首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organic matter (OM) in biopore walls and aggregate coatings may be important for sorption of reactive solutes and water as well as for solute mass exchange between the soil matrix and the preferential flow (PF) domains in structured soil. Structural surfaces are coated by illuvial clay‐organic material and by OM of different origin, e.g., earthworm casts and root residues. The objectives were to verify the effect of OM on wettability and infiltration of intact structural surfaces in clay‐illuvial horizons (Bt) of Luvisols and to investigate the relevance of the mm‐scale distribution of OM composition on the water and solute transfer. Intact aggregate surfaces and biopore walls were prepared from Bt horizons of Luvisols developed from Loess and glacial till. The mm‐scale spatial distribution of OM composition was scanned using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The ratio between alkyl and carboxyl functional groups in OM was used as potential wettability index (PWI) of the OM. The infiltration dynamics of water and ethanol droplets were determined measuring contact angles (CA) and water drop penetration times (WDPT). At intact surfaces of earthworm burrows and coated cracks of the Loess‐Bt, the potential wettability of the OM was significantly reduced compared to the uncoated matrix. These data corresponded to increased WDPT, indicating a mm‐scaled sub‐critical water repellency. The relation was highly linear for earthworm burrows and crack coatings from the Loess‐Bt with WDPT > 2.5 s. Other surfaces of the Loess‐Bt and most surfaces of the till‐derived Bt were not found to be repellent. At these surfaces, no relations between the potential wettability of the OM and the actual wettability of the surface were found. The results suggest that water absorption at intact surface structures, i.e., mass exchange between PF paths and soil matrix, can be locally affected by a mm‐scale OM distribution if OM is of increased content and is enriched in alkyl functional groups. For such surfaces, the relation between potential and actual wettability provides the possibility to evaluate the mm‐scale spatial distribution of wettability and sorption and mass exchange from DRIFT spectroscopic scanning.  相似文献   

2.
Soil water repellency is a transient soil property varying with soil–water contact time. The purpose of the present study was to determine the time dependence of the sessile drop contact angle and its relation to repellency persistence estimated using the water drop penetration time (WDPT) test with hydrophobized sand. The contact angle decreased exponentially and almost reached apparent equilibrium after 20 min of soil–water contact time. Time dependence of the contact angle can mainly be attributed to the adsorption of water molecules onto low-energy hydrophobic organic matter surfaces. Contact angles initially greater than 90° decreased to less than 90° within about 40 s. However, the WDPT of these samples was longer than 3600 s. The WDPT responded to the initial contact angle, but not to the contact angle decreased with soil–water contact time. This was considered to be caused by differences in the surface free energy between the surface and the lower layers. Repellency persistence, or the WDPT, can be considered to be the time taken to increase the surface free energy to overcome water repellency, not only on the surface in contact with the droplet, but also in the adjacent layers below the surface.  相似文献   

3.
The composition of soil organic matter (SOM) is influenced by land use and fertilization. We studied changes in the SOM in a long-term field experiment on a sandy Podzoluvisol. The control plot and four combinations of manurial treatments of the experiment were selected: one with mineral fertilizer only and three combinations of organic manure with mineral fertilizer: cattle manure + NPK, cattle manure + PK and straw + NPK. The SOM was extracted by sodium pyrophosphate solution (pH = 10) and hot water (100°C). The extracts were analysed by Fourier-Transform Infrared (FT-IR) spectroscopy and gel permeation chromatography (GPC). The FT-IR spectra from sodium pyrophosphate extracts indicate that composition of SOM is indeed influenced by different fertilization. The C=O band at 1710 cm–1 in the samples of the plots fertilized with cattle manure has the highest absorption intensity, whereas the material from the plot fertilized with straw + NPK has the least intense. The GPC analyses of the extracts showed that adding cattle manure + NPK increased the molecular size of SOM in comparison with the control plot. The analysis of hot-water extracts with FT-IR showed no significant differences in functional groups, but GPC chromatograms distinguished features in molecular size distribution. Fertilization with cattle manure increased the molecular size of the SOM in comparison with the control, but the differences in content of carboxylic groups and molecular weight were detected in sodium pyrophosphate extracts only.  相似文献   

4.
A number of field-moist strongly acid soils, NaObr-treated soils, and Al-saturated clays were subjected to drying and wetting treatments in the laboratory. Oven drying of samples resulted in decreases in extractable Al and increases in extractable H from field-moist soils containing more than 12 mequiv./100 g exchange acidity and from Al-saturated clays, and wetting the samples resulted in the reverse. However, when field-moist soil samples containing less than 7 mequiv./100 g exchange acidity were oven dried, both the extractable Al and extractable H tended to increase. Removing organic matter with NaOBr from a soil sample low in exchange acidity resulted in a change from an increase to a decrease in extractable Al upon oven drying. In all cases, the extractable Al and extractable H contents fluctuated cyclically with repeated drying and wetting. The cause for the observed changes was attributed to Al hydrolysis, with additional influence from soil acidity buffering, Al interlayer formation, and inorganic and organic matter dissolution.  相似文献   

5.
The surfaces of macropores or aggregates can act as hot spots for biogeochemical processes and solute transport during preferential flow. For the characterization of organic matter (OM) at macropore surfaces non‐destructive methods have been applied such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). However, effects of organic components on DRIFT signal intensities are often difficult to distinguish from those of mineral components. Here, DRIFT spectra from intact earthworm burrow walls and coated cracks were re‐evaluated to improve the interpretation of C–H and C=O bands. We compared DRIFT and transmission Fourier transform infrared (FTIR) spectra of entire samples that were from the same pedogenetic soil horizon (Bt) but different in mineral composition and texture (i.e., glacial till vs. loess). Spectra of incinerated samples were subtracted from the original spectra. Transmission FTIR and DRIFT spectra were almost identical for entire soil samples. However, the DRIFT spectra were affected by the bulk mode bands (i.e., wavenumbers 2000 to 1700 cm?1). These bands affected spectral resolution and reproducibility. The ratios between C–H and C=O band intensities as indicator for OM quality obtained with DRIFT were smaller than those obtained from transmission FTIR. The results demonstrated that DRIFT and transmission FTIR data required separate interpretations. DRIFT spectroscopy as a non‐destructive method for analyzing OM composition at intact surfaces in structured soils could be calibrated with information obtained with the more detailed transmission FTIR and complementary methods. Spectral subtraction procedure was found useful to reduce effects of mineral absorption bands. The improved DRIFT data may be related to other soil properties (e.g., cation exchange capacity) of hot spots in structured soils.  相似文献   

6.
Extended drought periods followed by heavy rainfall may increase in many regions of the Earth, but the consequences for the quality of soil organic matter and soil microbial communities are poorly understood. Here, we investigated the effect of repeated drying and re‐wetting on microbial communities and the quality of particulate and dissolved organic matter in a Haplic Podzol from a Norway spruce stand. After air‐drying, undisturbed soil columns were re‐wetted at different intensities (8, 20 and 50 mm per day) and time intervals, so that all treatments received the same amount of water per cycle (100 mm). After the third cycle, SOM pools of the treatments were compared with those of non‐dried control columns. Lignin phenols were not systematically affected in the O horizons by the treatments whereas fewer lignin phenols were found in the A horizon of the 20‐ and 50‐mm treatments. Microbial biomass and the ratio of fungi to bacteria were generally not altered, suggesting that most soil microorganisms were well adapted to drying and re‐wetting in this soil. However, gram‐positive bacteria and actinomycetes were reduced whereas gram‐negative bacteria and protozoa were stimulated by the treatments. The increase in the (cy 17: 0 + cy 19: 0)/(16:1ω7c + 18:1ω7c) ratio indicates physiological or nutritional stress for the bacterial communities in the O, A and B horizons with increasing re‐wetting intensity. Drying and re‐wetting reduced the amount of hydrolysable plant and microbial sugars in all soil horizons. However, CO2 and dissolved organic carbon fluxes could not explain these losses. We postulate that drying and re‐wetting triggered chemical alterations of hydrolysable sugar molecules in organic and mineral soil horizons.  相似文献   

7.
为阐明热风干过程中风干肉水分迁移机制,利用氢质子低场核磁共振弛豫研究热风干过程中(温度35℃、湿度60%、风速3 m·s-1)风干肉内部和外部中水分迁移及水-蛋白相互作用模式。结果表明,在风干过程中风干肉中水分的主要存在形式为不易流动水,其不断从肌原纤维网络内迁移到网络外,水分含量显著下降。风干肉外部中结合水、不易流动水和自由水的弛豫时间均显著下降(P < 0.05),表明风干肉外部中水-蛋白相互作用模式发生改变。而风干肉内部中结合水和自由水的弛豫时间无显著变化(P > 0.05),表明风干过程中风干肉内部和外部中水-蛋白相互作用不同,风干肉表皮的温度较内部温度高,且表皮水分含量下降速度较内部的水分含量下降速度快,导致了硬壳的形成。综上所述,风干过程中风干肉外部的温度高且水分脱除快,导致了风干肉内外部中水-蛋白相互作用不同。本研究结果为调控风干过程中水分迁移速度,实现风干肉工业化加工提供了理论依据。  相似文献   

8.
R.J. Haynes  R.S. Swift 《Geoderma》1985,35(2):145-157
The effects of air-drying field-moist soils on the adsorption and desorption of added phosphate and on the levels of extractable native soil phosphate were examined using the A and B horizons of a group of four acid soils.Air-drying increased the capacity of all the soil samples to adsorb phosphate. At an equilibrium solution concentration of 0.5 μg P ml?1, the increase in the quantity of phosphate adsorbed following drying ranged from 23% to 70% of that adsorbed by the moist samples. Considerable hysteresis in phosphate adsorption—desorption isotherms was observed for both moist and dried soil samples indicating that the additional phosphate adsorbed by the dried samples was held with the same strength as that held by the moist samples.Air-drying the soil samples caused a small decrease in soil pH of approximately 0.1 pH unit and a general increase in levels of EDTA-extractable Fe, Al and organic matter. Quantities of native soil phosphate extractable with EDTA, resin and NaHCO3 were also increased. Concentrations of oxalate- and pyrophosphate-extractable Fe and Al and exchangeable Al were, however, unaffected by drying.It was also shown that when the phosphate content of NaHCO3 extracts is measured using the conventional molybdenum blue method, orthophosphate plus a differing amount of acid-hydrolysable organic P present in the extract is measured.  相似文献   

9.
The effects of freezing on soil phosphorus (P) chemistry are poorly understood, although freezing is habitual for many soils at middle and high latitudes. We studied the effects of various freezing treatments on the solubility and sorption of P in an incubation experiment on two coarse and two fine-textured cultivated surface soils in Finland. Air-drying was included in the experimental arrangement because freezing and drying have similar features. Compared with field-moist soils stored at +5°C in the dark, freezing had few effects on P extractability by water or on sorption properties of P studied with a Q/I plot technique. Air-drying, by contrast, increased almost systematically the equilibrium concentration of P estimated with Q/I plots, water-soluble organic carbon, and the extractability of P, aluminium, iron and manganese in the soils. The results imply that drying destroys organomineral complexes. The breakdown of these complexes releases P, while simultaneously exposing new surfaces on which P could sorb. Because of the considerable impact of drying on the behaviour of P, air-drying of soil samples should be avoided in studies of the chemistry of P in soil. Freezing seems to be a safe way of storing mineral soil for such studies, but it may significantly alter the P conditions of soils rich in organic matter.  相似文献   

10.
Soil water repellency (SWR) has been reported to regularly occur in many soils under various climatic conditions. Despite the commonness of this soil property the mechanisms leading to the occurrence of SWR are largely unknown. The aim of this experiment was to test the hypothesis that the basidiomycete Agaricus bisporus promotes SWR, and that this fungal-induced SWR is dependent on soil moisture and temperature. We report that A. bisporus strongly induces SWR. We further show that the water content during the cultivation of A. bisporus on soil as well as drying temperature of the soil after the incubation experiment significantly affected SWR. Water drop penetration time (WDPT) of the soil ranged from 0.5 s in the samples cultivated at high soil water content (20%, w/w) and subsequently freeze dried, to more than 162 min in the soils that were kept at the low water content (13.8%, w/w) and were subsequently dried at 80 °C. These findings show that fungal activity potentially can promote dramatic SWR. The strong increase in SWR due to heating of the soil to 80 °C supports the view that SWR can be caused by a rearrangement of organic substances. For this reason, we discuss surface-active proteins produced by basidiomycetes as potential drivers of the SWR observed in our experiment.  相似文献   

11.
The potential of biochar to ameliorate soil water repellency has not been widely studied. Previous studies have focused on the potential for biochar to induce or exacerbate existing water repellency rather than alleviate it. This study investigates the effect of adding wettable biochar to water‐repellent soil by comparing the water drop penetration times (WDPTs) of a control and biochar‐amended soil. The potential of wettable biochar to act as a physical amendment to water‐repellent soil was evaluated by mixing coarsely‐ground biochar (CGB, particle size range 250–2000 µm) or finely‐ground biochar (FGB, particle size range < 250 µm) with one strongly and one severely naturally water‐repellent soil in various quantities, and then measuring the WDPT for each mixture. When biochar particles did not fall within the size range of existing soil particles, an initial increase in both mean WDPT (WDPTM) and variation in WDPT was observed with small additions of biochar. These effects possibly result from increased surface roughness and inhibition of infiltration by the suspension of drops above the average soil–air interface at a few hydrophobic points. Both CGB and FGB reduced soil water repellency, FGB more effectively than CGB. The addition of 10% w/w FGB reduced soil WDPT by 50%, and 25% FGB eliminated repellency. Direct absorption of water by biochar and an increase in soil surface area in contact with water are the predominant physical mechanisms involved. This exploratory study suggests biochar has the potential to amend water‐repellent soil.  相似文献   

12.
In this study, we examined the efficiency of a kaolinite clayey soil to mitigate water repellency of a sandy soil with olive trees. The treatment was applied to the soil zone below the tree canopy, which displayed the highest degree of water repellency [average water drop penetration time (WDPT) value = 820 s]. Both dry (incorporated onto the top soil) and wet clay applications (after dispersion in irrigation water) were examined in a replicated experiment, with control trees being used for comparison. The application rate of the clayey soil was maintained in both cases (wet and dry mode) equal to 1 kg m−2, while the effect of subsequent wetting and drying cycles on the treatment performance was evaluated. The results of the study verify that clay application was effective to mitigate soil water repellency. Dry supplementation displayed low efficiency (26% reduction of the air‐dry WDPT compared with the control soil) within the first week of application. The efficiency of the dry‐clay treatment increased to 76% after applying three subsequent wetting and drying cycles. In comparison with the dry mode, the wet clay was efficient immediately after application (74% reduction of the WDPT), indicating that the limiting step in the overall process was clay dispersion. Based on the findings of this study, it was proposed that wet clay application is of interest for controlling soil water repellency in agricultural land. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Studies with surface samples of Iowa soils selected to obtain a wide range in properties showed that the following treatments of field-moist soils had no effect on urease activity: leaching with water ; drying for 24 h at temperatures ranging from 30 to 60°C ; storage for 6 months at temperatures ranging from ?20 to 40°C; incubation under aerobic or waterlogged conditions at 30 or 40°C for 6 months. No loss of urease activity could be detected when field-moist soils were air-dried and stored at 21–23°C for 2yr, but complete loss of urease activity was observed when they were dried at 105°C for 24 h or autoclaved (120°C) for 2h. Inactivation of urease in moist soils was detected at temperatures above 60°C.Treatment of field-moist soils with proteolytic enzymes which cause rapid destruction of jackbean urease did not decrease urease activity, but jackbean urease was destroyed or inactivated when added to sterilized or unsterilized soils.Although no decrease in urease activity could be detected when field-moist soils were air-dried, an appreciable (9–33%) decrease in urease activity was observed when air-dried soils were incubated under aerobic or waterlogged conditions. This decrease occurred within a few days, and prolonged incubation or repetition of the drying-incubation treatment did not lead to a further decrease in urease activity. Treatment of incubated air-dried soil with urease or glucose initially increased urease activity to a level exceeding that of the undried soil, but this activity decreased with time and eventually stabilized at the level observed for the undried soil.The work reported supports the conclusions from previous work that the native urease in Iowa soils is remarkably stable and that different soils have different levels of urease activity determined by the ability of their constituents to protect urease against microbial degradation and other processes leading to inactivation of enzymes.  相似文献   

14.
Soil organic matter (SOM) is strongly related to soil type and management practices. Changes in government policy have brought drastic changes in farm management practices in the last two decades in rural China. This study investigates changes in SOM in two different soils: Ustepts and Udolls. Ustepts, in the North China Plain where the climate is warm and sub-humid, developed from an alluvial flood plain with organic matter <10 g kg−1. Udolls, in Northeastern China where the climate is cool and sub-humid, developed from loess-like materials with organic matter >20 g kg−1. Two locations for Ustepts and three locations for Udolls were used to collect 567 soil samples in 1980–1982 and again in 2000 for SOM analysis. Soil organic matter increased for Ustepts and decreased for Udolls soils over the sampling period, resulting from differences in fertilizer rates and crop residue input to soil. Higher fertilizer input and crop intensity and initially very low SOM content in Ustepts all contributed to greater OM input than oxidation release. In contrast, lower fertilizer input and crop intensity, and initially high SOM content in the Udolls, led to lower OM input than oxidation release. Increasing SOM content through higher mineral fertilizer input is a valuable option for sustainable agriculture production in areas where SOM is low and there is a shortage or potential shortage of food supply.  相似文献   

15.
通过6年的田间定位试验,探讨了CK(不施肥,秸秆不还田)、SF(施肥,秸秆不还田)、T1(施肥,玉米秸秆还田)、T2(施肥,小麦秸秆还田)、T3(施肥,玉米小麦秸秆还田)5种处理对土壤氮素形态和有机质红外光谱特征的影响。结果显示:与SF相比较,T1、T2、T3处理使土壤有机氮含量分别增加3.7%、15.9%和18.5%,土壤无机氮含量分别减少15.5%、15.9%和24.0%,其中铵态氮分别降低11.3%、6.0%和12.0%,土壤硝态氮含量分别降低19.3%、22.9%和32.1%;与SF相比较,T1、T3处理土壤有机质(SOM)的C/N分别降低2.8%和1.4%,T2处理SOM的C/N提高1.4%;C/O分别提高9.2%、12.8%和12.1%;而H/C分别降低4.6%、5.5%和4.6%。红外图谱分析显示,T1、T2、T3处理引起3 500~3 200 cm?1处的吸收峰增加,2 924 cm?1处出现了新的弱峰,表明SOM的脂肪族特征增加,且以1 630 cm?1处为中心的宽带吸收峰强度明显增加,SOM芳构化程度增强。研究表明,施肥显著提高了土壤有机氮、无机氮含量,以及土壤有机质的C/N和C/O。而秸秆还田降低了土壤无机氮,提高了土壤有机氮,使SOM的C/N、H/C下降,C/O上升,同时提高了SOM中酚基、羟基、羧基、芳香碳和酰胺含量,其中以小麦、玉米秸秆双季还田的效果最为显著。  相似文献   

16.
Soil organic matter (SOM) is an important factor influencing aggregate stability. Interactions between SOM and soil structure are widely studied, although the subtle relationship between SOM content, pore size distribution and aggregate stability is not fully known. Here we investigate such a relationship by means of a long‐term experiment established in 1962 in northeastern Italy, which considers different fertilizer practices (organic, mineral and mixed) applied to a continuous maize crop rotation. We measured wet stability of 1–2 mm aggregates subjected to different pretreatments. Both soil physical properties (such as pore size distribution and hydrophobicity) and chemical properties (soil organic and humic carbon content) affecting aggregate stability were considered. The chemical structure of humic substances was characterized by thermal and spectroscopic analyses (TG‐DTA, DRIFT and 1H HR MAS NMR). The Pore‐Cor network model was then applied to evaluate the contribution of hydrophobicity and porosity to aggregate wetting. Our study suggests that SOM and its humic fraction can affect aggregate wetting and consequently slaking by modifying the pore size distribution with a shift from micropores (5–30 µm) and mesopores (30–75 µm) to ultramicropores (0.1–5 µm); hydrophobicity was also increased as a result of different humic composition. Spectroscopic analysis showed that hydrophobic compounds were mostly associated with complex humic molecules. Models of fast wetting dynamics, however, suggest that the contribution that hydrophobicity makes to aggregate stability, especially to soils with large carbon inputs, may not be the most significant factor.  相似文献   

17.
In some soils, aggregate coatings and walls of biopores differ in the content of clay and organic carbon from that of the aggregate interiors or the soil matrix. The composition of the organic matter on aggregates and on the surfaces of biopores is largely unknown. We have compared the composition of organic matter between inner and outer parts of aggregates and between biopore walls and the soil matrix in a loamy arable soil and a sandy forest one. Hot‐water‐ and sodium‐pyrophosphate‐extractable organic matter was analysed by Fourier transform infrared (FT‐IR) spectroscopy. For the sandy forest soil, the FT‐IR spectra showed that organic matter from the walls of root channels contains fewer functional groups with absorption bands at 1740–1710 cm?1 and 1640–1600 cm?1 than that from burrow fillings. For the arable soil, the content of these functional groups in hot‐water‐soluble organic matter from the coatings is less than in that from the interiors in the topsoil, and the reverse is so in the subsoil, probably because water‐soluble organic matter containing these functional groups has moved from topsoil to subsoil. The results indicate that root channels in the forest soil have more reactive zones in an otherwise relatively inert sandy matrix, whereas aggregate coatings in the arable subsoil have a greater cation exchange capacity and a greater sorption potential for hydrophobic substances than the aggregate interiors.  相似文献   

18.
Soil organic matter (SOM) is known to play a major role in soil fertility due to its influence on physical, chemical and biological properties of soil; and it is closely related to particle size distribution. The ratio of SOM (g kg−1) to clay + silt content (g kg−1) was evaluated as an indicator of soil quality for barley (Hordeum vulgare) grain yield, reflecting N availability and soil physical conditions to which crop development is sensitive. Thirty-eight sites in the semiarid Pampa region of Argentina with a wide range of SOM and texture were evaluated for malting barley yield during three growing seasons. In control plots, 51% of grain yield could be explained by this indicator. The threshold value between high and low N-fertilization response was 4.4. Better yield prediction to almost 68% was achieved by combining the SOM to clay + silt indicator with initial nitrate content of the soil at seeding. This combined indicator was also able to explain a high proportion of water use efficiency, particularly in the early growth stages. The ratio of SOM to clay + silt content provided a better tool for estimating grain yield than nutrient availability or SOM alone.  相似文献   

19.
Summary Recent work in our laboratory indicated that the slow rate of denitrification in Iowa subsoils is not due to a lack of denitrifying microorganisms, but to a lack of organic C that can be utilized by these microorganisms for reduction of nitrate. To identify factors affecting the availability of leachable organic C in surface soils capable of promoting denitrification in subsoils, we studied the effects of freezing and drying and of plants and plant residues on the amounts of water-soluble organic C in surface soils and the ability of this organic C to promote denitrification in subsoils. We found that aqueous extracts of field-moist, frozen, and air-dried surface soils promoted denitrification in subsoils and that their stimulatory effects on denitrification were highly correlated (r=0.93) with their organic C contents and decreased in the order air-dried soils frozen soils >field-moist soils. But a detailed study of the effect of drying a surface soil to different water tensions indicated that drying of soils under natural conditions is not likely to lead to a substantial increase in their content of water-soluble organic C. Amendment of surface soils with corn or soybean residues led to a marked increase in the amount of organic C in aqueous extracts of the soils and in the ability of these extracts to promote denitrification in subsoils. These effects of plant residues could not be detected after incubation of residue-treated soils for a few days under aerobic conditions, but they increased markedly with an increase in the time of incubation from 1 to 10 days when residue-treated soils were incubated under anaerobic conditions. Analyses for organic acids indicated that this increase was largely due to fermentative production of acetic, propionic, and butyric acids by soil microorganisms. Growth chamber studies showed that growth of corn, soybean, wheat, and sorghum plants on surface soil did not significantly increase the organic C content of leachates of the soil or the ability of these leachates to promote denitrification in subsois. We conclude that plant residues are a major source of the leachable organic C in surface soils that is capable of promoting denitrification in subsoils.  相似文献   

20.
The effects of cropping history (pasture or arable) and sample pretreatment (field-moist, air-dried or air-dried and then tension or vacuum rewetted) on aggregate stability as measured by wet sieving or turbidimetry were compared. When field-moist samples were used there was a tendency for aggregate stability, as measured by wet sieving, to decline with increasing time under arable cropping (i.e. decreasing soil organic matter content). Air-drying samples caused a pronounced decline in stability of soils from under arable management and as a consequence there was a marked decline in stability with increasing time under arable. Use of tension or vacuum rewetted samples resulted in high values of stability which were unaffected by cropping history. For turbidimetry, there was a marked decline in measured stability with increasing time under arable cropping when field-moist samples were used. Air-drying caused an increase in measured stability that was relatively greater for the less stable samples. In comparison with air-dried samples, tension and vacuum rewetting caused a decrease in stability values for relatively unstable soils. It is suggested that, upon air-drying (and contraction of aggregates), additional intermolecular associations were formed between soil constituents thus conferring greater stability on aggregates. This resulted in reduced dispersion (and the release of particles <0.04 mm in diameter) from the surfaces of aggregates and slaked aggregate fragments following rapid rewetting. As a consequence stability as measured by turbidimetry was increased by drying. For aggregates from a predominantly arable history, this stabilization was not great enough to prevent slaking occurring following rapid rewetting, with the formation of a large proportion of stabilized fragments <0.5 mm in diameter. The stability of these aggregates as measured by wet sieving was therefore decreased by drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号