首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 101 毫秒
1.
生物质炭施用量对旱地酸性红壤理化性质的影响   总被引:3,自引:1,他引:3  
王昆艳  官会林  卢俊  徐武美 《土壤》2020,52(3):503-509
我国南方旱地酸性红壤区,土壤酸化与干旱等问题突出。近几年生物质炭在土壤改良方面的研究应用已有较多的文献报道,但针对南方旱地酸性红壤区土壤改良方面的研究与应用相对较少。对此,本研究设置了生物质炭施加量分别为1%、2%、3%、4%及对照CK共5个处理,每个处理5次重复的室内盆栽试验;每盆一次性均匀浇洒1 L蒸馏水后在温室内自然放置,模拟干旱30 d,随后测定土壤含水量、p H、电导率与氮、磷含量。结果表明:土壤pH、电导率、有效磷含量随生物质炭施加量的增加而显著提高,NH4+-N含量降低,而NO3-N含量无显著影响;模拟干旱后的土壤含水量与生物质炭施加量呈二次函数曲线关系,施加低量生物质炭(1%)显著降低了土壤含水量,而高量生物质炭(4%)的施加则使土壤含水量显著提高。本研究为生物质炭在我国南方旱地酸性红壤区土壤改良方面的应用提供了试验依据。  相似文献   

2.
生物质炭对旱地红壤理化性状和作物产量的持续效应   总被引:3,自引:3,他引:3  
以江西进贤旱地红壤为供试土壤,连续3a观测施用生物质炭(0t/hm2,2.5t/hm2,5t/hm2,10t/hm2,20t/hm2,30t/hm2和40t/hm2)后土壤容重、孔隙度、饱和导水率、土壤pH、有机碳、阳离子交换量及油菜和红薯产量的变化。结果表明:生物质炭连续3a降低土壤容重,提高了土壤孔隙度和土壤饱和导水率,提升了土壤pH,增加了土壤有机碳和阳离子交换量;油菜和红薯产量均随生物质炭施用量的增加而增加,且红薯产量增幅大于油菜。随种植年限的延长,作物产量增幅越大。高施用量(40t/hm2)处理在旱地红壤上的改良效果和增产效应最好,施用生物质炭后第3a其土壤容重下降了0.17g/cm3,土壤孔隙度和饱和导水率分别增加了11.71%和126.57%,土壤pH、有机碳和阳离子交换量分别提高了7.25%,47.88%和44.61%,油菜和红薯产量分别增加了1.23t/hm2和14.83t/hm2。在连续3a内,旱地红壤施用生物质炭对改善土壤理化性状,维持作物增产具有持续效应,为生物质炭在红壤地区的大规模推广应用提供了科学依据。  相似文献   

3.
明确生物质炭等改良剂对土壤酶活性及土壤微生物群落结构的影响,对南方红壤旱地改良剂的合理施用及评价不同改良剂对旱地红壤肥力的影响具有重要意义。针对江西旱地红壤进行室内培养试验,试验设置4个处理,即CK、Ca(过氧化钙,1.72 g/kg)、C(生物质炭,21.46 g/kg)、C+Ca(过氧化钙,1.72 g/kg;生物质炭,21.46 g/kg),利用磷脂脂肪酸方法(PLFA),研究改良剂对土壤微生物量和组成以及土壤酶活性、土壤活性有机碳的影响。结果表明:旱地红壤中添加生物质炭和过氧化钙土壤提高可溶性有机碳(DOC)和微生物量碳(MBC)含量;增加蔗糖酶(INV)、淀粉酶(AMY)及脲酶(URE)活性,特别是配施(C+Ca)显著提高土壤活性碳含量及酶活性。PLFA分析表明,土壤微生物总PLFAs量的大小顺序为:C+CaCCaCK;各处理土壤细菌的相对丰度最大,大约占微生物总含量的80%,放线菌次之,大约占微生物总含量的13%~15%,而真菌和丛枝菌根真菌的相对丰度较低。生物质炭和过氧化钙增加了革兰氏阴性菌(GN)/革兰氏阳性菌(GP)值,尤以C+Ca处理增加幅度最大。主成分分析(PCA)表明,添加生物质炭和过氧化钙能够改善土壤微生物群落结构;计算主成分的综合得分,配施(C+Ca)处理的综合得分最高,对土壤微生物群落结构的影响最大。冗余分析(RDA)表明,土壤MBC、DOC和土壤INV酶活性是影响土壤微生物数量和结构的主要因子。因此,施用生物质炭和过氧化钙能够明显提高旱地红壤微生物生物量,改变红壤微生物群落结构以及激发红壤酶活性,且配施效果最显著。  相似文献   

4.
典型旱地红壤水力学特性及其影响因素研究   总被引:5,自引:2,他引:5  
为了更系统地了解旱地红壤供水与贮水能力、有效水含量及其变化范围,按自然发生层采集旱地红壤原状土样,对其进行了水力学特性和影响因素研究.结果表明,旱地红壤原状土饱和导水率变化范围为1.44×10-3~3.45×10 3 cm/s,并呈现自上而下减小的趋势.从旱地红壤水分特征曲线得出剖面各层土壤的饱和含水量、田间持水量、萎蔫含水量和有效水含量,其中有效水含量变化区间为0.083~0.124cm3/cm3,耕作层最高.在旱地红壤水力学特性的影响因素研究中,容重、质地、有机质含量和结构系数均与水力学特性呈一定的相关性,其中容重和孔隙度为旱地红壤水力学特性的主要影响因素.  相似文献   

5.
稻壳炭对红壤理化特性及芥菜生长的影响   总被引:2,自引:0,他引:2  
本文探讨了不同热解温度制备的稻壳炭的基本性质,并通过盆栽试验研究了500℃热解稻壳炭添加量对南方红壤理化性质和芥菜产量的影响。结果表明:稻壳炭添加量3%、5%和10%三个处理显著改善了红壤的理化性质,土壤体积质量较对照处理依次降低0.11、0.28和0.42 g/cm~3,p H由4.5分别增加到7.5、7.8、8.4,CEC依次增加52.16%、187.02%和214.35%,土壤有机质、速效磷和速效钾显著增加,但稻壳炭添加量10%处理的土壤碱解氮含量降低。稻壳炭对芥菜的养分含量、产量等指标影响较为显著,随着施炭量的增加,芥菜的生物量增加,叶片全氮从1.63 g/kg增加到2.44 g/kg,全磷从2.32 g/kg增加到3.09 g/kg,全钾从47.1 g/kg增加到56.7 g/kg,产量由108.37 g/盆增加到608.7 g/盆。总之,添加5%的500℃热解稻壳炭有效改善了酸度较强的红壤的理化性质,促进了芥菜的生长和增收以及对氮磷钾养分的吸收和储存。在红壤改良上,稻壳炭的最佳添加比例为5%。  相似文献   

6.
以江西典型旱地红壤为研究对象,设置生物质炭和氮肥2个因素(生物质炭4个水平分别为0t/hm~2,5t/hm~2,20t/hm~2,40t/hm~2;氮肥4个水平分别为0kg/hm~2,60kg/hm~2,90kg/hm~2,120kg/hm~2),研究了生物质炭施入大田3a后对旱地红壤微生物量碳、氮及碳氮比的影响。结果表明:与对照相比,生物质炭与氮肥配施有效地提高了土壤微生物量碳,提高幅度为18.22%~122.74%,对土壤微生物量氮的提高效果更为明显,提高幅度为20.86%~312.91%。生物质炭与氮肥配施后土壤微生物碳氮比有不同程度的降低,降低幅度为18.11%~51.56%,其中以20t/hm~2生物质炭与60kg/hm~2氮肥以及40t/hm~2生物质炭与120kg/hm~2氮肥的比例施用后对微生物碳氮比的降低效果最为明显。因此,通过生物质炭与氮肥配施可以提高旱地红壤中微生物量碳、氮及土壤氮素生物活性。  相似文献   

7.
[目的]探讨不同生物质炭施用量条件下旱地红壤中NO-3-N的含量及水平运移规律,为该地区的农田水分管理和环境保护提供科学依据。[方法]采用室内水平扩散率仪测定不同生物质炭施用量[C0(0t/hm~2,不施用生物质炭),C1(2.5t/hm~2),C2(5t/hm~2),C3(10t/hm~2),C4(20t/hm~2),C5(30t/hm~2)和C6(40t/hm~2)]条件下土壤中硝态氮水平运移速率和运移浓度。[结果]生物质炭施用对土壤中硝态氮的水平运移速率和水平运移浓度影响显著。随着生物质炭施用量的增加,硝态氮的水平运移速率和水平运移浓度呈先增加后降低的趋势,而土壤水扩散率呈逐渐降低趋势。C5(30t/hm~2)处理下硝态氮的水平运移速率和水平运移浓度均出现最大值,分别为0.67cm/min,165.52mg/kg。随着生物质炭施用量的继续增加,C6(40t/hm~2)处理的硝态氮的水平运移速率和水平运移浓度较C5(30t/hm~2)处理有所降低,硝态氮浓度最大值均出现在湿润峰峰面上。分析影响硝态氮水平运移规律的因素表明,生物质炭降低了土壤的容重、增加了土壤有机碳和孔隙度,从而导致了各处理硝态氮的水平运移规律发生了变化。[结论]生物质炭可以改善土壤的理化性状,促进硝态氮的水平运移,在利用生物质炭改良旱地红壤理化性状的同时,也要注意防止氮素流失对环境的影响,降低其对地表水的潜在污染风险。  相似文献   

8.
《土壤通报》2017,(6):1423-1428
为了解生物质炭施于旱地红壤较长时间后对土壤物理、化学及微生物特性的影响,以江西典型旱地红壤为对象,采用田间长期定位试验的方法观察了不同用量生物质炭(0、2.5、5、10、20、30 t hm~(-2)和40 t hm~(-2))在施用4年后旱地红壤基础理化性质、土壤微生物生物量碳、氮、土壤基础呼吸强度及微生物商、微生物代谢熵等的变化。结果表明,施用生物质炭4年后,旱地红壤pH、有机碳、全氮、微生物生物量碳和生物量氮均随生物质炭施用量的增加呈上升趋势,土壤容重、微生物碳氮比呈下降趋势。以生物质炭用量40 t hm~(-2)时的改良效果最好,与对照相比,土壤容重显著(P0.05)降低了0.17 g cm-3,微生物碳氮比显著降低了7.97,土壤pH、有机碳、全氮、微生物生物量碳和生物量氮分别显著提高了6.1%、47%、21.5%、43.3%和162.6%。试验证明施用生物质炭较长时间后对旱地红壤的改良效果依旧良好,并且生物质炭施用量越高,对土壤理化性质和微生物特性的影响越显著。  相似文献   

9.
生物质炭施用对潮土理化性状、酶活性及黄瓜产量的影响   总被引:4,自引:0,他引:4  
分析生物质炭施用对潮土理化性状、酶活性及黄瓜产量的影响,为生物质炭在农业中的推广应用提供科学依据。以如皋市农业科学研究所大棚示范区为试验基地,通过田间小区试验,研究了不同生物质炭施用量(0,5,10,20,30,40t/hm~2)条件下土壤理化性状、酶活性及黄瓜产量变化。结果表明:生物质炭施用对土壤理化性状及土壤酶活性有显著的影响。高施用量(40t/hm~2)处理对土壤物理性状的改良效果最好,当生物质炭施用量为30t/hm~2时对土壤养分含量提升效果最好。与对照相比,施用生物质炭各处理土壤容重降幅为0.88%~10.52%,而土壤孔隙度、饱和含水量、田间持水量、饱和导水率、有机质、全氮、硝态氮、铵态氮和速效磷含量的增幅分别为3.68%~7.53%,27.96%~119.25%,30.73~55.05%,1.89%~224.61%,10.39%~54.56%,6.06%~22.58%,2.33%~45.63%,235.71%~414.29%和19.37%~77.76%。土壤脲酶和过氧化氢酶的活性及黄瓜产量随着生物质炭施用量的增加均呈先增加后降低的趋势,两种酶的活性分别在生物质炭施用量为30t/hm~2和20t/hm~2时最大,较对照分别提高了104.57%和15.38%;生物质炭施用量为30t/hm~2时对黄瓜增产效果最好,该处理下黄瓜产量较对照提高了21.80%。主成分分析结果表明,不同生物质炭施用量处理下的土壤质量次序为C4C5C3C2C1CK。在土壤中施用生物质炭不仅可以促进黄瓜增产,改善土壤理化性状,提高土壤养分含量,还可以改良土壤生物学性质,提升土壤酶活性。  相似文献   

10.
施用生物质炭对旱地红壤有机碳矿化及碳库的影响   总被引:2,自引:1,他引:2  
为探究生物质炭施入旱地红壤后对该地区土壤有机碳矿化以及有机碳库的影响,采用田间定位试验,设置7种生物质炭施用量处理,分别为0(C0),2.5(C1),5(C2),10(C3),20(C4),30(C5),40t/hm2(C6),以三库一级动力学理论为基础,对这7种处理的土样进行了室内呼吸培养试验。结果表明:(1)与C0相比,C4、C5和C6处理的土壤有机碳含量呈上升趋势,C5处理土壤有机碳含量上升幅度最大为14.66%;C2、C3、C4、C5和C6处理土壤活性碳均显著增加,C6处理增幅最大为25.00%;土壤惰性碳在C3、C4、C5和C6处理中显著增加,增幅分别为18.92%,40.09%,53.60%和49.55%;除C5处理外,其他生物质炭施用量下土壤缓性碳相对于C0处理,分别降低了1.96%,6.54%,8.82%,9.31%和12.91%。(2)与C0处理相比,施加生物质炭后土壤有机碳累积矿化量均显著降低,C6处理降低幅度达25.93%。随着生物质炭施用量的增加,土壤有机碳累积矿化量逐渐降低。(3)土壤有机碳、活性碳和惰性碳与生物质炭施用量存在极显著(p0.01)的正相关,土壤缓性碳与其存在显著(p0.05)的负相关。研究结果可为提升典型旱地红壤肥力,减缓温室气体排放提供科学依据。  相似文献   

11.
基于野外旱地红壤定位试验,通过在各处理中采取土样测定土壤水分含量,用环刀分层取土测定水分物理性质,并测定作物产量,分析改良剂(生物质炭与过氧化钙)对旱地红壤水分特征和作物产量的影响。结果表明,土壤含水量月动态呈现"双峰型"曲线,11月、12月土壤含水量比较低,且随着时间推移含水量呈上升趋势,2月达到最高;然后缓慢下降,4月后开始缓慢升高,到6月份为第二峰值,6月后又开始缓慢下降。随着土层深度的增加,土壤含水量和土壤容重呈上升趋势,即:0—10cm10—20cm20—40cm40—60cm,而土壤饱和持水量、毛管持水量、田间持水量的变化趋势与其相反。单施处理中,随着过氧化钙施入量的增加,土壤含水量呈下降趋势,而随着生物质炭输入量的增加,土壤含水量呈上升趋势;配施处理土壤含水量都高于单施,且以C2Ca1的土壤含水量最高,为16.14%~34.57%。随着改良剂的加入,土壤容重有减小的趋势,各处理从小到大的顺序为C2Ca1C1Ca1C0Ca1C2Ca0C1Ca2C2Ca2C1Ca0C0Ca2CK。各处理土壤饱和持水量、土壤毛管持水量和土壤田间持水量均大于对照(CK),且以C2Ca1为最大,分别为:24.49%~38.81%,22.18%~27.06%,18.87%~22.68%。各处理从大到小的顺序为C2Ca1C1Ca1C2Ca2C1Ca2C2Ca0C0Ca1C1Ca0C0Ca2CK。各处理红薯产量从高到低的顺序为C2Ca2C2Ca1C1Ca2C1Ca1C2Ca0C1Ca0C0Ca2C0Ca1CK,施入生物质炭或过氧化钙都有利于红薯产量的提高,且混施的效果更好。因此,生物质炭与过氧化钙可作为土壤改良剂是培肥土壤的重要措施,能有效减小土壤容重和提高土壤水分含量,并提高作物产量。  相似文献   

12.
分析了生物质炭添加对红壤性水稻土理化性状、重金属含量及微生物生物量的影响。通过田间小区长期定位试验,一次性施入不同量生物质炭(0,10,20,30,40t/hm2),于2017年9月采集各处理表层土样(0—15cm),研究土壤理化性状、重金属含量及微生物生物量的变化。结果表明:生物质炭添加对土壤理化性状、重金属含量及微生物生物量均有显著影响。与对照相比,供试土壤的pH、EC和有机质含量随生物质炭添加量的增加而增大,增幅分别为5.11%~18.43%,37.62%~104.31%和1.72%~22.41%,而有效磷和铵态氮含量随生物质炭添加量的增加呈先增大后减小趋势,分别在生物质炭添加量为10t/hm2和30t/hm2时达到最大值。随生物质炭添加量的增加,土壤有效态Cd和有效态Pb含量均呈降低趋势,而土壤有效态As含量呈先增加后减少的趋势,三者均在生物质炭添加量为40t/hm2时达到最小值。土壤微生物生物量碳、氮和微生物商随生物质炭添加量的增加均呈先升高后降低的趋势,均在生物质炭添加量为20t/hm2时达到最大值。相关分析表明,生物质炭添加量分别与土壤有效态Cd和Pb含量之间呈极显著负相关(P0.01);通径分析表明,生物质炭主要是通过直接作用影响土壤有效态Cd含量,而土壤pH、EC、有机质、微生物生物量碳、氮和有效磷主要是通过间接作用影响土壤有效态Cd含量。因此,添加适量生物质炭不仅可以改善土壤重金属污染现状和土壤理化性状,提高土壤养分含量,还可以改良土壤生物学性质,增加土壤微生物量。研究结果可为提高稻田土壤肥力和改善土壤重金属污染状况提供科学依据。  相似文献   

13.
枯落物敷盖对红壤坡地土壤水分特性的影响   总被引:1,自引:1,他引:1  
为探明红壤坡地枯落物敷盖的保水作用及其机理,在江西省北部德安县第四纪红黏土母质发育的红壤坡地开展定位试验,以裸露坡地为对照,研究枯落物敷盖措施实施15年后对0—60cm土层土壤的持水性、供水性和水分有效性的影响。结果表明:赣北红壤坡地的土壤水分持水能力低,供水能力弱,有效水含量少,仅为9.0%~11.1%;枯落物敷盖处理的红壤坡地上层(0—30cm)土壤持水能力高于裸露坡地;低吸力范围(100kPa)枯落物敷盖处理的下层(30—60cm)土壤供水能力高于裸露坡地。枯落物敷盖能够有效提高红壤坡地土壤(尤其是上层土壤)持水能力,增强上层土壤在相对湿润状况下的供水性能,而对土壤水分有效性影响相对较弱。该研究可为优化地表敷盖措施、增加和保持土壤水资源以及合理开发利用南方红壤坡地提供参考。  相似文献   

14.
长期不同施肥对旱地红壤性质和作物生长的影响   总被引:43,自引:2,他引:43  
通过对红壤旱地连续13年定位监测研究,发现在红壤旱地长期坚持有机肥料与无机肥料配合施用,土壤有机质含量逐步提高,土壤有机质从开始的11.5g/kg上升到24.3g/kg,增加的有机质以易氧化的有机质为主,稳定性高的有机质较少。红壤长期施用化学磷,明显提高土壤有效磷含量,土壤供磷性能大为改善,施用有机肥料能减少土壤对磷的固定,提高磷肥的有效性和利用率。红壤长期施用单一化学肥料,土壤明显酸化,土壤交换性氢铝显著增加,作物生长变差,产量降低。施用有机肥料,明显降低土壤交换性氢铝含量,增加土壤养分,保持作物的稳产和高产。  相似文献   

15.
土壤结构改良剂对皖南旱地红壤水分特征的影响   总被引:4,自引:0,他引:4  
[目的]研究土壤结构改良剂对皖南旱地红壤孔隙、容重及水分特征的影响,为皖南旱地红壤改良、提高土壤持水保水与抗旱保墒性能提供依据。[方法]采用硅藻土(通气性Si改良剂)、泡沫沙类改良剂(T20)和无机矿石类改良剂(G20)等3种土壤结构改良剂,设置1%,2%,5%与10%的4个添加比例,进行土壤物理性状与水分特征测试。[结果]硅藻土与T20均可显著降低土壤容重,而G20在添加5%与10%时才显著降低;硅藻土处理土壤毛管孔隙度由52.1%增加到91.3%,优于T20和G20;硅藻土与T20的吸湿系数与凋萎湿度随用量呈先增加而后下降,而G20则随添加量增加而增加;土壤的饱和持水量与田间持水量均随土壤结构改良剂添加量的增加而增加,以硅藻土增加最多,T20次之,G20最少。随改良剂用量增加,土壤有效水及难效水均呈增加趋势,其中,硅藻土处理的难效水增加量显著高于T20与G20处理。[结论]改良皖南旱地土壤水分需要根据改良剂材料的种类与用量来进行合理施加,必要时可以组合搭配使用,从而达到最优效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号