共查询到20条相似文献,搜索用时 15 毫秒
1.
Xinwang Wang Phillip A. Wadl Timothy A. Rinehart Brian E. Scheffler Mark T. Windham James M. Spiers Denita H. Johnson Robert N. Trigiano 《Euphytica》2009,165(1):165-175
A genetic linkage map of flowering dogwood (Cornus florida L.) was constructed using 94 individuals derived from a cross of two F1 trees designated 97-6 and 97-7, which were originally from a cross between ‘Appalachian Spring’ and ‘Cherokee Brave’. Out of approximately 800 SSR loci examined, 271 were polymorphic between ‘Appalachian Spring’ and ‘Cherokee Brave’, but were monomorphic between 97-6 and 97-7. These 271 segregating markers were used to build a linkage map for flowering dogwood. Eleven linkage groups were obtained with a log-of-odds (LOD) value of 6.0 using JoinMap® 4.0 software, which matches the chromosome number of flowering dogwood haploid genome. This linkage map consisted of 255 SSR loci, spanned a total of 1,175 centimorgans (cM) with an average internal distance of 4.6 cM. Several larger gaps and slight clustering of markers were present on this linkage map. This is the first linkage map of flowering dogwood and will be a fundamental tool for new gene identification and marker-assisted selection in our flowering dogwood breeding program. 相似文献
2.
Time to flowering and maturity is an important adaptive feature in annual crops, including cowpeas (Vigna unguiculata (L.) Walp.). In West and Central Africa, photoperiod is the most important environmental variable affecting time to flowering in cowpea. The inheritance of time from sowing to flowering (f) in cowpeas was studied by crossing a photoperiod-sensitive genotype Kanannnado to a photoperiod-insensitive variety IT97D-941-1. Sufficient seed of F1, F2, F3 and backcross populations were generated. The parental, F1, F2, F3 and the backcross populations were screened for f under long natural days (mean daylength 13.4 h per day) in the field and the parents, F1, F2 and backcross populations under short day (10 h per day) conditions. The result of the screening showed that photoperiod in the field was long enough to delay flowering of photoperiod-sensitive genotypes. Photoperiod-sensitivity was found to be partially dominant to insensitivity. Frequency distribution of the trait in the various populations indicated quantitative inheritance. Additive (d) and additive × dominance (j) interactions were the most important gene actions conditioning time to flowering. A narrow sense heritability of 86% was estimated for this trait. This will result in 26 days gain in time to flowering with 5% selection intensity from the F2 to F3 generation. At least seven major gene pairs, with an average delay of 6 days each, were estimated to control time to flowering in this cross. 相似文献
3.
Aneeta Pradhan Julie A. Plummer Matthew N. Nelson Wallace A. Cowling Guijun Yan 《Euphytica》2010,176(1):87-98
A triploid hybrid with an ABC genome constitution, produced from an interspecific cross between Brassica napus (AACC genome) and B. nigra (BB genome), was used as source material for chromosome doubling. Two approaches were undertaken for the production of hexaploids:
firstly, by self-pollination and open-pollination of the triploid hybrid; and secondly, by application of colchicine to axillary
meristems of triploid plants. Sixteen seeds were harvested from triploid plants and two seedlings were confirmed to be hexaploids
with 54 chromosomes. Pollen viability increased from 13% in triploids to a maximum of 49% in hexaploids. Petal length increased
from 1.3 cm (triploid) to 1.9 cm and 1.8 cm in the two hexaploids and longest stamen length increased from 0.9 cm (triploid)
to 1.1 cm in the hexaploids. Pollen grains were longer in hexaploids (43.7 and 46.3 μm) compared to the triploid (25.4 μm).
A few aneuploid offsprings were also observed, with chromosome number ranging from 34 to 48. This study shows that trigenomic
hexaploids can be produced in Brassica through interspecific hybridisation of B. napus and B. nigra followed by colchicine treatment. 相似文献
4.
Furong Wang Yongchao Gong Chuanyun Zhang Guodong Liu Liuming Wang Zhenzhen Xu Jun Zhang 《Euphytica》2011,181(1):41-53
The germplasm with exotic genomic components especially from Sea Island cotton (Gossypium barbadense L. Gb) is the dominant genetic resources to enhance fiber quality of upland cotton (G. hirsutum L., Gh). Due to low efficiency of phenotypic evaluation and selection on fiber quality, genetic dissection of favorable alleles
using molecular markers is essential. Genetic dissection on putative Gb introgressions related to fiber traits were conducted by SSR markers with mapping populations derived from a cross between
Luyuan343 (LY343), a superior fiber quality introgression line (IL) with genomic components from Gb, and an elite Upland cotton cv. Lumianyan#22 (LMY22). Among 82 polymorphic loci screened out from 4050 SSRs, 42 were identified
as putative introgression alleles. A total of 29 fiber-related QTLs (23 for fiber quality and six for lint percentage) were
detected and most of which clustered on the putative Gb introgression chromosomal segments of Chr.2, Chr.16, Chr.23 and Chr.25. As expected, a majority of favorable alleles of fiber
quality QTLs (12/17, not considering the QTLs for fiber fineness) came from the IL parent and most of which (11/12) were conferred
by the introgression genomic components while three of the six (3/6) favorable alleles for lint percentage came from the Gh parent. Validation of these QTLs using an F8 breeding population from the same cross made previously indicated that 13 out of 29 QTLs showed considerable stability. The
results suggest that fiber quality improvement using the introgression components could be facilitated by marker-assisted
selection in cotton breeding program. 相似文献
5.
The recessive mutation of the XANTHA gene (XNT) transforms seedlings and plants into a yellow color, visually distinguishable from normal (green) rice. Thus, it has been
introduced into male sterile lines as a distinct marker for rapidly testing and efficiently increasing varietal purity in
seed and paddy production of hybrid rice. To identify closely linked markers and eventually isolate the XNT gene, two mapping populations were developed by crossing the xantha mutant line Huangyu B (indica) with two wild type japonica varieties; a total of 1,720 mutant type F2 individuals were analyzed for fine mapping using polymorphic InDel markers and high dense microsatellite markers. The XNT gene was mapped on chromosome 11, within in a fragment of ~100 kb, where 13 genes are annotated. The NP_001067671.1 gene
within the delimited region is likely to be a candidate XNT gene, since it encodes ATP-dependent chloroplast protease ATP-binding subunit clp A. However, no sequence differences were
observed between the mutant and its parent. Bioinformatics analysis demonstrated that four chlorophyll deficient mutations
that were previously mapped on the same chromosome are located outside the XNT region, indicating XNT is a new gene. The results provide useful DNA markers not only for marker assisted selection of the xantha trait but also its eventual cloning. 相似文献
6.
Jingping Niu Na Guo Zhang Zhang Zili Wang Jianli Huang Jinming Zhao Fangguo Chang Haitang Wang Tuanjie Zhao Han Xing 《Euphytica》2018,214(10):187
Phytophthora root rot (PRR) is among the most important soybean (Glycine max (L.) Merr.) diseases worldwide, and the host displays complex genetic resistance. A genome-wide association study was performed on 337 accessions from the Yangtze-Huai soybean breeding germplasm to identify resistance regions associated with PRR resistance using 60,862 high-quality single nucleotide polymorphisms markers. Twenty-six significant SNP-trait associations were detected on chromosomes 01 using a mixed linear model with the Q matrix and K matrix as covariates. In addition, twenty-six SNPs belonged to three adjacent haplotype blocks according to a linkage disequilibrium blocks analysis, and no previous studies have reported resistance loci in this 441 kb region. The real-time RT-PCR analysis of the possible candidate genes showed that two genes (Glyma01g32800 and Glyma01g32855) are likely involved in PRR resistance. Markers associated with resistance can contribute to marker-assisted selection in breeding programs. Analyses of candidate genes can lay a foundation for exploring the mechanism of P. sojae resistance. 相似文献
7.
Pseudomonas syringae is the main pathogen responsible for bacterial blight disease in pea and can cause yield losses of 70%. P. syringae pv. pisi is prevalent in most countries but the importance of P. syringae pv. syringae (Psy) is increasing. Several sources of resistance to Psy have been identified but genetics of the resistance is unknown. In this study the inheritance of resistance to Psy was studied in the pea recombinant inbred line population P665 × ‘Messire’. Results suggest a polygenic control of the resistance and two quantitative trait loci (QTL) associated with resistance, Psy1 and Psy2, were identified. The QTL explained individually 22.2 and 8.6% of the phenotypic variation, respectively. In addition 21 SSR markers were included in the P665 × ‘Messire’ map, of which six had not been mapped on the pea genome in previous studies. 相似文献
8.
The rice leaffolder (RLF), Cnaphalocrocis medinalis is an important pest of rice that causes severe damage in many areas of the world. The plants were transformed with fully
modified (plant codon optimized) synthetic Cry1C coding sequences as well as with the hpt and gus genes, coding for hygromycin phosphotransferase and β-glucuronidase, respectively. Cry1C sequences placed under the control of doubled 35S promoter plus the AMV leader sequence, and hpt and gus genes driven by cauliflower mosaic virus 35S promoter, were used in this study. Embryogenic calli after cocultivation with
Agrobacterium were selected on the medium containing hygromycin B. A total of 67 hygromycin-resistant plants were regenerated. PCR and
Southern blot analyses of primary transformants revealed the stable integration of Cry1C coding sequences into the rice genome with predominant single copy integration. R1 progeny plants disclosed a monogenic pattern (3:1) of transgene segregation as confirmed by molecular analyses. These transgenic
lines were highly resistant to rice leaffolder (RLF), Cnaphalocrocis medinalis as revealed by insect bioassay. 相似文献
9.
The nutritional value of cucumber (Cucumis sativus L.) can be improved by the introgression of β-carotene (i.e., provitamin A and/or orange flesh) genes from “Xishuangbanna
gourd” (XIS; Cucumis sativus var. xishuangbannanesis Qi et Yuan) into US pickling cucumber. However, the genetics of β-carotene content has not been clearly defined in this US
market type. Thus, three previous populations derived from a US pickling cucumber (‘Addis’) × XIS mating were evaluated for
β-carotene content, from which the high β-carotene inbred line (S4), ‘EOM 402-10’, was developed. A cross was then made between the US pickling cucumber inbred line ‘Gy7’ [gynoecious, no β-carotene,
white flesh; P1] and ‘EOM 402-10’ [monoecious, possessing β-carotene, orange flesh; P2] to determine the inheritance of β-carotene in fruit mesocarp and endocarp tissue. Parents and derived cross-progenies (F1, F2, BC1P1, and BC1P2) were evaluated for β-carotene content in a greenhouse in Madison, Wisconsin. While F1 and BC1P1 progeny produced mature fruits possessing white, light-green, and green (0.01–0.02 μg g−1 β-carotene) mesocarp, the F2 and BC1P2 progeny mesocarp segregated in various hues of white, green, yellow (0.01–0.34 μg g−1 β-carotene), and orange (1.90–2.72 μg g−1 β-carotene). Mesocarp and endocarp F2 segregation adequately fit a 15:1 [low-β-carotene (0.01–0.34 μg g−1): high-β-carotene (1.90–2.72 μg g−1)] and 3:1 (low-β-carotene: high-β-carotene) ratio, respectively. Likewise, segregation of carotene concentration in mesocarp
and endocarp tissues in BC1P2 progeny adequately fit a 3:1 (low-β-carotene: high-β-carotene) and 1:1 (low-β-carotene: high-β-carotene) ratio, respectively.
Progeny segregations indicate that two recessive genes control the β-carotene content in the mesocarp, while one recessive
gene controls β-carotene content in the endocarp. Single marker analysis of F2 progeny using the carotenoid biosynthesis gene Phytoene synthase determined that there was no association between this gene and the observed β-carotene variation in either fruit mesocarp
or endocarp. 相似文献
10.
Gene effects of resistance to two isolates of Phytophthora
nicotianae in two crosses of pepper were investigated using separate generation means analysis. Additive-dominance models were inadequate
in all cases. Digenic parameter models were adequate in three cases and the probability of goodness of fit of models was negatively
correlated with the aggressiveness of the pathogen. None of these models explained variation among generation means in the
combined cross Beldi × CM334 with P.
nicotianae isolate Pn2. Additive × additive, dominance × dominance and dominance × additive effects were significant in most cases. Additive and
dominance effects (of negative sign) contribute more to resistance than to susceptibility. Additive variance was greater than
environmental and dominance variance and ranged from 0.038 to 0.224. Narrow-sense heritabilities were dependent upon the cross
and inoculate and ranged from 86 to 92%. The results of this study indicate that selection with more aggressive isolates of
the pathogen will be useful for enhancing resistance in pepper. 相似文献
11.
Oliver E. Manangkil Hien Thi Thu Vu Shinya Yoshida Naoki Mori Chiharu Nakamura 《Euphytica》2008,163(2):267-274
Submergence is a major stress causing yield losses particularly in the direct-seeded rice cultivation system and necessitates
the development of a simple, rapid and reliable bioassay for a large scale screening of rice germplasms with tolerance against
submergence stress. We developed two new bioassay methods that were based primarily on the seedling vigor evaluated by the
ability of fast shoot elongation under submerged conditions, and compared their effectiveness with two other available methods.
All four bioassay methods using cultivars of 7 indica and 6 japonica types revealed significant and consistent cultivar differences in seedling vigor under submergence and/or submergence tolerance.
Japonica cultivars were more vigorous than indica cultivars, with Nipponbare being the most vigorous. The simplest test tube method showed the highest correlations to all
other methods. Our results suggest that seedling vigor serves as a submergence avoidance mechanism and confers tolerance on
rice seedlings to flooding during early crop establishment. A possible relationship is discussed between seedling vigor based
on fast shoot elongation and submergence tolerance defined by recovery from submergence stress. 相似文献
12.
Agrobacterium-mediated genetic transformation was performed using embryonic axes explants of pigeon pea. Both legume pod borer resistant
gene (cry1Ac) and plant selectable marker neomycine phosphor transferase (nptII) genes under the constitutive expression of the cauliflower mosaic virus 35S promoter (CaMV35S) assembled in pPZP211 binary
vector were used for the experiments. An optimum average of 44.61% successfully hardened dot blot Southern hybridization positive
plants were obtained on co-cultivation media supplemented with 200 μM acetosyringone without L-cysteine. The increased transformation
efficiency from a baseline of 11.53% without acetosyringone to 44.61% with acetosyringone was further declined with the addition
of different concentrations of L-cysteine to co-cultivation media. Transgenic shoots were selected on 50 and 75 mg L−1 kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 20 g L−1 sucrose and 0.5 mg L−1 indole butyric acid in the absence of kanamycin. Furthermore, 100% seed setting was found among all the transgenic events.
The plants obtained were subjected to multi- and nochoice tests to determine the behavioral responses and mortality through
Helicoverpa armigera bioassays on the leaf and relate their relationship with the expression of cry1Ac protein which was found to be less in leaf as compared to the floral buds, anther, pod, and seed. 相似文献
13.
Junghyun Shim Olivier Panaud Clémentine Vitte Merlyn S. Mendioro Darshan S. Brar 《Euphytica》2010,176(2):269-279
Molecular markers have been successfully used in rice breeding however available markers based on Oryza
sativa sequences are not efficient to monitor alien introgression from distant genomes of Oryza. We developed O. minuta (2n = 48, BBCC)-specific clones comprising of 105 clones (266–715 bp) from the initial library composed of 1,920 clones against
O. sativa by representational difference analysis (RDA), a subtractive cloning method and validated through Southern blot hybridization.
Chromosomal location of O. minuta-specific clones was identified by hybridization with the genomic DNA of eight monosomic alien additional lines (MAALs). The
37 clones were located either on chromosomes 6, 7, or 12. Different hybridization patterns between O. minuta-specific clones and wild species such as O. punctata, O. officinalis, O. rhizomatis, O. australiensis, and O. ridleyi were observed indicating conservation of the O. minuta fragments across Oryza spp. A highly repetitive clone, OmSC45 hybridized with O. minuta and O. australiensis (EE), and was found in 6,500 and 9,000 copies, respectively, suggesting an independent and exponential amplification of the
fragment in both species during the evolution of Oryza. Hybridization of 105 O. minuta specific clones with BB- and CC-genome wild Oryza species resulted in the identification of 4 BB-genome-specific and 14 CC-genome-specific clones. OmSC45 was identified as a fragment of RIRE1, an LTR-retrotransposon. Furthermore this clone was introgressed from O. minuta into the advanced breeding lines of O. sativa. 相似文献
14.
The non-transgenic manipulation of starch properties in common wheat (Triticum aestivum L.) generally implies combining mutant alleles of the particular gene copies in all three subgenomes (A, B and D). The redundancy
of the hexaploid wheat chromosome set substantially complicates the identification of recessive mutations and breeding. Nevertheless,
naturally occurring or induced genetic polymorphism has already been successfully exploited for the production of waxy (GBSSI-deficient)
and elevated amylose (SSIIa-deficient) wheats. However, in order to achieve the amylose content above 50% of wheat endosperm
starch, it may be necessary to inactivate the starch branching enzyme (SBEIIa) isoforms, as the RNAi repression results and
gene expression data strongly suggest. The identification of null SBEIIa alleles and their combination in a single genotype is therefore a promising approach to the production of non-transgenic
high-amylose wheat; however, wheat SBEIIa polymorphism has not been characterized as of yet. In order to develop an approach to SBEIIa mutation screening, we sequenced the SBEIIa central region (exons 9–12) from the three subgenomes of common wheat cv. Chinese Spring and the A genome of diploid einkorn
T. monococcum. The genome-specific primers were developed that amplify the exons downstream from intron 11 selectively from each homeologous
gene. Using a single-stranded DNA conformation polymorphism (SSCP) approach, we screened 60 wheat cultivars, landraces, and
rare species for naturally occurring SNPs in exons 12, 13 and 14 of the three SBEIIa homeologs. In total, 13 SNPs were discovered in the A and B wheat genomes. Two of these SNPs affect the amino acid sequences
of SBEIIa isoforms and may change the enzyme functional properties. The presence of restriction site polymorphism at SNP positions
enables their easy genotyping with CAPS assays. Our results indicate that the mining for naturally occurring sequence polymorphism
in starch biosynthesis genes of wheat can be successfully performed at the DNA level, providing the starting point for a search
for SBEIIa mutants at a larger scale. 相似文献
15.
Dragan Milić Slobodan Katić Đura Karagić Jelica Gvozdanović–Varga Sofija Petrović Jan Boćanski 《Euphytica》2011,182(1):25-33
The objective of this study was to develop diallel population hybrids by crossing selected germplasm and to determine the
gene effects and genetic control of yield and yield components using diallel analysis. A complete diallel including reciprocals
was made during 2003 and 2004 between five alfalfa cultivars of different geographic origin. For each pairwise cross, five
plants were chosen at random from each of the two cultivars (~100 florets per plant) to obtain the F1 generation. A spaced plant field was established in 2006 which included the five alfalfa cultivars (parents) and their 20
diallel hybrids (F1). The results of the diallel analysis suggest that the genetic control of major agronomic traits is determined by both additive
gene action (accumulation of frequency of desirable alleles represented by significant GCA effects) and nonadditive gene action
(complementary gene interactions represented by significant SCA effects). This type of gene action expression in alfalfa also
determines the way in which breeding is carried out and brings about changes in the methods used and has given rise to the
idea of the semi-hybrid breeding of this crop. The concept involves: breeding alfalfas within the population, identification
of heterotic germplasm, and the production of seed of the population hybrid (PH). 相似文献
16.
Khalil Zaynali Nezhad W. E. Weber M. S. Röder S. Sharma U. Lohwasser R. C. Meyer B. Saal A. Börner 《Euphytica》2012,186(1):127-138
Grain yield under post-anthesis drought stress is one of the most complex traits, which is inherited quantitatively. The present study was conducted to identify genes determining post-anthesis drought stress tolerance in bread wheat through Quantitative Trait Loci (QTLs) analysis. Two cultivated bread wheat accessions were selected as parental lines. Population phenotyping was carried out on 133 F2:3 families. Two field experiments and two experiments in the greenhouse were conducted at IPK-Gatersleben, Germany with control and post-anthesis stress conditions in each experiment. Thousand-grain weight was recorded as the main wheat yield component, which is reduced by post-anthesis drought stress. Chemical desiccation was applied in three experiments as simulator of post-anthesis drought stress whereas water stress was applied in one greenhouse experiment. Analysis of variance showed significant differences among the F2:3 families. The molecular genetic linkage map including 293 marker loci associated to 19 wheat chromosomes was applied for QTL analysis. The present study revealed four and six QTLs for thousand-grain weight under control and stress conditions, respectively. Only one QTL on chromosome 4BL was common for both conditions. Five QTLs on chromosomes 1AL, 4AL, 7AS, and 7DS were found to be specific to the stress condition. Both parents contributed alleles for drought tolerance. Taking the known reciprocal translocation of chromosomes 4AL/7BS into account, the importance of the short arms of homoeologous group 7 is confirmed for drought stress. 相似文献
17.
Field, pots and mini-rhizotrons experiments revealed the existence of useful levels of avoidance and resistance to Orobanche crenata Forsk. within Lathyrus cicera L. accessions, in addition to escape due to precocity or to reduced root biomass. This resistance was characterized by several
phenotypic mechanisms of defence which acted alone or in combination, including low stimulation of parasitic seed germination,
prevention of the radicle penetration inside the root and prevention of a correct connection by the parasite with the host
vascular tissue being visible by reduced development of established parasitic tubercles or abortion of the parasitic tubercles
formed. 相似文献
18.
A system for the production of transgenic faba bean by Agrobacterium-mediated transformation was developed. This system is based upon direct shoot organogenesis after transformation of meristematic cells derived from embryo axes. Explants were co-cultivated with A. tumefaciens strain EHA105/pGlsfa, which harbored a binary vector containing a gene encoding a sulphur rich sunflower albumin (SFA8) linked to the bar gene. Strain EHA 101/pAN109 carrying the binary plasmid containing the coding sequence of a mutant aspartate kinase gene (lysC) from E. coli in combination with neomycinphosphotransferase II gene (nptII) was used as well. The coding sequences of SFA8 and LysC genes were fused to seed specific promoters, either Vicia faba legumin B4 promoter (LeB4) or phaseolin promoter, respectively. Seven phosphinothricin (PPT) resistant clones from Mythos and Albatross cultivars were recovered. Integration, inheritance and expression of the transgenes were confirmed by Southern blot, PCR, enzyme activity assay and Western blot. 相似文献
19.
Ken-ichiro Yamashita Hikaru Tsukazaki Akio Kojima Takayoshi Ohara Tadayuki Wako 《Euphytica》2010,173(3):357-367
Cytoplasmic male sterility (CMS) is an indispensable trait for F1 hybrid seed production in bunching onion (Allium fistulosum L.). Expansion of the cytoplasmic diversity of F1 hybrid cultivars by introduction of various CMS resources has great potential to eliminate vulnerability to cytoplasm type-specific
diseases. This study aimed to evaluate appearance frequency of male sterile plants in several bunching onion accessions and
to identify CMS resources. In eight (‘Nogiwa Aigara’, ‘Bansei Hanegi’, ‘Amarume’, ‘Kimnung’, ‘Zhangqiu’, ‘INT/CHN/1990/GOTOU’,
‘Natsunegi’ and ‘Guangzhou’) of 135 accessions collected from Japan, China, Mongolia, Korea and Taiwan, male sterile plants
appeared with varied frequencies from 1.7% (‘Nogiwa Aigara’ and ‘Bansei Hanegi’) to 24.5% (‘Zhangqiu’). The inheritance mode
of Zhangqiu- and Guangzhou-derived male sterility was confirmed to be CMS by sib-crossings and interbreed crossings. Microscopic
examination of microsporogenesis in the CMS plants revealed that microspore protoplasm rapidly degenerated without mitotic
division after the release of microspores from tetrads. The CMS germplasm described here would be useful for the development
of “A” lines to be used in F1 hybrid seed production of bunching onion. Male fertility in ‘Nogiwa Aigara’, ‘Bansei Hanegi’, ‘Kimnung’, ‘INT/CHN/1990/GOTOU’
and ‘Natsunegi’ was verified to be controlled by a single fertility restoration locus. 相似文献
20.
A new wheat-Thinopyrum substitution line AS1677, developed from a cross between wheat line ML-13 and wheat-Thinopyrum intermedium ssp. trichophorum partial amphiploid TE-3, was characterized by fluorescence in situ hybridization (FISH), sequential Giemsa-C banding, genomic
in situ hybridization (GISH), seed storage protein electrophoresis, molecular marker analysis and disease resistance screening.
Sequential Giemsa-C banding and GISH using Pseudoroegneria spicata genomic DNA as probe indicated that a pair of St-chromosomes with strong terminal bands were introduced into AS1677. FISH
using pTa71 as a probe gave strong hybridization signals at the nuclear organization region and in the distal region of the
short arms of the St chromosome. Moreover, FISH using the repetitive sequence pAs1 revealed that a pair of wheat 1D chromosomes
was absent in accession AS1677. Seed storage proteins separated by acid polyacrylamide gel electrophoresis (APAGE) and sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that AS1677 lacked the gliadin and glutenin bands
encoded by Gli-D1 and Glu-D1, further confirming the absence of chromosome 1D. The introduced St chromosome pair belonging to homoeologous group 1 was
identified by newly produced genome specific markers. AS1677 is a new 1St (1D) substitution line. When inoculated with stripe
rust and powdery mildew isolates, AS1677 expressed stripe rust resistance possibly derived from its Thinopyrum parent. AS1677 can be used as a donor source for introducing novel disease resistance genes to wheat in breeding programs
aided by molecular and cytogenetic markers. 相似文献