, detoxification enzymes may metabolise and thereby inactivate the insecticide. Fourth, the last level of resistance mechanisms is alterations at the target site for the insecticide. Knowledge of resistance mechanisms can give information and tools to be used in management of the resistance problem. Recently, studies have been carried out to investigate the underlying mechanisms conferring resistance in F. occidentalis. It appears that resistance in F. occidentalis is polyfactorial; different mechanisms can confer resistance in different populations and different mechanisms may coexist in the same population. Possible resistance mechanisms in F. occidentalis include: reduced penetration, detoxification by P450-monooxygenases, esterases and glutathione S-transferases, and alterations of acetylcholinesterase, the target site for organophosphate and carbamate insecticides. Target site resistance to pyrethroids (knockdown resistance) may also be a resistance mechanism in F. occidentalis.  相似文献   

6.
随着拟除虫菊酯类杀虫剂在卫生和农业害虫防治中的广泛应用,昆虫对此类杀虫剂产生抗性的报道越来越多。目前已明确昆虫对拟除虫菊酯类杀虫剂的抗性机制包括表皮穿透率下降、靶标抗性以及代谢抗性,其中代谢抗性机制较为普遍,而且其与昆虫对多种杀虫剂的交互抗性关系密切。目前,随着基因组、转录组以及蛋白质组学等新技术的发展及应用,昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究也取得了很多新进展。昆虫体内细胞色素P450酶(P450s)、羧酸酯酶(CarE)及谷胱甘肽S-转移酶(GSTs)等重要解毒酶系的改变均与昆虫对拟除虫菊酯类杀虫剂的代谢抗性有关,其中这3类解毒酶的活性及相关基因表达量的变化是昆虫对此类杀虫剂产生代谢抗性的主要原因。明确昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制,对合理使用此类杀虫剂及延缓抗药性的产生均具有重要意义。本文在总结拟除虫菊酯类杀虫剂代谢路径及相关生物酶研究概况的基础上,综述了近年来有关昆虫对此类杀虫剂代谢抗性机制研究的主要进展。  相似文献   

7.
土耳其斯坦叶螨对杀螨剂的抗性选育及解毒酶活力变化   总被引:3,自引:0,他引:3  
为探索土耳其斯坦叶螨的抗药性及其生化机理,在室内对敏感系土耳其斯坦叶螨分别用螺螨酯、甲氰菊酯和阿维菌素逐代处理,选育出抗性种群。结果表明,选育至15代,土耳其斯坦叶螨对螺螨酯、甲氰菊酯和阿维菌素的抗性指数分别达到268.63、37.98和112.68倍。分别测定敏感品系(SS)、抗螺螨酯(RS)、抗甲氰菊酯(RF)、抗阿维菌素(RA)品系的解毒酶活性显示,3种不同抗性品系相对SS品系的羧酸酯酶(CarE)、谷胱甘肽S-转移酶(GSTs)和多功能氧化酶(MFO)的比活力均有不同程度的提高,差异均达到显著水平(P0.05)。其中,RF品系的MFO比活力上升最快,是SS品系的12.7倍;RA品系的MFO比活力次之,是SS品系的5.76倍;RS品系的3种解毒酶比活力均增长较慢,其中CarE比活力上升最慢,是SS品系的1.31倍。由此表明,CarE、GSTs、MFO的活性增大可促进土耳其斯坦叶螨对3种杀虫剂的抗性形成;螺螨酯的抗性增强可能与CarE关系甚微;MFO活性的增加可能与甲氰菊酯抗性升高密切相关;GSTs、MFO的活性升高可能是土耳其斯坦叶螨对阿维菌素产生抗性的主要原因。  相似文献   

8.
A strain (R) of Aphis gossypii from Southern France was found to be resistant to several insecticides, particularly to pirimicarb, as compared to a susceptible strain (S). Resistance levels were determined by biological tests, and the highest resistance factor (1350) was for pirimicarb. Resistance was mainly restricted to anticholinesterase inhibitors. Use of synergists, DEF and PB, suggested that resistance mechanisms based on detoxification were involved to a minor extent, since a good correlation was observed between I50 values and ki values of AChE and in-vivo bioassay data. The two strains differed in esterase activity, with a 27·7-fold increase in the R strain. Resolution of esterases by polyacrylamide gel electrophoresis showed different patterns in the S and R strains, and two isozymes were less sensitive to pirimicarb in the S strain; however, no in-vitro degradation of [14C]pirimicarb was observed. These data suggest that the main mechanism of resistance was through a decrease in the sensitivity of the target, AChE, to the insecticides. © 1997 SCI.  相似文献   

9.
The mechanisms for multiple resistances had been studied with two field resistant strains and the selected susceptible and resistant strains of Spodoptera litura (Fabricius). Bioassay revealed that the two field strains were both with high resistance to pyrethroids (RR: 63-530), low to medium resistance to organophosphates and carbamates, AChE targeted insecticides (RR: 5.7-26), and no resistance to fipronil (RR: 2.0-2.2). Selection with deltamethrin in laboratory could obviously enhance the resistance of this pest to both pyrethroids and AChE targeted insecticides. Synergism test, enzyme analysis and target comparison proved that the pyrethroid resistance in this pest associated only with the enhanced activity of cytochrome P450 monooxygenase (MFO) and esterase. However the resistance to the AChE targeted insecticides depended on the target insensitivity and also the enhanced activity of MFO and esterase. Thus, the cross-resistance between pyrethroids and the AChE targeted insecticides was thought to be resulted from the enhanced activity of MFO and esterase.  相似文献   

10.
Very high cypermethrin and fenvalerate resistance frequencies were recorded in Helicoverpa armigera (Hübner) populations in central India during the 1993–94, 1994–95 and 1995–96 cropping seasons. Synergism assays and biochemical analyses of detoxification enzyme levels indicated that mono-oxygenases and esterases were important metabolic mechanisms mediating pyrethroid resistance. Piperonyl butoxide- (PBO) and profenofos-suppressible pyrethroid resistance were correlated with enhanced levels of cytochrome P450 and general esterases respectively. Enzyme assay data indicated that high cytochrome P450 levels generally coincided with low esterase activity and vice versa. Similarly, synergist bioassays showed that PBO-insensitive resistance was frequently associated with profenofos-sensitive resistance and vice versa. Oxidase- and esterase-mediated mechanisms evidently alternated in a reciprocal manner, with perceptible shifts in relative importance occurring during mid-October in all three seasons and in late January in 1995. Apart from metabolic mechanisms, a synergist-insensitive resistance mechanism (believed to be nerve insensitivity), accounted for an average of 51, 30 and 28% of cypermethrin resistance during the 1993–94, 1994–95 and 1995–96 seasons respectively. © 1997 SCI.  相似文献   

11.
BACKGROUND: The B‐type Bemisia tabaci (Gennadius) has become established in many regions in China, and neonicotinoids are extensively used to control this pest. Imidacloprid resistance in a laboratory‐selected strain of B‐type B. tabaci was characterised in order to provide the basis for recommending resistance management tactics. RESULTS: The NJ‐Imi strain of B‐type B. tabaci was selected from the NJ strain with imidacloprid for 30 generations. The NJ‐Imi strain exhibited 490‐fold resistance to imidacloprid, high levels of cross‐resistance to three other neonicotinoids, low levels of cross‐resistance to monosultap, cartap and spinosad, but no cross‐resistance to abamectin and cypermethrin. Imidacloprid resistance in the NJ‐Imi strain was autosomal and semi‐dominant. It is shown that enhanced detoxification mediated by cytochrome‐P450‐dependent monooxygenases contributes to imidacloprid resistance to some extent in the NJ‐Imi strain. Results from synergist bioassays and cross‐resistance patterns indicated that target‐site insensitivity may be involved in imidacloprid resistance in the NJ‐Imi strain of B. tabaci. CONCLUSION: Although oxidative detoxification mediated by P450 monooxygenases is involved in imidacloprid resistance in the NJ‐Imi strain of B‐type B. tabaci, target‐site modification as an additional resistance mechanism cannot be ruled out. Considering the high risk of cross‐resistance, neonicotinoids should be regarded as a single group when implementing an insecticide rotation scheme in B. tabaci control. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
The in vivo and in vitro metabolism of [14C]malathion was studied in susceptible (LS) and malathion resistant (RM) strains of the sheep blowfly, Lucilia cuprina (Wiedemann). No difference was found between strains in the penetration, excretion, storage, or inhibitory potency of the insecticide. However, RM degraded malathion to its α- and β-monocarboxylic acid metabolites more rapidly than LS, both in vivo and in vitro. This enhanced degradation of [14C]malathion occurred in vitro in both mitochondrial and microsomal fractions of resistant flies. Kinetic analysis revealed that these fractions degraded malathion by discrete mechanisms. The enzymes from the mitochondria of both strains had the same Km, whereas the microsomal enzyme from the RM strain had a fivefold higher Km than that from the LS strain. Studies of esterase activities and the effect of enzyme inhibitors showed that both the mitochondrial and microsomal resistance mechanisms were the result of enhanced carboxylesterase activity. It was concluded that increased carboxylesterase detoxification of malathion adequately explained the high level of malathion resistance in RM if rate-limiting factors such as cuticular penetration were taken into account.  相似文献   

13.
Experiments have been carried out to confirm the cross-resistance between abamectin and tebufenozide in Plutella xylostella and demonstrate its mechanism. The results showed that the resistant strain of P. xylostella selected by tebufenozide (RF 99.38) really showed high cross-resistance to abamectin (RF 29.25). When this strain was subjected to resistance decaying treatment, breeding without contacting any insecticides, and abamectin resistance selection for 20 generations, the former resulted in decrease of its resistance to both tebufenozide and abamectin to about one third of the original (RF 35.03 and 11.67, respectively), and the later enhanced its resistance to abamectin dramatically (RF 303.77), but not to tebufenozide(RF 50.04). PBO showed high synergism to abamectin (SR 2.11-12.23), and the synergism ratio positively related to the resistance level among different strains. Enzyme analysis also proved that the activity of cytochrome P450 monooxygenase (MFO) was notable enhanced in the strains resistant to both tebufenozide and abamectin (1.71- to 3.01-fold). Based on discussion, it was concluded that tebufenozide selection could resulted in significant cross-resistance of P. xylostella to abamectin. The major mechanism for the cross-resistance should be the enhancement of MFO activity. For resistance management, tebufenozide and abamectin would not recommend for rotational use.  相似文献   

14.
B-biotype Bemisia tabaci has developed high levels of resistance to many insecticides. To investigate the risks and explore possible mechanisms of resistance to diafenthiuron in B. tabaci, a 32.8-fold diafenthiuron-resistant strain (R-DfWf) was established after selection for 36 generations compared with the susceptible strain (S-Lab). Biochemical assays showed that the activity of cytochrome P450 towards p-NA was significantly higher (4.37-fold higher) in the R-DfWf strain than in the S-Lab strain. Similarly, the carboxylesterase (COE) activity and glutathione S-transferase (GST) activity were also significantly higher (3.12- and 1.83-fold higher, respectively) in the R-DfWf strain than in the S-Lab strain. The expression of five of seven P450 genes was significantly higher (>3-fold) in the R-DfWf strain than in the S-Lab strain. The expression of COE2 was significantly higher (>2.5-fold) in the R-DfWf than in the S-Lab strain. The expression of GST and GST2 was significantly higher (>2.3-fold) in the R-DfWf than in the S-Lab. Thus, cytochrome P450, COE and GST may appear to be responsible for the resistance to diafenthiuron in B. tabaci. It is also valuable for usage of insecticides for resistance management and control of this species.  相似文献   

15.
Several observations suggested that enhanced mixed function oxidase (MFO) activity was one of several factors contributing to permethrin and dichlorvos resistance in the mushroom pest, Lycoriella mali (Fitch) (Diptera: Sciaridae). This was investigated using the mixed function oxidase inhibitor, piperonyl butoxide (PBO), in topical application bioassays with reference and field-selected resistant strains. At the LD50, strains of resistant colonies (AV1, AV2, TK1) used in this study were 41-(AV1), 34-(AV2), and 62-fold (TK1) resistant to permethrin, relative to the reference strain (ONT9). Permethrin in the reference strain was only synergized 2- (ONT9) and 4- (ONT13) at the LD50. Synergist ratios for resistant strains were 12 (AV1), 34 (AV2) and 94 (TK1) at the LD50. Moderate dichlorvos resistance was twice documented in the AV strain. Resistance ratios of 37 (AV4) and 52 (AV9) were observed at the LD50, relative to the reference strain (ONT10). Dichlorvos was synergized only 2-fold at the LD50 in the reference strain (ONT10). However, PBO abolished dichlorvos resistance in the AV9 strain. The effectiveness of PBO in these studies indicated that enhanced MFO activity was present in resistant L. mali from southeastern Pennsylvania. Resistance to DDT (54-fold at the LD50) was also documented. Other factors, such as an altered target site (kdr), may also have contributed to control failures with permethrin.  相似文献   

16.
为明确烟粉虱Bemisia tabaci(Gennadius)在大气CO2浓度和温度双因子胁迫下的生理响应,以CO2浓度和温度为作用因子,研究了4种不同组合处理下烟粉虱成虫体内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、谷胱甘肽转移酶(GST)、乙酰胆碱酯酶(Ach E)活性的变化。结果表明:常温处理下,CO2浓度升高烟粉虱体内POD和GST活性分别增加87.6%和295%,SOD和CAT活性分别降低22.4%和28.2%;高温处理下,CO2浓度升高烟粉虱体内Ach E和GST活性分别增加103.6%和167.5%,CAT活性降低31.6%;常CO2浓度处理下,温度升高烟粉虱体内POD和SOD活性分别增加46.2%和18.2%,CAT活性降低35.8%;高CO2浓度处理下,温度升高烟粉虱体内Ach E和SOD活性分别增加75.3%和40.3%,CAT活性降低38.9%。表明CO2浓度和温度升高是导致烟粉虱体内SOD、POD、GST和Ach E活性升高的主要原因,并且SOD和POD活性变化受到CO2和温度的交互影响。烟粉虱可能通过改变体内保护酶或解毒酶的活性来适应CO2浓度和温度升高的环境。  相似文献   

17.
The mechanisms of resistance to pyrethroids were studied in a permethrin-selected (147-R) strain of the house fly, Musca domestica L. Approximately 12-fold synergism was obtained with a mixture of (1R)-trans-permethrin:piperonyl butoxide (1:5) so that the resistance decreased from 97-fold to 22-fold. Tests with the esterase inhibitor S,S,S-tributyl phosphorotrithioate produced very little synergism in either the resistant (R) strain (1.6-fold) or the susceptible (S) strain (1.9-fold). An investigation of the microsomal components revealed that compared to the S strain, the R strain demonstrated twice as much cytochrome P-450 and cytochrome b5 and double the rate of NADPH-cytochrome c reductase activity. In addition, the rate of p-nitroanisole O-demethylation was found to be six times greater in the R strain. An in vivo accumulation study showed that the R strain displayed a decreased rate of penetration of trans-[14C]permethrin. When treated at equitoxic doses the R strain was found to tolerate 50-fold more internal permethrin than the S strain. An in vitro metabolism study indicated that there was no difference between strains in the overall rate of metabolism of trans-[14C]permethrin. The evidence obtained supports the conclusion that several resistance factors are involved but that decreased sensitivity of the nervous system to the action of pyrethroids is the principal mechanism of resistance in the 147-R strain.  相似文献   

18.
Fipronil is a new insecticide which exerts its toxic action by interacting with the insect GABA-gated chloride channel. Previous studies have shown that cyclodiene-resistant insects have low to moderate levels of cross-resistance to fipronil, while other resistant strains are usually susceptible. In contrast, we recently found a strain (LPR) of house fly (Musca domestica L) with 15-fold cross-resistance to fipronil that was not associated with cyclodiene resistance. Fipronil cross-resistance in LPR was inherited as an intermediately dominant, autosomal, multigenic trait. [14C]Fipronil was observed to penetrate into LPR flies more slowly than into susceptible flies. S,S,S-tributylphosphorotrithioate and diethyl maleate pretreatment did not reduce the level of fipronil cross-resistance, while piperonyl butoxide resulted in a slight decrease. These results indicate that decreased penetration and monooxygenase-mediated detoxification may be mechanisms contributing to fipronil cross-resistance in the LPR strain. © 1999 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Methoxyfenozide is a lepidopteran‐specific insecticide that belongs to a new group of insecticides, the non‐steroidal ecdysteroid agonists, also called moulting accelerating compounds (MACs). To investigate the risk of resistance and possible mechanisms conferring resistance to methoxyfenozide, the authors selected in the laboratory for a resistant strain of the cotton leafworm Spodoptera littoralis (Boisd.), which is a representative lepidopteran model and an important pest in cotton and vegetables worldwide, with a high risk for resistance development. RESULTS: After selection with methoxyfenozide during 13 generations, toxicity data showed that the selected strain developed fivefold resistance to methoxyfenozide in comparison with the susceptible strain. Measurement of the detoxification enzymes demonstrated that the monooxygenase (MO) activity was 2.1 times higher in the selected strain, whereas there was no change for esterases and glutathione‐S‐transferases. When the inhibitors piperonyl butoxide (PBO), S,S,S‐tributyl phosphorotrithioate (DEF) and diethyl maleate were tested as synergists, the respective synergistic ratios were 0.97, 0.96 and 1.0 for the susceptible strain, and 2.2, 0.96 and 1.1 for the resistant strain. The significant synergistic effect by PBO concurs with the increased MO activity in the selected strain. CONCLUSION: Taken overall, the present study supports the importance of MO‐mediated metabolism in resistance to methoxyfenozide, directing tactics to fight against resistance development for this novel group of insecticides. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
Tuta absoluta (Meyrick) resistance to insecticides has become a significant problem in many tomato production areas in South America. New insecticides are now available for the management of this pest (i.e. spinosad), however there is scarce information about their efficacy on field populations.With the aim of determining the susceptibility of T. absoluta to spinosad we evaluated the response of second instar larvae, from five field populations (Azapa 1, Azapa 2, Lluta, Colín and Valdivia) and a laboratory reference strain (S), to a diagnostic concentration of the insecticide. We also determined the activity of the detoxifying enzymes mixed-function oxidases (MFO), glutathione-S-transferases (GST) and esterases (EST) in the same larval stage. Larval mortality in field populations was significantly lower in Azapa 1 (50.0%), Azapa 2 (44.9%), Lluta (39.9%) and Colín (53.5%) when compared to the laboratory strain (91.7%). MFO activities in field populations were between 1.8 and 4.6 times higher than those observed in the S strain, while for EST, the ratio varied from 1.7 to 14.7. The lowest ratios were observed for the GST (0.5-2.7), however, significant differences were detected for the three enzyme systems. We conclude that the evaluated mechanisms would be involved in spinosad resistance of populations of T. absoluta, presenting an increased MFO activity in all populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号