首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

2.
Dilution of Marek's disease (MD) vaccines is a common practice in the field to reduce the cost associated with vaccination. In this study we have evaluated the effect of diluting MD vaccines on the protection against MD, vaccine and challenge MD virus (MDV) kinetics, and body weight when challenged with strains Md5 (very virulent MDV) and 648A (very virulent plus MDV) by contact at day of age. The following four vaccination protocols were evaluated in meat-type chickens: turkey herpesvirus (HVT) at manufacturer-recommended full dose; HVT diluted 1:10; HVT + SB-1 at the manufacturer-recommended full dose; and HVT + SB-1 diluted 1:10 for HVT and 1:5 for SB-1. Vaccine was administered at hatch subcutaneously. One-day-old chickens were placed in floor pens and housed together with ten 15-day-old chickens that had been previously inoculated with 500 PFU of either Md5 or 648A MDV strains. Chickens were individually identified with wing bands, and for each chicken samples of feather pulp and blood were collected at 1, 3, and 8 wk posthatch. Body weights were recorded at 8 wk for every chicken. Viral DNA load of wild-type MDV, SB-1, and HVT were evaluated by real time-PCR. Our results showed that dilution of MD vaccines can lead to reduced MD protection, reduced relative body weights, reduced vaccine DNA during the first 3 wk, and increased MDV DNA load. The detrimental effect of vaccine dilution was more evident in females than in males and was more evident when the challenge virus was 648A. However, lower relative body weights and higher MDV DNA load could be detected in chickens challenged with strain Md5, even in the absence of obvious differences in protection.  相似文献   

3.
Marek's disease (MD) is a highly contagious lymphoproliferative and demyelinating disorder of chickens. MD is caused by Marek's disease virus (MDV), a cell-associated, acute-transforming alphaherpesvirus. For three decades, losses to the poultry industry due to MD have been greatly limited through the use of live vaccines. MDV vaccine strains are comprised of antigenically related, apathogenic MDVs originally isolated from chickens (MDV-2), turkeys (herpesvirus of turkeys, HVT) or attenuated-oncogenic strains of MDV-1 (CVI-988). Since the inception of high-density poultry production and MD vaccination, there have been two discernible increases in the virulence of MDV field strains. Our objectives were to determine if common mutations in the major glycoprotein genes, a major lytic antigen phosphoprotein 38 (pp38) or a major latency/transformation antigen Meq (Marek's EcoRI-Q-encoded protein) were associated with enhanced MDV virulence. To address this, we cloned and sequenced the major surface glycoprotein genes (gB, gC, gD, gE, gH, gI, and gL) of five MDV strains that were representative of the virulent (v), very virulent (vv) and very virulent plus (vv+) pathotypes of MDV. We found no consistent mutations in these genes that correlated strictly with virulence level. The glycoprotein genes most similar among MDV-1, MDV-2 and HVT (gB and gC, approximately 81 and 75%, respectively) were among the most conserved across pathotype. We found mutations mapping to the putative signal cleavage site in the gL genes in four out of eleven vv+MDVs, but this mutation was also identified in one vvMDV (643P) indicating that it did not correlate with enhanced virulence. In further analysis of an additional 12 MDV strains, we found no gross polymorphism in any of the glycoprotein genes. Likewise, by PCR and RFLP analysis, we found no polymorphism at the locus encoding the pp38 gene, an early lytic-phase gene associated with MDV replication. In contrast, we found distinct mutations in the latency and transformation-associated Marek's EcoRI-Q-encoded protein, Meq. In examination of the DNA and deduced amino acid sequence of meq genes from 26 MDV strains (9 m/vMDV, 5 vvMDV and 12 vv+MDVs), we found distinct polymorphism and point mutations that appeared to correlate with virulence. Although a complex trait like MDV virulence is likely to be multigenic, these data describe the first sets of mutations that appear to correlate with MDV virulence. Our conclusion is that since Meq is expressed primarily in the latent/transforming phase of MDV infection, and is not encoded by MDV-2 or HVT vaccine viruses, the evolution of MDV virulence may be due to selection on MDV-host cell interactions during latency and may not be mediated by the immune selection against virus lytic antigens such as the surface glycoproteins.  相似文献   

4.
An enzyme-linked immunosorbent assay (ELISA) was applied to evaluate the antibody response of commercial White Leghorn chickens to vaccination against Marek's disease (MD) at hatch (day 0) with serotype-1 (Rispens), -2 (SB-1), or -3 (turkey herpesvirus, HVT) vaccine virus and to challenge on day 21 with MD virus. Antigens for the test were whole chicken embryo fibroblast cells infected with Rispens, SB-1, or HVT. The chickens were progeny of stock that had been vaccinated with HVT, and on day 21 the nonvaccinated group had higher levels of maternal antibodies to HVT than to other antigens (P < 0.05). Only SB-1 vaccine had induced antibodies by day 21, and this was detected only against homologous antigens. On day 49, all three vaccines had induced higher levels of antibodies to homologous than to heterologous antigens. Marek's Disease virus (MDV) induced antibodies to all three antigens, but challenging vaccinated chicks did not significantly increase levels of antibodies on day 81 to any of the three antigens. It was concluded that an ELISA using whole cells as antigens would have potential value for monitoring the antibody response induced by MD vaccines and virulent MDV.  相似文献   

5.
We recently reported a comparison of glycoprotein-encoding genes of different Marek's disease virus pathotypes (MDVs). One mutation found predominantly in very virulent (vv)+MDVs was a 12-bp (four-amino acid) deletion in the glycoprotein L (gL)-encoding gene in four of 23 MDV strains examined (three were vv+MDVs and one was a vvMDV). This mutation was noted in the gL of the TK (615K) strain, but not in the RL (615J) strain of MDV. These strains have identical mutations in the meq gene characteristic of vv+MDVs but can be distinguished by the mutation in the gL-encoding gene. The TK strain was originally isolated from vaccinated chickens and appeared to confer or enhance horizontal transmission of the vaccine virus, herpesvirus of turkeys (HVT). Because the molecular basis for increased virulence of MDV field strains is unknown, we hypothesized that one mechanism might be by coreplication of MDV-1 strains with HVT and that it could be mediated by the mutation of gL, an essential component of the glycoprotein H/L complex. In this study, we compared the pathogenicity of TK (615K) and RL (615J) strains of MDV in the presence and absence of simultaneous HVT coinfection. MDV infections were monitored at the levels of viremia (for both MDV-1 and HVT), clinical signs of MD, tumor incidence, and mortality in 1) inoculated chickens, 2) chickens exposed at 1 day of age, 3) chickens exposed at 2 wk of age, and 4) chickens exposed to both TK/HVT- and RL/HVT-infected chickens at 6 wk of age. We found high incidences of clinical MD signs in all inoculated treatment groups and all chickens exposed to TK and RL viruses, regardless of the presence of HVT. The median time to death of chickens exposed to TK1HVT-infected chickens, however, was lower than the other treatment groups for contact-exposed chickens. Although this difference was not considered to be statistically significant to a rigorously interpreted degree because of the removal of chickens for sampling from the test groups, these data suggest that replication of the TK strain and HVT, when coadministered, might incrementally affect the virulence of MDV-1 strains. The strict correlation of this enhancement of virulence with the mutation in gL, however, requires additional experiments with genetically identical MDV background strains.  相似文献   

6.
Improved vaccines to control Marek's disease (MD) in chickens are desired by the poultry industry but have been difficult to develop. Studies were conducted to evaluate strategies for deriving MD vaccines of high protective efficacy, irrespective of virulence. Candidate viruses from parent strains representing v and vv+ pathotypes were modified by cell culture passage, backpassage in chickens, or insertional mutagenesis following cocultivation with retroviruses. Ten strains considered most likely to exhibit high protective efficacy were selected for further study. The ability of these modified viruses to protect commercial or maternal antibody-positive (ab+) chickens against virulent MD virus (MDV) challenge was compared with that of strain CVI988, the standard commercial MD vaccine. Modified strains were also evaluated for the ability to induce lymphomas or other pathologic changes in ab+ and antibody-negative (ab-) chickens. Two of the 10 modified viruses, strains RM1 and CVI988/BP5, provided high levels of protection against highly virulent MDV challenge. The magnitude of protection was greater than that of one laboratory and two commercial preparations of CV1988, but was approximately equal to that of two other commercial preparations of CVI988 in laboratory and field tests. Three of the strains, including RMI and CVI988/BP5, induced lymphoid organ atrophy in ab-chicks but not in ab+ commercial chicks, a property designated here as L phenotype. Seven strains, including two L+ strains, were mildly oncogenic for ab- chicks, a property designated here as O phenotype. Five of these strains caused no tumors in ab+ chickens. The two fully attenuated strains induced neither lymphomas nor lymphoid organ atrophy. The L and O phenotypes appeared not to be linked, and both (especially the L phenotype) appeared associated with high levels of protection. These studies also illustrated differences in the protective efficacy of different preparations of CVI988 vaccine, indicating the need to choose carefully the most protective strains as controls for efficacy studies. A new vv+ strain, designated as 686, is described and appears useful as a challenge virus; it is the most virulent of the 48 field isolates of MDV thus far pathotyped in this laboratory. These findings support the conclusion that new virus strains with high levels of protective immunity comparable to that of CVI988 can be developed. However, the question of whether strains can be developed that exceed the efficacy of current CVI988-based vaccines remains unanswered. After more than 30 years of unsuccessful endeavor by many laboratories toward this goal, it now may be useful to consider whether the efficacy of MD vaccines is limited by some type of biologic threshold.  相似文献   

7.
Marek's disease virus (MDV) vaccines of serotypes 1 and 2 administered in 18-day-old embryonated eggs induced better protection against post-hatch challenge at 3 days with virulent MDV than vaccines given at hatch. Embryonal vaccination with a polyvalent vaccine containing equal quantities of serotypes 1 and 2 of MDV and serotype 3 virus (turkey herpesvirus, HVT) was also significantly more effective than post-hatch vaccination. These and earlier results indicate that protective efficacy of single or combined Marek's disease vaccine serotypes against post-hatch challenge at 3 days can be substantially improved if the vaccines are injected into 18-day embryos rather than at hatch. Injection of vaccines of serotypes 1 or 2 into embryonated eggs or hatched chicks did not cause detectable gross or microscopic lesions in chickens. Vaccine viruses of serotypes 1 and 2 could be isolated from spleen cells of chickens 1 week post-vaccination, and the titer of recoverable viruses was higher in chickens that received the vaccines at the 18th day of embryonation than in chickens vaccinated at hatch. Although embryo vaccination with HVT usually provided better protection than post-hatch vaccination against early post-hatch challenge with variant pathotypes of MDV, the protection was poor regardless of vaccination protocol. If challenge with variant pathotypes of MDV was delayed until embryonally or post-hatch HVT-vaccinated chickens were 21 days of age, protection of chickens by HVT was not enhanced. Thus, resistance induced by embryonal vaccination with HVT was qualitatively similar to that induced by post-hatch vaccination with this virus.  相似文献   

8.
A novel syndrome was observed after inoculation of 3-wk-old chickens with highly virulent Marek's disease virus (MDV) strains. This syndrome was characterized by the acute onset of neurologic signs including flaccid paralysis of neck and limbs 9-10 days postinoculation, typically resulting in death 1-3 days after the onset of clinical signs. Most affected birds died, and spontaneous recovery was rare. Few if any gross tissue changes were found. Histologic brain lesions included acute vasculitis with vasogenic edema and perivascular cuffing. The syndrome was influenced by the virus strain and dose and by chicken strain and B haplotype and was prevented by vaccination with turkey herpesvirus. Chickens up to 18 wk of age were susceptible. On the basis of clinical signs and histopathology, the syndrome was determined to be an acute form of transient paralysis (TP); its more acute nature and virtual lack of spontaneous recovery differentiated this syndrome from classical TP. Affected birds were viremic, and brains were positive for viral DNA by polymerase chain reaction assays, but these tests were also positive in inoculated chickens without clinical signs and may have limited value for diagnosis. Although acute TP should occur only rarely in Marek's disease-vaccinated commercial flocks, this syndrome may be important in laboratory studies, where it could interfere with pathogenesis trials. Finally, acute TP appears to be one component in the pathogenesis of the early mortality syndrome, a previously described immunodepressive disease induced by inoculation of 1-day-old chicks with highly virulent MDV.  相似文献   

9.
Han MG  Kim SJ 《Avian diseases》2003,47(2):261-271
The efficacy of four different commercial live vaccines (vaccines A, B, C, and D) against the infectious laryngotracheitis virus (ILTV) was assessed in specific-pathogen-free (SPF) chickens. SPF chickens were vaccinated intraocularly at 6 wk old with ILTV live vaccines and were challenged intratracheally with the N91B01 strain of virulent Korean ILTV 2 wk after vaccination. The immunity against ILTV live vaccines was assessed by the incidence of latent infection by the challenge virus in the chickens' tracheas and trigeminal ganglia, the reisolation rate of the challenge virus, and the clinical signs in the chickens challenged with the N91B01 strain of ILTV. The latent infection in chickens was assessed by nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Our data showed that the clinical signs and challenge virus isolation were negative in all chickens receiving four difference commercial ILTV live vaccines. The viral DNA of the vaccine strain, but not that of the challenge virus, was detected in chickens vaccinated with vaccine A by nested PCR-RFLP. The viral DNAs of both the vaccine and challenge strains were detected from chickens vaccinated with vaccines B, C, and D. This study showed that only vaccine A can protect chickens from latent infection with the field virulent ILTV. We speculate that the efficacy of infectious laryngotracheitis live vaccines to protect chickens from latent infection with virulent ILTVs can be assessed by nested PCR-RFLP analysis.  相似文献   

10.
Witter RL 《Avian diseases》2002,46(4):925-937
Studies were conducted to better understand the relationship among Marcek's disease (MD) vaccine strains between induction of protective immunity and the degree of attenuation (or virulence). To obtain viruses at different stages of attenuation, very virulent plus MD strains 584A and 648A and selected clones of these strains were serially passaged in chicken and duck cells. These viruses were considered fully attenuated after passage for 70-100 times in chicken embryo cell cultures until they no longer induced gross lesions in susceptible, maternal antibody-negative (ab-) chickens. Lower passages of the same strains were considered partially attenuated, provided their virulence was less than that of the parent strain. Four of five partially attenuated preparations derived from MD virus strains 584A and 648A or the previously attenuated Md11 strain induced 28%-62% higher levels of protection in maternal antibody-positive (ab+) chickens against virulent MD challenge than the fully attenuated counterpart viruses. The partially attenuated 584A/d2/3 strain replicated in chickens but was totally nonprotective. Data from two subsequent trials in ab+ chickens confirmed that protection induced by the partly attenuated (passage 80) preparations was 79% and 118% higher, respectively, than that induced by the fully attenuated (passage 100) preparations of strain 648A. However, in one trial with ab- chickens, no difference in protection between partially and fully attenuated virus was observed. Strong protection (up to 85%) against highly virulent challenge also was provided by preparations of 648A at passages 40-60, which were moderately oncogenic when used alone. Partially attenuated strains tended to replicate to higher titers in both ab+ and ab- chickens compared with fully attenuated vaccines. Also, ab+ and ab- chickens vaccinated with partially attenuated strains developed three- to nine fold more extensive microscopic lesions in peripheral nerves at 14 and 22 days after virulent challenge than chickens vaccinated with fully attenuated strains. When measured in ab+ chickens, loss of lesion induction by 648A was achieved 30 passages earlier (at passage 70) than when measured in ab- chickens. Thus, maternal antibodies appeared to abrogate the pathogenicity of some partially attenuated strains. These studies establish for MD the principle that at least some partially attenuated MD viruses may replicate better and induce stronger immunity against virulent challenge than fully attenuated preparations of the same strain, at least when tested in ab+ chickens. Moreover, depending on passage level, partially attenuated vaccine strains may be relatively innocuous for ab+ chickens, causing few or no lesions.  相似文献   

11.
Protection provided by live and inactivated virus vaccination against challenge with the virulent nephropathogenic infectious bronchitis virus (NIBV) strain PA/Wolgemuth/98 was assessed. Vaccinations with combinations of live attenuated strains Massachusetts (Mass) + Connecticut (Conn) or Mass + Arkansas (Ark) were given by eyedrop to 2-wk-old specific-pathogen-free leghorn chickens. After live infectious bronchitis virus (IBV) vaccination, some chickens at 6 wk of age received an injection of either an oil emulsion vaccine containing inactivated IBV strains Mass + Ark or an autogenous vaccine prepared from NIBV PA/Wolgemuth/98. Challenge with PA/Wolgemuth/98 was given via eyedrop at 10 wk of age. Serum IBV enzyme-linked immunosorbent assay antibody geometric mean titers (GMTs) after vaccination with the combinations of live attenuated strains were low, ranging from 184 to 1,354, prior to NIBV challenge at 10 wk of age. Both inactivated vaccines induced an anamnestic response of similar magnitudes with serum GMTs of 6,232-12,241. Assessment of protection following NIBV challenge was based on several criteria virus reisolation from trachea and kidney and renal microscopic pathology and IBV-specific antigen immunohistochemistry (IHC). Live attenuated virus vaccination alone with combinations of strains Mass + Conn or Mass + Ark did not protect the respiratory tract and kidney of chickens after PA/Wolgemuth/98 challenge. Chickens given a live combination vaccination of Mass + Conn and boosted with an inactivated Mass + Ark vaccine were also susceptible to NIBV challenge on the basis of virus isolation from trachea and kidney butshowed protection on the basis of renal microscopic pathology and IHC. Live IBV-primed chickens vaccinated with an autogenous inactivated PA/Wolgemuth/98 vaccine had the highest protection against homologous virulent NIBV challenge on the basis of virus isolation.  相似文献   

12.
Marek's disease virus (MDV) infection in the brain was studied chronologically after inoculating 3-week-old chickens of two genetic lines with two strains of serotype I MDV representing two pathotypes (v and vv+). Viral replication in the brain was strongly associated with the development of lesions. Three viral antigens (pp38, gB, and meq) were detected in the brain of infected chickens. Marked differences between v and vv+ pathotypes of MDV were identified for level of virus replication, time course of brain lesions, and expression of major histocompatibility complex (MHC) antigens. Two pathologic phenomena (inflammatory and proliferative) were detected in the brain of chickens inoculated with vv+MDV, but only inflammatory lesions were observed in those inoculated with vMDV. Inflammatory lesions, mainly composed of macrophages, CD4+ T cells, and CD8+ T cells, started at 6-10 days postinoculation (dpi) and were transient. Proliferative lesions, characterized by severe infiltrates of CD4+CD8- T cells (blasts), started at 19-26 dpi and persisted. Expression of MHC antigens in endothelial cells and infiltrating cells within the brain was influenced by MDV infection. Upregulation of MHC class II antigen occurred in all treatment groups, although it was more severe in those inoculated with vv+MDV. MHC class I antigen was downregulated only in those groups inoculated with vv+MDV. These results enhance our understanding of the nature and pattern of MDV infection in the brain and help to explain the neurovirulence associated with highly virulent MDV.  相似文献   

13.
Both Marek's disease virus (MDV) and chicken infectious anemia virus (CIAV) infections are prevalent in chickens throughout the world. In the past decade, MDV strains with increased virulence (very virulent plus MDV pathotype [vv+MDV]) have been isolated. The purpose of this experiment was to determine the effects of coinfection of chickens with CIAV and a vv+MDV isolate. Specific-pathogen-free chickens were inoculated at 1 day posthatch with RB1B (very virulent MDV pathotype [vvMDV]) only, 584A (vv+MDV) only, CIAV only, RB1B + CIAV, 584A + CIAV, or nothing. Samples of spleen, thymus, and bursa of Fabricius were collected at 4, 7, 10, and 13 days postinoculation (DPI). Thymic and bursal atrophy at 13 DPI and final mortality at 30 DPI were significantly greater in chickens inoculated with 584A with or without added CIAV, or with RB1B plus CIAV, compared with birds inoculated with RB1B alone. Both amounts of virus reisolated and levels of virus detected by quantitative-competitive polymerase chain reaction were greater at 4 DPI in 584A inoculates compared with RB1B inoculates. To monitor the early cytolytic infection, northern analysis was done with a probe for the MDV immediate early gene ICP4 (infected cell protein 4). In the absence of CIAV, ICP4 expression was more apparent in chickens inoculated with 584A than in those inoculated with RB1B. CIAV coinfection increased ICP4 expression in the spleens of chickens infected with RB1B. These results indicated that inoculation of chickens with the 584A isolate caused a more robust early cytolytic infection compared with inoculation with RB1B alone and support the classification of 584A as a vv+MDV strain. Coinfection with CIAV exacerbated vvMDV strain RB1B infection. The extent of this exacerbation was less evident when birds were coinfected with 584A and CIAV.  相似文献   

14.
Marek's disease virus (MDV) is ubiquitous within commercial poultry flocks because current vaccines do not prevent MDV infection or transmission. In order for newly-evolved MDV strains to become established within a flock, it seems inevitable that any new strain would need to infect and replicate in chickens previously infected with resident MDV strains. This phenomenon is difficult to detect and there is no clear evidence that it is even possible. Four experiments were performed to demonstrate superinfection and evaluate the effect of time between challenges on the effect of superinfection with the use of two pairs of fully virulent MDV strains that could be discriminated by novel technology: 1) JM/102W and rMd5//38CVI, and 2) rMd5 and rMd5//38CVI. Feather follicle epithelium (FFE), spleen, and tumor samples were collected at single or multiple time points from the same bird to determine the frequency and distribution of each virus present following superinfection, with the use of pyrosequencing and immunohistochemistry. Superinfection was observed in 82 of 149 (55%) FFE samples following short-interval challenge (24 hr) compared to only 6 of 121 (5%) samples following long-interval challenge (13 days), indicating a strong influence of challenge interval. In cases where the first inoculated virus was weak or delayed, the second inoculated virus was detected in 42 of 95 (44%) birds. In tumors from dually challenged birds, the second virus was again present much more often following short-interval challenge (68%) compared to long-interval challenge (11%). Virus mixtures in tumors were less common compared to those in FFE samples. Vaccination with turkey herpesvirus had no significant effect on the virus frequency for either virus pair or challenge time interval, suggesting these conclusions may be applicable to vaccinated chickens in the field. These studies demonstrated superinfection for the first time with two fully virulent MDV strains and suggest that short-interval challenge exposure and/or weak initial exposures may be important factors leading to superinfection--a prerequisite for the establishment of a second virus strain in the population. This model system should be useful to elucidate this important phenomenon further.  相似文献   

15.
Comparative 50% protective dose (PD50) assays were performed using a plaque-purified preparation of Marek's disease virus (MDV) strain CVI-988 at the 65th chicken embryo fibroblast (CEF) passage level (MDV CVI-988 CEF65 clone C) and three commercial MD vaccines: herpesvirus of turkeys (HVT) FC126, MDV CVI-988 CEF35, and a bivalent vaccine composed of HVT FC126 and MDV SB-1. In addition, comparative PD50 assays were performed in groups of chickens with maternal antibody to each of the three vaccines. Three representatives of the newly emerged biovariant very virulent (vv) MDV strains-RB/1B, Tun, and Md5-were employed as challenge virus. The experiments made feasible the differentiation between virulent MDV and vvMDV strains, within serotype 1. Vaccination with CVI-988 clone C vaccine resulted in PD50 estimates of about 5 plaque-forming units (PFUs) against challenge infection with each of the three vvMDV strains. The PD50 estimate of CVI-988 clone C vaccine was 12-fold below the PD50 of HVT FC126. The protective synergism of bivalent vaccine, composed of HVT and SB-1, was confirmed by groups given the lowest vaccine doses. The bivalent vaccine, however, resulted in incomplete protection in groups given the highest vaccine doses. Homologous maternal antibodies to serotype 1 caused a fivefold increase in the PD50 estimate of CVI-988 clone C. Heterologous maternal antibodies against HVT did not interfere with efficacy of CVI-988 clone C vaccination. However, the combination of maternal antibodies against both HVT and SB-1 (serotypes 2 and 3) showed a strong adverse effect on CVI-988 clone C vaccine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We previously reported that deletion of the Meq gene from the oncogenic rMd5 virus rendered it apathogenic for chickens. Here we examined multiple factors affecting Marek's disease vaccine efficacy of this nonpathogenic recombinant Meq null rMd5 virus (rMd5deltaMeq). These factors included host genetics (MHC haplotype), strain or dose of challenge virus, vaccine challenge intervals, and maternal antibody status of the vaccinated chicks. Studies on host genetics were carried out in five chicken lines comprising four different MHC B-haplotypes. Results showed that chicken lines tested were highly protected, with protective indexes of 100% (B*2/*15), 94% (B*2/*2), 87% (B*19/*19), and 83% (B*21/*21). At a challenge dose above 8000 plaque-forming units, differences in protection were observed between the two highly virulent strains examined (648A and 686). The interval between vaccination and challenge indicated a protective efficacy from 0 to 2 days varied greatly (12%-82%) after challenge with vv+686, the most virulent virus. Less variation and significant protection began at 3 days post vaccination and reached a maximum at 5 days post vaccination with about 80%-100% protection. Taken together, our results indicate that the factors examined in this study are important for vaccine efficacy and need to be considered in comparative evaluations of vaccines.  相似文献   

17.
18.
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.  相似文献   

19.
Hunt HD  Dunn JR 《Avian diseases》2011,55(2):293-301
The mechanism of Marek's disease (MD) vaccination to prevent the lymphoproliferative disease in chickens is not well understood. It is generally recognized that vaccination prevents disease, including the induction of T-cell tumors, but it does not prevent the pathogenic virus from infecting and replicating in the vaccinated host, nor does it prevent bird to bird spread of the oncogenic virus. The stage at which the vaccinated immune system intervenes in the process from infection to the induction of tumors remains obscure. Using a transplantable tumor induced by the Md5 strain of MD virus (MDV), we show that CVI988 vaccination does not prevent the induction of transplantable tumors in the 15I(5) x 7(1) chicken line. A monoclonal tumor with a V beta 1 T-cell receptor spectratype of 207 base pairs was used to follow the transplantable tumor in serial passages in vivo. This transplantable tumor could be passed in vaccinated birds. The length of time between vaccination and challenge (5 to 12 days) had little or no influence on the ability to transfer the tumor. There was variability in the manifestation of the disease produced by the transplanted tumor. Some chickens presented as normal but were still capable of transmitting the transplanted tumor to newly vaccinated recipients via their blood. This indicates that some chickens can control, but not eliminate, the tumor. The variables inducing health or disease in the challenged chickens remain obscure, but environmental or other factors likely depress the immune system allowing the tumor to overwhelm the immune system.  相似文献   

20.
Clinical outbreaks of severe acute infectious burial disease (IBD) were recorded since the mid- and late 1990s in several countries in the southeastern part of Europe. Epidemiologic data showed that both infectious bursal disease virus (IBDV)-vaccinated and IBDV-nonvaccinated chickens were affected with acute IBD and mortality up to 50% independent of the IBDV vaccination status of the appropriate parent flocks. For investigation of the causative agent of acute IBD, the variable region of VP2 was amplified, cloned, and sequenced. Nucleotide sequence analysis of polymerase chain reaction fragments showed several silent nucleotide exchanges in comparison with the sequence of the very virulent (vv) IBDV strain UK661. Also, restriction enzyme cleavage sites proposed specific for vvIBDV were present in all investigated strains. On the basis of clinical signs in affected flocks, recorded epidemiologic data, and sequence analysis, it is very likely the IBD-causing strains were of the vv phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号