首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
In order to analyze the dynamics of growth, water and K uptake, the effects of 1, 3 and 7 days of potassium starvation and the recovery capability during 7 days afterwards were investigated in vegetative tomato plants. After 7 days of K starvation, plant dry matter was reduced by 36% compared to control plants. After 3 days of starvation plants showed a 15% reduction in dry matter and a 25% reduction in growth rate (not statistically significant). K starvation reduced leaf area and specific leaf area (SLA) and it increased leaf dry matter percentage. K starvation enhanced dry matter partitioning into the roots at the expense of the stem. Plant K concentration was reduced by K starvation with the strongest effect in the leaves and roots. When a 3-day K starvation period was followed by 7 days of recovery with full strength nutrient solution, growth and plant K concentration completely recovered, but not after 7 days of K starvation. Xylem sap flow was reduced by K starvation and after 7 days of starvation the K concentration in the sap was reduced by 60%. During the starvation period, the reduction in relative growth rate was linearly related to the plant K concentration. The critical potassium concentration in the plant (the K concentration at which relative growth rate was reduced by 10%) was determined according to the nutrient interruption technique. The critical concentration was 4.3% K which was reached after 2.5 days of K starvation while the potassium concentration of control plants was 6.3%. During recovery the dry matter growth rate seemed to be the most important factor determining K uptake.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号