首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for earthquake early warning in southern California   总被引:11,自引:0,他引:11  
Earthquake mitigation efforts in the United States currently use long-term probabilistic hazard assessments and rapid post-earthquake notification to reduce the potential damage of earthquakes. Here we present the seismological design for and demonstrate the feasibility of a short-term hazard warning system. Using data from past earthquakes, we show that our Earthquake Alarm System (ElarmS) could, with current TriNet instrumentation, issue a warning a few to tens of seconds ahead of damaging ground motion. The system uses the frequency content of the P-wave arrival to determine earthquake magnitude, an approach that allows magnitude determination before any damaging ground motion occurs.  相似文献   

2.
Ground shaking close to the causative fault of an earthquake is more intense than it was previously believed to be. This raises the possibility that large numbers of buildings and other structures are not sufficiently resistant for the intense levels of shaking that can occur close to the fault. Many structures were built before earthquake codes were adopted; others were built according to codes formulated when less was known about the intensity of near-fault shaking. Although many building types are more resistant than conventional design analyses imply, the margin of safety is difficult to quantify. Many modern structures, such as freeways, have not been subjected to and tested by near-fault shaking in major earthquakes (magnitude 7 or greater). Damage patterns in recent moderate-sized earthquakes occurring in or adjacent to urbanized areas (17), however, indicate that many structures, including some modern ones designed to meet earthquake code requirements, cannot withstand the severe shaking that can occur close to a fault. It is necessary to review the ground motion assumed and the methods utilized in the design of important existing structures and, if necessary, to strengthen or modify the use of structures that are found to be weak. New structures situated close to active faults should be designed on the basis of ground motion estimates greater than those used in the past. The ultimate balance between risk of earthquake losses and cost for both remedial strengthening and improved earthquake-resistant construction must be decided by the public. Scientists and engineers must inform the public about earthquake shaking and its effect on structures. The exposure to damage from seismic shaking is steadily increasing because of continuing urbanization and the increasing complexity of lifeline systems, such as power, water, transportation, and communication systems. In the near future we should expect additional painful examples of the damage potential of moderate-sized earthquakes in urban areas. Over a longer time span, however, we can significantly reduce the risk to life and property from seismic shaking through better land utilization, improved building codes and construction practices, and at least the gradual replacement of poor buildings by more resistant buildings. Progress toward reducing risk from seismic shaking through better building design is slowed by deficiencies in our knowledge about the nature of damaging ground motion and the failure mechanisms in structures. For example, lacking observational data, seismologists must rely on simplified theoretical and numerical models of the earthquake process to estimate near-fault ground motion, especially for earthquakes as large as magnitude 7 and 8. Because such models have not been adequately tested against data, their reliability is unknown. Engineers lack detailed information about failure processes in structures during an earthquake. Although many structures have been instrumented to measure their response to an earthquake, few records have been obtained from buildings that actually sustained significant structural damage and few structures are properly instrumented to measure all the modes of deformation that are likely to contribute to failure. Moreover, the fact that many structures have withstood ground motion more intense than that assumed in their design indicates that conventional methods of design do not take into account important contributions to earthquake resistance by nonstructural elements and by the ability of structural elements to deform inelastically without necessarily causing failure of the structure. It is fortunate when such reserve resistance exists, but better understanding of the sources of reserve strength is needed to determine how large a margin of safety they confer and how they might be affected by changes in construction practices and materials with time. In the next few years we look forward to significant advances in knowledge and to more effective application of what is already known, largely because of substantial funding of research related to seismic engineering by the National Science Foundation (18). The increasing number of strong-motion seismographs operating in seismically active regions (19) will likely provide for the first time a number of records of damaging levels of ground motion. Significant effort is being directed toward obtaining near-fault records, although many probable sites of future large earthquakes remain inadequately instrumented, especially outside the conterminous United States. New and more complete information on building response and damage mechanisms will be obtained by improved instrumentation of structures and through laboratory investigations of failure in structures and structural elements. Further developments in computer technology and in computer modeling techniques will permit more realistic simulations of the seismic response of soils and structures that take into account their inelastic behavior and their strain-dependent properties. Earthquake design codes will continually be revised to better utilize existing knowledge concerning the nature of strong ground motion and the dynamic behavior of buildings during earthquakes and to incorporate new knowledge and also experiences gained from future earthquakes. We believe that application of new knowledge, improvements in earthquake-resistant design and construction, and remedial strengthening or replacement of weak existing structures can significantly reduce our current level of exposure to earthquake hazards.  相似文献   

3.
The magnitude 7.3 Landers earthquake of 28 June 1992 triggered a remarkably sudden and widespread increase in earthquake activity across much of the western United States. The triggered earthquakes, which occurred at distances up to 1250 kilometers (17 source dimensions) from the Landers mainshock, were confined to areas of persistent seismicity and strike-slip to normal faulting. Many of the triggered areas also are sites of geothermal and recent volcanic activity. Static stress changes calculated for elastic models of the earthquake appear to be too small to have caused the triggering. The most promising explanations involve nonlinear interactions between large dynamic strains accompanying seismic waves from the mainshock and crustal fluids (perhaps including crustal magma).  相似文献   

4.
《Science (New York, N.Y.)》1994,266(5184):389-397
The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.  相似文献   

5.
Analysis of seismograph network data, earthquake catalogs from 1727 to 1982, and paleoseismic data for the central and eastern United States indicate that the Poisson probability of a damaging earthquake (magnitude >/= 6.0) occurring during the next 30 years is at a moderate to high level (0.4 to 0.6). When differences in seismic wave attenuation are taken into account, the central and eastern United States has approximately two-thirds the likelihood of California to produce an earthquake with comparable damage area and societal impact within the next 30 years.  相似文献   

6.
Earthquake potential along the northern hayward fault, california   总被引:1,自引:0,他引:1  
The Hayward fault slips in large earthquakes and by aseismic creep observed along its surface trace. Dislocation models of the surface deformation adjacent to the Hayward fault measured with the global positioning system and interferometric synthetic aperture radar favor creep at approximately 7 millimeters per year to the bottom of the seismogenic zone along a approximately 20-kilometer-long northern fault segment. Microearthquakes with the same waveform repeatedly occur at 4- to 10-kilometer depths and indicate deep creep at 5 to 7 millimeters per year. The difference between current creep rates and the long-term slip rate of approximately 10 millimeters per year can be reconciled in a mechanical model of a freely slipping northern Hayward fault adjacent to the locked 1868 earthquake rupture, which broke the southern 40 to 50 kilometers of the fault. The potential for a major independent earthquake of the northern Hayward fault might be less than previously thought.  相似文献   

7.
An experiment in earthquake control at rangely, colorado   总被引:6,自引:0,他引:6  
An experiment in an oil field at Rangely, Colorado, has demonstrated the feasibility of earthquake control. Variations in seismicity were produced by controlled variations in the fluid pressure in a seismically active zone. Precise earthquake locations revealed that the earthquakes clustered about a fault trending through a zone of high pore pressure produced by secondary recovery operations. Laboratory measurements of the frictional properties of the reservoir rocks and an in situ stress measurement made near the earthquake zone were used to predict the fluid pressure required to trigger earthquakes on preexisting fractures. Fluid pressure was controlled by alternately injecting and recovering water from wells that penetrated the seismic zone. Fluid pressure was monitored in observation wells, and a computer model of the reservoir was used to infer the fluid pressure distributions in the vicinity of the injection wells. The results of this experiment confirm the predicted effect of fluid pressure on earthquake activity and indicate that earthquakes can be controlled wherever we can control the fluid pressure in a fault zone.  相似文献   

8.
Stein RS  King GC  Lin J 《Science (New York, N.Y.)》1994,265(5177):1432-1435
A model of stress transfer implies that earthquakes in 1933 and 1952 increased the Coulomb stress toward failure at the site of the 1971 San Fernando earthquake. The 1971 earthquake in turn raised stress and produced aftershocks at the site of the 1987 Whittier Narrows and 1994 Northridge ruptures. The Northridge main shock raised stress in areas where its aftershocks and surface faulting occurred. Together, the earthquakes with moment magnitude M >/= 6 near Los Angeles since 1933 have stressed parts of the Oak Ridge, Sierra Madre, Santa Monica Mountains, Elysian Park, and Newport-lnglewood faults by more than 1 bar. Although too small to cause earthquakes, these stress changes can trigger events if the crust is already near failure or advance future earthquake occurrence if it is not.  相似文献   

9.
Two lines of evidence suggest that large earthquakes that occur on either the San Jacinto fault zone (SJFZ) or the San Andreas fault zone (SAFZ) may be triggered by large earthquakes that occur on the other. First, the great 1857 Fort Tejon earthquake in the SAFZ seems to have triggered a progressive sequence of earthquakes in the SJFZ. These earthquakes occurred at times and locations that are consistent with triggering by a strain pulse that propagated southeastward at a rate of 1.7 kilometers per year along the SJFZ after the 1857 earthquake. Second, the similarity in average recurrence intervals in the SJFZ (about 150 years) and in the Mojave segment of the SAFZ (132 years) suggests that large earthquakes in the northern SJFZ may stimulate the relatively frequent major earthquakes on the Mojave segment. Analysis of historic earthquake occurrence in the SJFZ suggests little likelihood of extended quiescence between earthquake sequences.  相似文献   

10.
A model for a seismic computerized alert network   总被引:1,自引:0,他引:1  
In large earthquakes, damaging ground motions may occur at large epicentral distances. Because of the relatively slow speed of seismic waves, it is possible to construct a system to provide short-term warning (as much as several tens of seconds) of imminent strong ground motions from major earthquakes. Automated safety responses could be triggered by users after receiving estimates of the arrival time and strength of shaking expected at an individual site. Although warning times are likely to be short for areas greatly damaged by relatively numerous earthquakes of moderate size, large areas that experience very strong shaking during great earthquakes would receive longer warning times.  相似文献   

11.
The 25 April 1992 magnitude 7.1 Cape Mendocino thrust earthquake demonstrated that the North America-Gorda plate boundary is seismogenic and illustrated hazards that could result from much larger earthquakes forecast for the Cascadia region. The shock occurred just north of the Mendocino Triple Junction and caused strong ground motion and moderate damage in the immediate area. Rupture initiated onshore at a depth of 10.5 kilometers and propagated up-dip and seaward. Slip on steep faults in the Gorda plate generated two magnitude 6.6 aftershocks on 26 April. The main shock did not produce surface rupture on land but caused coastal uplift and a tsunami. The emerging picture of seismicity and faulting at the triple junction suggests that the region is likely to continue experiencing significant seismicity.  相似文献   

12.
Recent earthquake prediction research in Japan   总被引:1,自引:0,他引:1  
Mogi K 《Science (New York, N.Y.)》1986,233(4761):324-330
Japan has experienced many major earthquake disasters in the past. Early in this century research began that was aimed at predicting the occurrence of earthquakes, and in 1965 an earthquake prediction program was started as a national project. In 1978 a program for constant monitoring and assessment was formally inaugurated with the goal of forecasting the major earthquake that is expected to occur in the near future in the Tokai district of central Honshu Island. The issue of predicting the anticipated Tokai earthquake is discussed in this article as well as the results of research on major recent earthquakes in Japan-the Izu earthquakes (1978 and 1980) and the Japan Sea earthquake (1983).  相似文献   

13.
Streamflow and water well responses to earthquakes   总被引:9,自引:0,他引:9  
Earthquake-induced crustal deformation and ground shaking can alter stream flow and water levels in wells through consolidation of surficial deposits, fracturing of solid rocks, aquifer deformation, and the clearing of fracture-filling material. Although local conditions affect the type and amplitude of response, a compilation of reported observations of hydrological response to earthquakes indicates that the maximum distance to which changes in stream flow and water levels in wells have been reported is related to earthquake magnitude. Detectable streamflow changes occur in areas within tens to hundreds of kilometers of the epicenter, whereas changes in groundwater levels in wells can occur hundreds to thousands of kilometers from earthquake epicenters.  相似文献   

14.
The supposed low viscosity of serpentine may strongly influence subduction-zone dynamics at all time scales, but until now its role could not be quantified because measurements relevant to intermediate-depth settings were lacking. Deformation experiments on the serpentine antigorite at high pressures and temperatures (1 to 4 gigapascals, 200 degrees to 500 degrees C) showed that the viscosity of serpentine is much lower than that of the major mantle-forming minerals. Regardless of the temperature, low-viscosity serpentinized mantle at the slab surface can localize deformation, impede stress buildup, and limit the downdip propagation of large earthquakes at subduction zones. Antigorite enables viscous relaxation with characteristic times comparable to those of long-term postseismic deformations after large earthquakes and slow earthquakes. Antigorite viscosity is sufficiently low to make serpentinized faults in the oceanic lithosphere a site for subduction initiation.  相似文献   

15.
运用刚体摇晃减震概念建立摇晃桥柱系统(Rocking Pier System, RPS)的动力分析模式,并采用El Centro地震波作为输入,对RPS有无配置预应力钢筋、预应力钢筋有无施加预应力、预应力钢筋面积多少、不同桥柱振动周期及不同地震强度等进行时程分析.研究结果显示,桥柱摇晃碰撞基础瞬间,柱底虽会产生剪力峰值,但相较于传统桥柱系统(Conventional Pier System, CPS)的最大柱底剪力而言,该剪力峰值相对较小,此现象有助于避免地震时桥柱受损.且借助调整预应力钢筋面积及初始预应力可设定启动RPS晃动的地震强度,这样可避免小地震下桥柱晃动影响桥梁运输功能,并且在大震摇晃下桥梁保持弹性全无损伤.  相似文献   

16.
Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis.  相似文献   

17.
韩世刚 《安徽农业科学》2010,38(30):17173-17174,17235
介绍了重庆近代4次较强地震的情况,并根据旱震关系研究和短期临震气象要素5项指标异常研究,系统地检验了1989年的重庆渝北统景地震、1997年的重庆荣昌许溪地震和1999年的重庆荣昌县城地震震前气象要素异常情况。最后提出了建立全国性的,特别是地震高危地区的地震气象要素异常前兆预警系统设想。  相似文献   

18.
High-rise flexible-frame buildings are commonly considered to be resistant to shaking from the largest earthquakes. In addition, base isolation has become increasingly popular for critical buildings that should still function after an earthquake. How will these two types of buildings perform if a large earthquake occurs beneath a metropolitan area? To answer this question, we simulated the near-source ground motions of a M(w) 7.0 thrust earthquake and then mathematically modeled the response of a 20-story steel-frame building and a 3-story base-isolated building. The synthesized ground motions were characterized by large displacement pulses (up to 2 meters) and large ground velocities. These ground motions caused large deformation and possible collapse of the frame building, and they required exceptional measures in the design of the base-isolated building if it was to remain functional.  相似文献   

19.
As surface waves from the 26 December 2004 earthquake in Sumatra swept across Alaska, they triggered an 11-minute swarm of 14 local earthquakes near Mount Wrangell, almost 11,000 kilometers away. Earthquakes occurred at intervals of 20 to 30 seconds, in phase with the largest positive vertical ground displacements during the Rayleigh surface waves. We were able to observe this correlation because of the combination of unusually long surface waves and seismic stations near the local earthquakes. This phase of Rayleigh wave motion was dominated by horizontal extensional stresses reaching 25 kilopascals. These observations imply that local events were triggered by simple shear failure on normal faults.  相似文献   

20.
A dense seismograph network in the Imperial Valley recorded a series of earthquake swarms along the Imperial and Brawley faults and a diffuse pattern of earthquakes along the San Jacinto fault. Two known geothermal areas are closely associated with these earthquake swarms. This seismicity pattern demonstrates that seismic slip is occurring along both the Imperial-Brawley and San Jacinto fault systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号