首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One thousand four hundred and seven spring wheat germplasm lines belonging to Indian and CIMMYT wheat programs were evaluated for stay green (SG) trait and resistance to spot blotch caused by Bipolaris sorokiniana during three consecutive crop seasons, 1999–2000, 2000–2001 and 2001–2002. Disease severity was recorded at six different growth stages beginning from tillering to late milk stage. SG trait was measured by following two approaches: difference for 0–9 scoring of green coloration (chlorophyll) of flag leaf and spike at the late dough stage (GS 87) and a new approach of leaf area under greenness (LAUG). Germplasm lines showed a wide range (7–89) for LAUG and were grouped into four viz., SG, moderately stay green, moderately non-stay green and non-stay green (NSG). However, very few (2.2%) lines showed high expression of SG trait, i.e., LAUG >60. LAUG appeared to be a better measure of SG trait than a 0–9 scale. Mean spot blotch ratings of SG genotypes were significantly lower than those of NSG genotypes at all growth stages. Two spot blotch resistant genotypes (Chirya 3 and Chirya 7) having strong expressions of SG trait were crossed with NSG, spot blotch susceptible cv. Sonalika. Individually threshed F2 plants were used to advance the generations. SG trait and spot blotch severity were recorded in the parents and F1, F3, F4, F5, F6 and F6–7 generations under disease-protected and inoculated conditions. SG trait in the F1 generation was intermediate and showed absence of dominance. Evaluation of progenies (202–207) in the segregating generations revealed that SG trait was under the control of around four additive genes. Lines homozygous for SG trait in F4, F5, F6 and F6–7 generations showed significantly lower mean area under disease progress curve (AUDPC) for spot blotch than those with NSG expression. A positive correlation (0.73) between SG trait and AUDPC further indicated a positive influence of SG on severity of spot blotch. The study established that variation for SG trait exists in spring wheat; around four additive genes control its inheritance in the crosses studied and there is positive association between SG trait and resistance to spot blotch.  相似文献   

2.
A. K. Joshi    S. Kumar    R. Chand  G. Ortiz-Ferrara   《Plant Breeding》2004,123(3):213-219
Three F1 progenies and their families in the segregating generations (F3, F4, F5 and F6), obtained after crossing resistant × susceptible wheat genotypes were studied in the field to determine the genetics of resistance to spot blotch caused by Bipolaris sorokiniana. Spot blotch scores in the F1 generation showed absence of dominance. Individually threshed F2 plants were used to advance the generations. Progenies (200‐250) of resistant genotypes Acc. No. 8226, Mon/Ald, Suzhoe#8 crossed with susceptible ‘Sonalika’ were evaluated in the F3, F4, F5 and F6 generations under induced epiphytotic conditions. Based on disease score distribution in individual progeny rows, F3 progenies were grouped into four classes: homozygous resistant, homozygous susceptible, segregating resistant and segregating susceptible. Resistance appeared to be under the control of three additive genes. The presence of three genes was also noted in the distribution of F4 and F5 lines. In the case of F6 progeny rows, both quantitative and qualitative models were used to estimate the number of segregating genes based on a 2‐year trial. It appeared that resistance to spot blotch was controlled by the additive interaction of more than two genes, possibly only three.  相似文献   

3.
Summary Spot blotch caused by Cochliobolus sativusis considered a major disease problem of wheat(Triticum aestivumL.) in the warm areas of South Asia. This study estimated heritability (h 2) of resistance to spot blotch and its correlation with days to heading DH) and maturity (DM), one-hundred-kernel weight (HKW), and plant height (PHT) in 14 crosses involving four resistant (‘Attila’, ‘Chirya 7’, ‘G 162’, and ‘SW89.5422’) and two susceptible (‘Sonalika’ and ‘HD2329’) wheat genotypes. Data were recorded on F5and F6lines in fields under natural epidemics of spot blotch in 2003 and 2004, respectively. Heritability was estimated for area under disease progress curve (AUDPC), AUDPC/day, and the highest disease score (HDS) using offspring-parent regression (h op 2) and realized heritability (h 2 R) procedures. Heritability estimates were low to high in terms of AUDPC (0.21 < h op 2< 0.64; 0.32 < h R 2< 0.70), AUDPC/day (0.40 < h op 2< 0.96; 0.42 < h R 2< 0.99), and HDS (0.29 < h op 2< 0.92; 0.32 < h R 2< 0.95). The h 2estimates for AUDPC/day were higher than for AUDPC and HDS. Estimates of h R 2were by and large higher than h op 2in the same cross. A weak negative or nonsignificant correlation of spot blotch score with HKW, DH, DM, and PHT indicated that independent selection for resistance and these agronomic traits is possible.  相似文献   

4.
A.K. Joshi  R. Chand  B. Arun 《Euphytica》2002,123(2):221-228
A total of 1,407 spring wheat (T. aestivum) lines of Indian and CIMMYT (International Maize and Wheat Improvement Centre, Mexico) origin were evaluated for plant height, days to maturity and resistance to spot blotch (caused by Bipolaris sorokiniana) during the 1994–95, 1995–96 and 1996–97 crop seasons. The frequency distribution of genotypes, based on disease score ignoring the growth stages, differed from the distribution in which disease score was assessed on a similar growth stage. Two crosses each,between `tall resistant × dwarf susceptible' and `late resistant × early susceptible' genotypes, were made. The evaluation of homozygous resistant lines in the F3, F4 and F5 generations of both crosses showed a wide range of plant height and days to maturity. These lines showed significant differences for plant height and days to maturity but did not show a significant difference for AUDPC values of spot blotch. The correlation coefficients for AUDPC versus plant height or days to maturity were weak, i.e., – 0.336 and 0.061, respectively. Results indicated that resistance to spot blotch severity was independent of plant height and days to maturity in progenies from these crosses.  相似文献   

5.
Summary A 6×6 diallel was prepared to study the inheritance of leaf angle in T. aestivum L. Genetic analysis in terms of diallel cross parameters and graphic analysis indicated the control of additive gene effects in the expression of this character. The results of F1 analysis were supported by the analysis of F2 data.  相似文献   

6.
Spot blotch caused by Bipolaris sorokiniana is an important disease in barley worldwide, causing considerable yield losses and reduced grain quality. In order to identify QTL conferring resistance to spot blotch, a highly diverse worldwide barley set comprising 449 accessions was phenotyped for seedling resistance with three isolates (No 31, SH 15 and SB 61) and for adult plant resistance at two locations (Russia and Australia) in two years. Genotyping with the 50 k iSelect barley SNP genotyping chip yielded 33,818 informative markers. Genome-wide association studies (GWAS) using a compressed mixed linear model, including population structure and kinship, revealed 38 significant marker-trait associations (MTA) for spot blotch resistance. The MTA corresponded to two major QTL on chromosomes 1H and 7H and a putative new minor QTL on chromosome 7H explaining between 2.79% and 13.67% of the phenotypic variance. A total of 10 and 14 high-confidence genes were identified in the respective major QTL regions, seven of which have a predicted involvement in pathogen recognition or defence.  相似文献   

7.
Spot blotch, caused by Bipolaris sorokiniana, has become an increasingly important disease on barley in Sweden. In order to enhance our knowledge of this disease, eight Swedish B. sorokiniana isolates were assessed for their virulence pathotype on 30 barley genotypes including eight lines of mutant origin, designated B. sorokiniana tolerant (bst). A leaf screen assay revealed the presence of virulence groups 1 and 7 in Sweden. Several mutant genotypes demonstrated enhanced resistance responses (P = 0.0001), of which bst1:3 had the lowest leaf scoring value to the most virulent isolate, Swe2 (virulence group 7). To evaluate the host root responses, two contrasting isolates Swe2 and Swe4 (virulence group 7 and 1) were used to inoculate a set of eight differential lines, including four promising mutant lines from the leaf screen. Mutant bst1:6 was significantly less susceptible (P = 0.001) compared with the other barley genotypes tested, independent of the two isolates used. Mutants bst1, bst1:3 and bst1:4, which displayed less or no spots, are also considered promising genotypes for further breeding attempts.  相似文献   

8.
B. Arun  A.K. Joshi  R. Chand  B.D. Singh 《Euphytica》2003,132(3):235-241
Somaclones (R2, R3 and R4generations) were regenerated from immature embryos of two spring wheat varieties,HUW-206 and HUW-234. Many somaclones displayed improved earliness, enhanced resistance to spot blotch disease and increased yield over the parent. The superiority of variants for yield traits and disease resistance was established in R4 generation, confirming the possibility of wheat improvement through somaclonal variation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
B. Friebe  B. S. Gill 《Euphytica》1994,78(1-2):1-5
Summary Giemsa C-banding allows for the identification of all 21 chromosome pairs of hexaploid wheat. However, variation in banding patterns of individual chromosomes and structural rearrangements exist between different cultivars making chromosome identification more difficult. The paper summarizes the available data on C-band polymorphism and structural rearrangement present in wheat cultivars and germplasms.  相似文献   

10.
Summary The relation between flag leaf position and leaf rust severity was investigated in field experiments. Different leaf angles were obtained by attaching ends of flag leaves to strings stretched at different heights along wheat rows. Leaves with angles between lamina and stem of 0° and 45° were significantly less diseased than leaves with horizontal and pendulous positions. In the experiment with seedlings, spore settling and uredia number were significantly lower on erect than on horizontal leaves. The influence of wheat leaf position changes on leaf rust severity was discussed. It has been suggested that breeding of wheat cultivars with erect leaves can improve their resistance to airborne pathogens.  相似文献   

11.
Sharma  R. C.  Duveiller  E.  Gyawali  S.  Shrestha  S. M.  Chaudhary  N. K.  Bhatta  M. R. 《Euphytica》2004,139(1):33-44
Helminthosporium leaf blight (HLB), caused by a complex of Cochliobolus sativus (Ito & Kurib.) Drechsler ex Dastur and Pyrenophora tritici-repentis Died, is a serious disease of wheat (Triticum aestivum L.) in the warm lowlands of South Asia. Wheat cultivars grown in the area are either susceptible to HLB or possess low levels of resistance to it. A replicated field study was conducted in 1999 and 2000 at two sites in Nepal to determine the level of HLB resistance and other desirable traits in 60 wheat genotypes of diverse origin. The test genotypes were planted in main strips divided into two strips one of which was sprayed four times with Tilt (a.i. propiconazole) @ 125 g of a.i. ha–1. Four readings of HLB were recorded to calculate the area under the disease progress curve (AUDPC). Other traits under investigation included biomass yield (BY), grain yield (GY), 1000-kernel weight (TKW), harvest index (HI), days to heading (DH) and maturity (DM), plant height (PHT), and effective tiller number (ETN). Wheat genotypes differed significantly for all traits. Mean AUDPC values ranged from 45 to 1268. A few exotic genotypes were highly resistant to HLB. Losses in GY due to HLB ranged from 2 to 26%, and TKW was reduced by up to 33%. A few genotypes showed HLB tolerance, i.e., relatively smaller GY and TKW reductions despite high levels of HLB. In general, medium to late maturity and higher levels of HLB resistance and low to high GY and TKW characterized genotypes exotic to South Asia. Biplot analysis identified several genotypes that were HLB-resistant and agronomically superior. Results suggest it is possible to improve HLB resistance of local wheat cultivars based on selective breeding using this pool of germplasm.  相似文献   

12.
Spot blotch of wheat (Triticum aestivum L.), caused by Bipolaris sorokiniana (Sacc. in Sorok.) Shoem., is a major disease in South Asia. Popular commercial cultivars have low levels of resistance to spot blotch. Information on the inheritance of spot blotch resistance in wheat is lacking. Field studies were conducted in four wheat crosses, each involving a Chinese hexaploid parent with high levels of resistance and a commercial cultivar with low to intermediate levels of resistance to spot blotch. Data were recorded in the F2, F3 and F4 generations to estimate heritability. Field studies were conducted in three years (1992–94) at Rampur. Nepal, involving 150 lines in each cross. The spot blotch score was recorded as the percentage necrosis and associated chlorosis of the two upper most leaf surface. In the F2 generation three spot blotch readings on the flag leaf were taken whereas in the F3 and F4 generations four readings were recorded at 5-day intervals on the flag and the penultimate leaves. The highest disease score (HDS) and the area under disease progress curve (AUDPC) were analysed. Heritability (h2) estimates for spot blotch resistance were intermediate to high measured in terms of HDS (0.47 < h2 < 0.67) and also AUDPC (0.58 < h2 < 0.77) both in F3 and F4 generations in each of the four crosses. Heritability values were somewhat higher for AUDPC than HDS. There were significant negative correlations (r) of days to heading with HDS (-0.186 < r < -0.515) and AUDPC (-0.218 < r < -0.623). One-hundred kernel weight was significantly negatively correlated to AUDPC (-0.245 < r < -0.454) in all crosses in each generation. The results suggest that selection for resistance to spot blotch could be effective in the segregating populations generated from hexaploid wheat parents having different levels of resistance. Although AUDPC appeared to be a better measure to determine genetic differences for spot blotch in wheat, HDS would be adequate in screening trials for resistance to spot blotch.  相似文献   

13.
Summary The genetic control of tolerance of wheat to high concentrations of soil boron was studied for five genotypes. Each genotype represented one of five categories of response to high levels of boron, ranging from very sensitive to tolerant. Tolerance to boron was expressed as a partially dominant character, although the response of an F1 hybrid, relative to the parents, varied with the level of boron applied. The F1 hybrids responded similarly to the more tolerant parent at low B treatments and intermediate to the parents at higher treatments. Ratios consistent with monogenic segregation were observed for the F2 and F3 generations for the combinations (WI*MMC) × Kenya Farmer, Warigal × (WI*MMC) and Halberd × Warigal. The three genes, Bo1, Bo2 and Bo3, while transgressive segregation between two tolerant genotypes, G61450 and Halberd, suggested a fourth locus controlling tolerance to boron.  相似文献   

14.
The genetic bases of leaf rust resistance in wheat (Triticum aestivum L.) line CSP44, selected from the Australian cultivar Condor, and Indian cultivar VL404, were studied. The reaction patterns of CSP44 and VL404 against Indian races 12, 77, 77-1, 77-2, 77-3, 77-4, 77-5 and 108 were different from reaction patterns shown by near-isogenic lines with known adult plant resistance (APR) genes, viz. Lr12, Lr13, Lr22b and Lr34. Although the reaction patterns of CSP44 and VL404 were similar to the near-isogenic line Tc+Lr22a, tests of allelism indicated absence of Lr22a in both CSP44 and VL404. On the basis of genetic studies, their resistances in field tests against race 77-5, the most virulent race from the Indian sub-continent, were each ascribed to two genes. One of the two genes in each wheat was identified to be the non-hypersensitive APR gene Lr34. The second APR genes in CSP44 and VL404 gave hypersensitive reaction types and were recessive and dominant, respectively. The gene in CSP44 was designated Lr48and the gene in VL404, Lr49. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Variation in pigment content of the flour of bread wheats (Triticum aestivum L.) was studied in the progenies of F1 and F2 of three crosses and their reciprocals. Reciprocal differences in pigment content were observed in the F1 and F2 means. Low pigment content was found to be partially dominant or over dominant in the crosses studied. There was evidence of substantial mid-parent F1 heterosis in all crosses and betterparent F1 heterosis in three crosses. In the F2, heritability estimates were moderate to high. The F2 frequency distributions were not normal. Estimation of effective factor pairs indicated the presence of one or two major gene pairs involved in the expression of pigment content in the flour. Action of modifiers was also assumed in one cross and its reciprocal. A factorial approach to metrical character suggested that the F2 segregation ratios of low pigment content to high pigment content were 3:1, 15:1, 13:3 and 9:7 for the different crosses. Utilization of the findings in a wheat breeding program is briefly discussed.  相似文献   

16.
Wheat breeders in South Asia are attempting to develop wheat (Triticum aestivum L.) cultivars resistant to Helminthosporium leaf blight (HLB), which occurs mainly as a complex of spot blotch caused by Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur, and tan spot caused by Pyrenophora tritici-repentis (Died.) Drechs. Information on the combining ability for HLB resistance in wheat cultivars of South Asia is not available. This study was undertaken to examine the resistance to HLB in nine genetically diverse wheat parents, and to evaluate their general combining ability (GCA) and specific combining ability (SCA) effects toward determining the genetic basis of disease resistance. Nine parents were crossed in a half-diallel mating design to produce 36 populations. The F1 and F2 progenies, and the parents were evaluated in replicated field tests at Rampur, Nepal. Multiple disease scores were recorded, and area under the disease progress curve (AUDPC) was calculated to measure disease severity over time. The combining ability analysis was performed using Griffing's Method 2, Model 1. The parents chosen showed wide variation for resistance to HLB. They and the F1 and F2 progenies differed significantly for AUDPC. GCA and SCA effects were significant in both generations suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. Wheat genotypes 'SW89-5422', 'G 162', 'NL 781'and 'Chirya 7' had significantly negative GCA effects for AUDPC in both F1 and F2 generations, suggesting their prime suitability for use in wheat breeding programs to improve resistance to HLB. The estimate of narrow-sense heritability was 0.77 in both generations suggesting that selection for HLB resistance should be effective in these crosses. The results indicate a predominance of additive gene action in the inheritance of HLB resistance in spring wheat.  相似文献   

17.
Flecking trait in the mutant C591 (M8) Triticum aestivum L. is a stable,developmentally programmed, dominant mutation under monogenic control resembling pathogenic attack and starts appearing only from boot leaf stage of the plant. Mutant plants differ significantly from normal plants in terms of total chlorphyll contents only at later stages of symptom spread when the flecks fully cover the leaf sheath and leaves. However, total grain weight per main spike of mutant did not differ significantly from the normal plants. Microscopic studies of the mutant leaves did not reveal any damaging effect of the mutation on leaf anatomy per se, even though differences were observed in chlorophyll filling in mesophyll cells. Considering the peculiar characteristics of the mutation, many of which resembling the disease lesion mimic mutations in other crops, this is suspected to be such a mutation in wheat. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Summary The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), has become an important pest of wheat (Triticum aestivum L.) in the United States. The aphid causes a phytotoxemic reaction in wheat evidenced by local and systemic chlorosis and rolling of infested leaves. Developing resistance in wheat cultivars to D. noxia is an essential factor in controlling the damage caused by this pest. Several sources of genetic resistance to D. noxia have been identified in wheat germplasm. Monosomic analysis of the monogenic resistant T. aestivum accession PI137739 has shown that the gene (Dn1) for resistance is carried on chromosome 7D. It appears that chromosome 7B may carry a second resistance gene for D. noxia that might be a source of minor or complementary gene action for resistance.  相似文献   

19.
K. Moore  I. R. Cubitt 《Euphytica》1979,28(3):769-778
Summary Low power heating wires insulated in a flexible plastic strip were used to heat the shoot meristematic region of grass-dwarf genotypes to a precise temperature. The results indicate that the shoot apical meristem is the region requiring 26°C for the initiation of reproductive development in these genotypes. A secondary effect of the reproductive growth induced by high temperature treatments, was a reduction in the high levels of peroxidase enzymes found in vegetative grass-dwarf plants. The heating wire provides a precise method to identify Type I, II and III grass-dwarf genotypes according to their temperature requirements, of 26°C, 21°C and 16°C respectively, for reproductive growth under the same temperature (16 C) and photoperiod (12 hours).  相似文献   

20.
G. Kleijer 《Euphytica》1984,33(1):107-112
Summary Genetic and cytogenetic studies were done on a male sterile mutant of the wheat variety Probus. Association of the 4A chromosome carrying the ms gene was studied in the F1 of the male sterile Probus with Chinese Spring ditelo 4AS, with Transec and with line T4AS-DRS respectively. The presumption that the genetic male sterility of the mutant was due to a terminal deletion of the short arm of chromosome 4A could be confirmed.Linkage studies showed that the ms gene was at 17 map units from the dwarfing gene (Rht3) of Minister dwarf. This allows selection of short male sterile plants at the seedling stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号