首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soil cover inside the walls of the New Jerusalem Monastery (in the city of Istra, Moscow region) has been completely transformed during the long history of anthropogenic loads on the local landscape. Specific anthropogenic soils have been formed from the technogenic deposits on the top and slopes of the monastery hill. These soils contain numerous artifacts; in their upper part, horizons with characteristic features of the modern humus-accumulative process have been developed. The major types of anthropogenic soils on the territory of the monastery—urbiagrostratozems, soddy urbistratozems, and soddy-calcareous urbistratified soils—have been described. The composition of technogenic deposits determines the shift of pH values towards the alkaline reaction, the high content of available phosphorus compounds, and the soil contamination with heavy metals. The post-alluvial gray-humus soils close in their morphology and chemical properties to the natural soils of the floodplain predominate in the soil cover of the park zone adjacent to the walls of the monastery in the Istra River valley.  相似文献   

2.
3.
For the first time, a soil map of St. Petersburg has been developed on a scale of 1 : 50000 using MicroStation V8i software. The legend to this map contains more than 60 mapping units. The classification of urban soils and information on the soil cover patterns are principally new elements of this legend. New concepts of the urbanized soil space and urbopedocombinations have been suggested for soil mapping of urban territories. The typification of urbopedocombinations in St. Petersburg has been performed on the basis of data on the geometry and composition of the polygons of soils and nonsoil formations. The ratio between the areas of soils and nonsoil formations and their spatial distribution patterns have been used to distinguish between six types of the urbanized soil space. The principles of classification of the soils of urban territories have been specified, and a separate order of pedo-allochthonous soils has been suggested for inclusion into the Classification and Diagnostic System of Russian Soils (2004). Six types of pedo-allochthonous soils have been distinguished on the basis of data on their humus and organic horizons and the character of the underlying mineral substrate.  相似文献   

4.
陕北地区黄绵土分类的研究   总被引:3,自引:0,他引:3  
黄自立 《土壤学报》1987,24(3):266-271
黄绵土是在黄土母质上形成的幼年土壤,没有明显的发育层次,不具有地带性土壤剖面特征,土壤性状与母质类似,剖面层次由Ap—C层或A—C层组成。根据土壤诊断层和诊断剖面特性划分为原始黄绵土和淡黄绵土两个亚类。以作物生长季节(4—9月)土壤水热状况划分温灌黄绵土、温潮黄绵土、温润黄绵土、温干黄绵土、凉润黄绵土、凉干黄绵土等土属。以表层土壤质地和有机质含量的等级差异和组合划分出28个土种。黄绵土的分布,在延安以南海拔低于1200米以下的地区,阴、阳坡土壤均属温潮黄绵土,再向北,阴坡为温润黄绵土,阳坡为温干黄绵土。海拔高度在1400米以上阴阳坡两边的土壤属凉干黄绵土,阴凉沟底地土壤属凉润黄绵土。河川地土壤通常为温灌黄绵土。  相似文献   

5.
New and previously published data on the soils of western Georgia are generalized, and traditional soil names are correlated with the units of the World Reference Base for Soil Resources. It is argued that krasnozems (red ferrallitic soils) can be attributed to the group of Nitisols (the soils characterized by intense weathering (ferralization) and having shiny ped faces in the nitic horizon); yellow and yellow-brown soils (zheltozems), to the group of Luvisols (the soils with relatively high adsorption capacity in the eluvial horizons and with the horizon of the illuvial accumulation of clay); yellow-podzolic (zheltozem-podzolic) soils, to Alisols (slightly acid soils with the low adsorption capacity, poor aggregation of the upper horizons, low-activity (kaolinite) clay, and with the horizon of clay accumulation (argic horizon)); brown forest soils, to Cambisols (the soils with the cambic horizon characterized by some alteration of the lithogenic texture and structure into the pedogenic texture and structure); and mountainous forest-meadow and meadow soils, to Umbrisols (the soils with the dark-colored unsaturated umbric horizon).  相似文献   

6.
Complexes of gray forest soils of different podzolization degrees with the participation of gray forest podzolized soils with the second humus horizon play a noticeable role in the soil cover patterns of Vladimir Opolie. The agronomic homogeneity and agronomic compatibility of gray forest soils in automorphic positions (“plakor” sites) were assessed on the test field of the Vladimir Agricultural Research Institute. The term “soil homogeneity” implies in our study the closeness of crop yield estimates (scores) for the soil polygons; the term “soil compatibility” implies the possibility to apply the same technologies in the same dates for different soil polygons within a field. To assess the agronomic homogeneity and compatibility of soils, the statistical analysis of the yields of test crop (oats) was performed, and the spatial distribution of the particular parameters of soil hydrothermic regime was studied. The analysis of crop yields showed their high variability: the gray forest soils on microhighs showed the minimal potential fertility, and the maximal fertility was typical of the soils with the second humus horizon in microlows. Soils also differed significantly in their hydrothermic regime, as the gray forest soils with the second humus horizon were heated and cooled slower than the background gray forest soils; their temperature had a stronger lag effect and displayed a narrower amplitude in seasonal fluctuations; and these soils were wetter during the first weeks (40 days) of the growing season. Being colder and wetter, the soils with the second humus horizons reached their physical ripeness later than the gray forest soils. Thus, the soil cover of the test plot in the automorphic position is heterogeneous; from the agronomic standpoint, its components are incompatible.  相似文献   

7.
The taxonomic structure of the microbiota in two associated soils—solonetz on a microhigh and meadow-chestnut soil in a microlow—was studied in the semidesert of the Caspian Lowland. A highthroughput sequencing of the 16S rRNA gene was used for the soil samples from genetic horizons. A considerable reduction in the bacterial diversity was found in the lower horizons of the solonetz and compact solonetzic horizon with a high content of exchangeable sodium. In the meadow-chestnut soil, the microbial diversity little decreased with the depth. In both soils, a portion of archaea from the Thaumarchaeota group also decreased in the deeper horizons. In the soil horizons with the lower total bacterial diversity, a share of proteobacteria of the Enterobacteriaceae, Pseudomonadaceae, and Sphingomonadaceae families became higher. The difference between the structure of the microbial population in the solonetz and meadow- chestnut soil can be first explained by the different water regimes and soil consistence.  相似文献   

8.
The analysis of ribosomal genes has been applied to study microbiomes of two soils of the solonetzic soil complex in the northern Caspian region. These soils—solonetz and quasigleyic chestnut soil—drastically differ in their salinity characteristics. The specificity of the vertical distribution of prokaryotes by the genetic soil horizons from the surface to the depth of 120 cm in these soils is discussed. The differences in the structure of microbiomes in the upper soil horizons can be related to the differences in the vegetation cover of the two soils, whereas the differentiation of microbiomes along the soil profiles is affected by the soil salinization. The solonetz is characterized by a much sharper decrease in the abundance and diversity of microorganisms down the soil profile in comparison with the leached quasigleyic chestnut soil. The total number of prokaryotes is mainly limited by the organic carbon content. In the upper soil horizons, Archaea from the phylum Thaumarchaeota are relatively abundant; their percentage decreases down the soil profiles. In the lower horizons of the solonetz, the genes of Marinobacter bacteria, which are considered marine inhabitants, have been found. It is probable that they persist in the soil since the previous transgression of the Caspian Sea.  相似文献   

9.
Differently directed and heterochronous cryogenic processes have contributed to the contrasting soil cover patterns and spatial heterogeneity of the properties of soils in hydromorphic ecosystems of the discontinuous permafrost zone of the northern taiga in Western Siberia. Frost heave and permafrost thawing within ecosystems of highmoor bogs have led to the development of specific cryogenic landforms, such as flat-topped and large peat mounds. A set of cryogenic soils is developed in these ecosystems; it includes different variants of cryozems, gleyzems (Cryosols), and peat soils (Histosols). The distribution of these soil types is controlled by the local topography and thawing depth, other factors being insignificant. Alternation of peat horizons of different types and ages, whirl-like patterns of horizon boundaries, considerable variations in the thickness of soil horizons, and inversions of soil horizons under the impact of frost cracking, frost heave, and cryoturbation are typical of the considered soils. Thawing depth is the most significant factor affecting the thickness of organic horizons, the soil pH, and the degree of decomposition of peat. As a result of the upward movement of bog ecosystems under the impact of frost heave, peat soils are subjected to considerable transformation: peat horizons undergo mineralization, and the thickness of organic horizons decreases; in some cases, eluvial–illuvial differentiation of the mineral horizons takes place, and peat podzols are developed. However, the opposite process of the return of the soils to the bog stage of pedogenesis with peat accumulation may take place in any time in the case of activation of thermokarst processes.  相似文献   

10.
The results of the Internet discussion on the classification of urban soils aimed at evaluating their possible inclusion into the modern Russian soil classification system adopted by a wide range of specialists are presented. The first step was to address the urban diagnostic horizons as the basis for identifying soil types according to the rules of the Russian soil classification. New diagnostic horizons were proposed for urban soils: urbic (UR), filled compost-mineral (RAT), and filled peat (RT). The combination of these horizons with other diagnostic horizons and layers of technogenic materials correspond to different soil types. At the subtype level, the diagnostic properties (qualifiers) that may reflect both natural phenomena (gley, alkalinity) and technogenic impacts on the soils (urbistratified; phosphatic; or poorly expressed urban—ur, rat, rt) are used. Some corrections were proposed for the system of parent materials in urban environments. Urban soils formerly described in another nomenclature—urbanozems, urbiquasizems, and culturozems—are correlated with the taxa in all the trunks of the system. The proposals accepted can be used for the next updated version of the new Russian soil classification system.  相似文献   

11.
The influence of pit and mound microrelief on soil formation was investigated by detailed observations of a cross-section through a pit and mound in a hemlock (Tsuga canadensis) forest in western Massachusetts, in the northeastern United States.Soil forming processes during the last 140 years have led to taxonomically different soils due to this microrelief. Part of the annual precipitation apparently does not infiltrate into the mound but moves laterally through organic surface layers into the pits. This resulted in more intensified translocation of Fe, Al and organic matter in the pit profile. The ensuing soil met the spodic horizon criteria as defined in Soil Taxonomy and was classified as a Lithic Haplorthod. Neighboring, undisturbed soils had pronounced E, Bhs, and Bs horizons, the latter qualifying as spodic horizons on the basis of chemical criteria. These soils, however, did not meet the minimum depth requirement of 12.5 cm for spodic horizons and therefore, were classified as Typic Dystrochrepts. The soil developed in the mound showed less horizon development and was classified as a Typic Dystrochrept.Taxonomic changes resulting from the pit and mound microrelief affected less than 6% of the area and appeared not to have a significant impact on the purity of map delineations.  相似文献   

12.
A well‐developed podzol hydrosequence that has been partially covered with drift sand, and partially subjected to improved drainage, provides new insights into the causes of variation in soil organic matter chemistry in such soils. While E horizons invariably move towards a dominance of aliphatic components reflecting residual accumulation, the chemistry of organic matter in well‐drained B horizons is determined mainly by decaying roots, which are transformed by microorganisms to humus aggregates. In poorly drained, stratified B horizons, humus coatings dominate and the chemistry is very close to that of dissolved organic carbon. When a sand cover inhibits the supply of fresh litter, microbial decomposition in the A horizon causes a shift in chemistry towards that of the E horizon. Similarly, upon improved drainage and removal of complexed metals from the top of the B horizon, microbial decomposition of all palatable organic matter in the top of the B horizon causes a shift towards E‐horizon chemistry. This is probably the mechanism by which most E horizons in podzols are formed, and not by re‐solution. Marked chemical changes upon improved drainage may take only decades. During microbial decay, small polysaccharide‐derived pyrolysis products (mainly furans, furaldehydes and acetic acid) remain abundant due to the contribution of microbial sugars. Both micromorphology and factor analysis on quantified results of pyrolysis‐gas chromatography/mass spectrometry contribute significantly to the interpretation of the humus chemistry of these profiles and thus to our understanding of soil genesis. Organic chemistry of the investigated podzols can be understood only in the context of their genesis.  相似文献   

13.
The natural soil cover of a territory is transformed during the formation of landscape architecture objects. Natural soils are replaced by anthropogenically transformed soils and soil-like bodies. Due to technological features, either only surface horizons of natural soils or an entire range of horizons within a significant profile can be replaced. To determine the extent of transformation, the composition of inclusions of anthropogenically transformed and anthropogenic soils of the museum-estate Arkhangelskoe was studied. The study results were used to assess the extent of soil contamination and to determine the features of the composition of anthropogenic inclusions. A practical proposal on research on the coarse fraction inclusions of the soil was made.  相似文献   

14.
In the profiles of cryozems (Oxyaquic Turbic Cryosols) developing in tundra of northern Yakutia under conditions of shallow active layer, suprapermafrost horizons of the accumulation of raw organic matter are formed. Taking into account their genesis, stable and regular position in the soil profile, paragenetic links with the overlying horizons and neighboring soil profiles, and a set of diagnostic features and properties, these horizons can be separated as a new type of genetic soil horizons—the organomineral accumulative suprapermafrost horizon (CRO). Its qualitative composition (the ratio of organic and mineral matter in the material) can be reflected at a lower level. In relation to the separation of the new genetic horizon within the framework of the new Russian soil classification system, a new genetic types of soils—cryozem with suprapermafrost accumulation of raw organic matter (suprapermafrost organo-accumulative cryozem)—can be established. Its diagnostic profile has the following horizonation: (O, AO, T)–CR–CRO–┬C.  相似文献   

15.
A large-scale soil map of one of the farms in the south of Karelia has been analyzed. This map was initially compiled in 1979 on the basis of the official Classification and Diagnostics of Soils of the Soviet Union (1977). We have corrected it with the use of the new Classification and Diagnostics of Russian Soils. Both the names of the map units and the particular delineations on the map have been changed. These changes are related to differences in the principles of soil diagnostics in the old and new classification systems and to real changes in the soil cover that have taken place after the map’s compilation. In particular, large areas of peat bogs have been drained, and the cultivated peat soils have been subjected to accelerated mineralization. Surface planing works after digging drainage channels have also changed the soil cover pattern. The revised large-scale soil map developed on the basis of the new classification system gives more adequate information about the real soil cover.  相似文献   

16.
17.
Physical properties of natural and anthropogenically transformed soils of Rostov agglomeration were examined. The data obtained by conventional methods and new approaches to the study of soil physical properties (in particular, tomographic study of soil monoliths) were used for comparing the soils of different functional zones of the urban area. For urban territories in the steppe zone, a comparison of humus-accumulative horizons (А, Asod, Ap, and buried [A] horizons) made it possible to trace tendencies of changes in surface soils under different anthropogenic impacts and in the buried and sealed soils. The microtomographic study demonstrated differences in the bulk density and aggregation of urban soils from different functional zones. The A horizon in the forest-park zone is characterized by good aggregation and high porosity, whereas buried humus-accumulative horizons of anthropogenically transformed soils are characterized by poor aggregation and low porosity. The traditional parameters of soil structure and texture also proved to be informative for the identification of urban pedogenesis.  相似文献   

18.
On the basis of soil studies along routes and on key plots, 35 new areas of soils with definite features of vertigenesis have been identified in Belgorod and Voronezh oblasts and in the northern part of Volgograd oblast (in the Don River basin). Earlier, vertic soils were not noted for these areas. In the studied region, their portion in the soil cover is much less than 1%. All the delineated areas of vertic soils are confined to the outcrops of swelling clay materials of different origins (marine, lacustrine, glacial, and colluvial sediments) and ages (Quaternary or Tertiary) that may be found in four landscape positions: (1) in the deep closed depressions within vast flat watersheds; (2) in the bottoms of wide hollows on interfluvial slopes and, sometimes, on steeper slopes of local ravines; (3) in the hydromorphic solonetzic soil complexes, and (4) on step-like interfluvial surfaces with the outcrops of Tertiary clays. Within the studied areas, soils with different degrees of expression (six grades) of vertic properties are present. These soils belong to the type of dark vertic soils proper and to vertic subtypes of different soil types according to the Russian soil classification system; according to the WRB system, they belong to Vertisols proper and to reference soil units with a Vertic prefix in the groups of Chernozems, Phaeozems, and Solonetzes. Statistical data on the morphometric indices of the vertic properties (the depth and thickness of the soil horizons with slickensides, a wedge-shaped structure, and cracks filled with material from the upper horizons) and the depth and thickness of the Vertic horizon are analyzed.  相似文献   

19.
On the basis of digital soil, topographic, and geological maps; raster topography model; forestry materials; and literature data, the digital soil map of the Ussuri River basin (24400 km2) was created on a scale of 1: 100000. To digitize the initial paper-based maps and analyze the results, an ESRI ArcGIS Desktop (ArcEditor) v.10.1 (http://www.esri.com) and an open-code SAGA GIS v.2.3 (System for Automated Geoscientific Analyses, http://www.saga-gis.org) were used. The spatial distribution of soil areas on the obtained digital soil map is in agreement with modern cartographic data and the SRTM digital elevation model (SRTM DEM). The regional soil classification developed by G.I. Ivanov was used in the legend to the soil map. The names of soil units were also correlated with the names suggested in the modern Russian soil classification system. The major soil units on the map are at the soil subtypes that reflect the entire vertical spectrum of soils in the south of the Far East of Russia (Primorye region). These are mountainous tundra soils, podzolic soils, brown taiga soils, mountainous brown forest soils, bleached brown soils, meadow-brown soils, meadow gley soils, and floodplain soils). With the help of the spatial analysis function of GIS, the comparison of the particular characteristics of the soil cover with numerical characteristics of the topography, geological composition of catchments, and vegetation cover was performed.  相似文献   

20.
Oxisols cover ≈ 23% of the land surface in the tropics and are utilized extensively for agricultural purposes in the tropical countries. Under the variable input types of agricultural systems practiced locally, some of these soils still appear to have problems in terms of proper soil classification and subsequently hinder attempts to implement sustainable agro‐management protocols. The definition for Oxisols in Soil Survey Staff (1999) indicates that additional input is still required to refine the definition in order to resolve some of the outstanding classification problems. Therefore, the objective of this study is to examine the properties of some Oxisols and closely related soils in order to evaluate the classification of these soils. Soils from Brazil, several countries in Africa, and Malaysia were used in this study. Field observations provided the first indication that some of the presently classified kandi‐Alfisols and kandi‐Ultisols were closer to Oxisols in terms of their properties. Water‐retention differences and apparent CEC of the subsurface horizons also supported this idea. The types of extractable Fe oxides and external specific surface areas of the clay fractions showed that many kandic horizons have surface properties that are similar to the oxic horizons. Micromorphology indicated that the genetic transition from the argillic to the oxic involves a diminishing expression of the argillic. Properties, such as CEC, become dominant. The kandic horizon is therefore inferred as a transition to the oxic horizon. It is proposed that the Oxisols be keyed out based only on the presence of an oxic horizon and an iso–soil temperature regime. The presence of a kandic horizon will be reflected at lower levels in Oxisols. The Oxisols will now be exclusive to the intertropical belt with an iso–soil temperature regime. The geographic extend of the Oxisols would increase and that of kandi‐Alfisols and Ultisols would decrease. A few kandi‐Alfisols and Ultisols in the intertropical area will have low CEC which would fail the weatherable mineral contents. The kandic subgroups of some Alfisols and Ultisols will be transitional between the low (< 16 cmolc [kg clay]–1)‐ and high (> 24 cmolc [kg clay]–1)‐activity clay soils. The proposed changes to classification will contribute to a better differentiation of the landscape units in the field. Testing of the proposed classification on some Malaysian soils showed that the new definition for Oxisols provides a better basis for the classification of the local soils and the development of meaningful soil‐management groups for plantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号