首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A silage corn crop was grown on field plots entering their 2nd-year cycle of zero tillage, and on control plots representing traditional tillage practices. Concurrent measurements of soil matric suction and water content were made under transient conditions of a draining profile without evaporation. The results indicated some similarity in the soil moisture characteristics of the untilled soils which produced high crop yields. The time rate of change of soil water content, the root extraction rate and the unsaturated hydraulic conductivity were always smaller in the zero-tilled plots than in the conventionally tilled plots.  相似文献   

2.
Effect of different tillage systems on the mechanical compressibility of arable soils The influence of different tillage systems (Zero-tillage, minimum tillage with rotary tiller and conventional tillage with moldboard plow) on the mechanical compressibility of two soils, a Regosol from loess-colluvium, and a Vertisol from mesocoic clay has been investigated as well as the causes and consequences for penetration resistance and air permeability. In addition the bulk density and the pore size distribution of aggregates have been investigated with regard to a possible explanation for the often described difference in stability in untilled or minimum tilled soils when compared to tilled ones. The results clearly demonstrate the higher mechanical stability of the untilled or minimum tilled soils as compared to tilled soils, which may result in better growing condition for plants. The higher stability is the result of a more vertical oriented pore geometry and stress distribution and can be explained by measured differences in the bulk density and pore size distribution within the aggregates too.  相似文献   

3.
陈曦  王改玲  刘焕焕  殷海善  樊文华 《土壤》2021,53(2):375-382
为探究不同撂荒年限土壤结构及有机碳分布特征,试验选取黄土高原吕梁山自然撂荒1、2、3、5、10、15、20 a枣园土壤为研究对象,以清耕作业下的枣园土壤为对照(CK),利用干筛和湿筛法测定并分析各样地0~20 cm土层中土壤团聚体稳定性、团聚体有机碳与土壤总有机碳含量及其相关性。结果表明:撂荒初期,土壤团聚体含量呈波动变化趋势,撂荒3 a后土壤水稳性大团聚体含量(0.25 mm团聚体含量,R_(0.25))及团聚体平均重量直径(MWD)、几何平均直径(GMD)随撂荒年限的增加逐步提高。20 a撂荒地土壤水稳性大团聚体含量占团聚体总量的69.6%,较CK提高了55.2个百分点。土壤总有机碳、团聚体有机碳含量随撂荒年限的延长均呈先降低后增加的趋势,撂荒20 a土壤总有机碳含量达最大值7.88 g/kg;团聚体有机碳含量随团聚体粒径的减小呈先增加后降低的特点,主要集中于1~0.25 mm团聚体内。不同撂荒年限土壤中机械稳定性大团聚体有机碳对土壤总有机碳的贡献率为54.3%~82.2%,较CK(29.3%)提高25.0~52.9个百分点;水稳性大团聚体有机碳对土壤总有机碳的贡献率为17.7%~71.8%,除撂荒1 a和3 a土壤外,其他样地均高于CK (21.1%)。水稳性团聚体MWD、R_(0.25)与土壤总有机碳含量极显著相关(P0.01);水稳性团聚体GMD与土壤总有机碳含量显著相关(P0.05);水稳性团聚体R_(0.25)与2~1、1~0.25和0.25 mm水稳性团聚体有机碳含量极显著相关(P0.01),与5~2 mm团聚体有机碳含量显著相关(P0.05)。可见,撂荒恢复促进了土壤有机碳及水稳性团聚体有机碳含量的提高,从而提高了团聚体的稳定性。  相似文献   

4.
Micro and macroporosity, pore shape and size distribution, aggregate stability, saturated hydraulic conductivity and crop yield were analysed in alluvial silty loam (Fluventic Eutrochrept) and clay soils (Vertic Eutrochrept) following long-term minimum and conventional tillage. The soil structure attributes were evaluated by characterizing porosity by means of image analysis of soil thin sections prepared from undisturbed soil samples.

The interaggregate microporosity, measured by mercury intrusion porosimetry, increased in the minimally tilled soils, with a particular increase in the storage pores (0.5–50 μm). The amount of elongated transmission pores (50–500 μm) also increased in the minimally tilled soils. The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the greater hydraulic conductivity of the minimally tilled soils. The aggregate stability was less in the conventionally tilled soils and this resulted in a greater tendency to form surface crusts and compacted structure, compared with the minimally tilled soils. The latter tillage practice seemed to maintain, in the long-term, better soil structure conditions and, therefore, maintain favourable conditions for plant growth. In the silt loam, the crop yield did not differ significantly between the two tillage systems, while in the clay soil it decreased in the minimum tilled soil because of problems of seed bed preparation at the higher surface layer water content.  相似文献   


5.
不同林龄杉木人工林土壤团聚体及其有机碳变化特征   总被引:6,自引:2,他引:4  
土壤团聚体作为土壤结构性状的重要指标,对土壤孔隙、持水、保水等状况都有重要影响;土壤团聚体有机碳除了反映土壤固碳状况外,还与团聚体的稳定性能密切相关,研究森林土壤团聚体及其有机碳状况,旨在为合理利用土壤、提高人工林水源涵养功能提供依据。为此,以福建省洋口国有林场不同林龄杉木人工林(幼龄林、中龄林、成熟林)土壤为研究对象,通过野外调查、采样和室内分析,研究不同林龄杉木人工林土壤团聚体及其有机碳变化特征。结果表明:不同林龄杉木人工林对土壤团聚体及其有机碳具有重要影响,成熟林土壤大团聚体含量、团聚体平均重量直径(MWD)、团聚体有机碳含量及贡献率均分别大于幼龄林、中龄林;不同林龄的土壤水稳性团聚体均以大团聚体(粒径0.25 mm)为主,占59.57%~80.97%,粒径0.053 mm的仅占0.80%;土壤团聚体有机碳贡献率也以大团聚为主,其中以2~0.25 mm粒级贡献率最高,达58.43%;另外,土壤有机碳含量与团聚体MWD呈显著正相关,且具有明显的垂直变化特征,即随土层加深而下降。因此,土壤有机碳对团聚体稳定性具有积极作用,不同林龄土壤团聚体稳定性及有机碳变化规律为成熟林幼龄林中龄林。  相似文献   

6.
The association of organic carbon with secondary particles (aggregates) results in its storage and retention in soil. A study was carried out at a catchment covering about 92 km2 to predict spatial variability of soil water-stable aggregates (WSA), mean weight diameter (MWD) of aggregates and organic carbon (OC) content in macro- (> 2 mm), meso- (1-2 mm), and micro-aggregate (< 1 mm) fractions, using geostatistical methods. One hundred and eleven soil samples were collected at the 0-10 cm depth and fractionated into macro-, meso-, and micro-aggregates by wet sieving. The OC content was determined for each fraction. A greater percentage of water-stable aggregates was found for micro-aggregates, followed by meso-aggregates. Aggregate OC content was greatest in meso-aggregates (9 g kg?1), followed by micro-aggregates (7 g kg?1), while the least OC content was found in macro-aggregates (3 g kg?1). Although a significant e?ect (P = 0.000) of aggregate size on aggregate OC content was found, however, our findings did not support the model of aggregate hierarchy. Land use had a significant e?ect (P = 0.073) on aggregate OC content. The coe?cients of variation (CVs) for OC contents associated with each aggregate fraction indicated macro-aggregates as the most variable (CV = 71%). Among the aggregate fractions, the micro-aggregate fraction had a lower CV value of 27%. The mean content of WSA ranged from 15% for macro-aggregates to 84% for micro-aggregates. Geostatistical analysis showed that the measured soil variables exhibited di?erences in their spatial patterns in both magnitude and space at each aggregate size fraction. The relative nugget variance for most aggregate-associated properties was lower than 45%. The range value for the variogram of water-stable aggregates was almost similar (about 3 km) for the three studied aggregate size classes. The range value for the variogram of aggregate-associated OC contents ranged from about 3 km for macro-aggregates to about 6.5 km for meso-aggregates. Kriged maps of predicted WSA, OC and MWD for the three studied aggregate size fractions showed clear spatial patterns. However, a close spatial similarity (co-regionalization) was observed between WSA and MWD.  相似文献   

7.
不同肥力红壤水稻土根际团聚体组成和碳氮分布动态   总被引:7,自引:0,他引:7  
江春玉  刘萍  刘明  吴萌  李忠佩 《土壤学报》2017,54(1):138-149
研究水稻种植期间表层土壤团聚体数量及其有机碳、全氮含量的变化,对揭示人为耕作的影响、认知土壤肥力的演变规律具有重要意义。选择两种不同肥力的红壤性水稻土进行田间根袋试验,分别于水稻插秧前、分蘖期、孕穗期和成熟期采样,分析了水稻生长过程中根际和非根际土壤团聚体组成、稳定性以及有机碳、全氮分布的动态变化。结果表明,低肥力土壤团聚体以0.25 mm大团聚体为主(56.2%~64.0%),0.25~1 mm粒级团聚体含量最高;除1~2 mm粒级外,水稻生育期内根际土壤各粒级团聚体含量均有显著变化;取样时期、根际作用与取样时期的交互效应对0.25~1 mm和0.053~0.25 mm粒级含量有显著影响。高肥力土壤中以0.25 mm微团聚体为主(59.8%~72.0%),0.053~0.25 mm粒级团聚体比例最高,取样时期显著影响0.25 mm大团聚体含量,根际作用与取样时期的交互效应对2 mm粒级含量有极显著影响。与非根际相比,根际土壤大团聚体的破坏率较低,平均重量直径(MWD)较高,种植水稻有助于提高根际土壤的稳定性。两种肥力土壤团聚体中有机碳和全氮含量均表现为1~2 mm粒级最高,0.053~0.25 mm粒级最低,大团聚体中显著高于微团聚体。根际土壤中,水稻成熟期各粒级团聚体有机碳含量与插秧前无显著差异,而分蘖期和孕穗期有明显波动;水稻的生长降低了大团聚体中的全氮含量,对高肥力土壤的影响更为显著。总体而言,低肥力土壤中,根际作用主要影响团聚体组成和稳定性,取样时期影响团聚体碳氮含量;高肥力土壤中,团聚体组成和碳氮分布受根际作用和取样时期的共同影响。  相似文献   

8.
长期施肥对红壤性水稻土团聚体稳定性及固碳特征的影响   总被引:23,自引:2,他引:21  
施用有机肥是提高土壤有机碳(SOC)含量、促进土壤团聚体形成和改善土壤结构的重要措施。本研究旨在探讨长期作物残留和投入有机物料对水稻土团聚体分布及稳定性的影响,分析不同粒级团聚体的固碳特征及其与团聚体形成的相关性,以及土壤和不同粒级团聚体对累积碳投入的响应。长期定位施肥试验始于1986年,设不施肥(CK)、单施化肥(CF)、秸秆化肥混施(RS)、低量粪肥配施化肥(M1)和高量粪肥配施化肥(M2)5个处理。2009年采集0~10 cm土壤样品,测定总土以及大团聚体(LM,2 mm)、较大团聚体(SM,0.25~2 mm)、微团聚体(MA,0.25~0.053 mm)和黏粉粒(SC,0.053 mm)的质量比例及其SOC浓度,并分析闭蓄于SM内部的颗粒有机物(POM)、微团聚体(MA-SM)和黏粉粒(SC-SM)的质量含量和SOC浓度。结果表明,与CK和CF比较,有机肥混施化肥处理(RS、M1和M2)均显著提高了LM和SM的质量比例和平均当量直径(MWD),降低了SC质量含量;两个粪肥配施化肥处理(M1和M2)的效果优于秸秆化肥混施(RS),但是M1和M2间差异不显著;单施化肥则降低了稳定性团聚体的比例。团聚体的SOC浓度没有随粒级增大而增加,各处理均为LM和SM结合的SOC浓度最高,其次为SC,最小为MA。与CK比较,有机肥混施化肥处理均显著提高了各粒级团聚体的SOC浓度。总土SOC的增加主要取决于SM的SOC含量,而MA-SM组分决定了SM固持SOC的能力。总土、LM和SM的SOC含量以及从SM分离出的POM、MA-SM和SC-SM的SOC含量均与累积碳投入量呈显著正相关,但总土分离出的MA和SC的SOC含量对累积碳投入量反应不敏感,表现出碳饱和迹象。因此,尽管长期大量施用有机物料促进了红壤性水稻土大团聚体的形成和团聚体稳定性,增加了其SOC的固持,但有机质可能不是该土壤水稳性团聚体形成的最主要黏结剂。  相似文献   

9.
Soil aggregate stability is an important measure for assessing soil structural quality. Here we compare stable and unstable soil aggregates from organically and conventionally managed soils that have similar organic matter contents to determine the role of management in aggregate stability. Aggregate stability was determined by slaking, which proved to be an accurate estimator of the rate of aggregate turnover. The results indicate that, in soil aggregates released by slaking, the organic matter is held in aggregates > 0.3 mm diameter. A relatively short aggregate turnover rate will prohibit the production of stable micro-aggregates within macro-aggregates and thus gradually reduce aggregate stability, as was observed in soils under conventional management. Data obtained by X-ray μCT suggested that intra-aggregate porosity did not significantly affect stability. We observed cracks and elongated pores connected to the surface of stable soil aggregates that can provide an escape route for entrapped air, thus reducing pressure build-up and potentially reducing slaking. Our results show that organic management has the potential to develop more stable aggregates compared with conventionally managed soils for the soil type studied. Thus, conventional soils require particular attention to management practices that increase the rate of aggregate turnover in order to reduce the production of unstable aggregates that can contribute to crusting, erosion and runoff.  相似文献   

10.
Soil water evaporation, redistribution of surface applied salts and unsaturated hydraulic conductivity were determined in field plots of a silt loam soil kept either untilled or tilled to a depth of 5 cm 2–3 days following irrigation. The hydraulic gradients measured were comparatively steeper and the zone of zero flux during drying occurred at greater depths in untilled than tilled soil. Tillage induced soil mulch reduced evaporation losses; its effectiveness, however, decreased during high external evaporative demand conditions. Some empirical relations to determine evaporation utilizing more easily accesible parameters, such as surface soil water content or suction and U.S. open-pan evaporation, were established for predictive purposes. Due to reduction in upward movement of water, shallow tillage resulted in decrease in upward movement of salts and thus, increased the efficiency of leaching during intermittent ponding. The empirical relationship describing the leaching process showed a net saving of 12.7% in water required to attain 70% removal of surface accumulated salts. Increase in unsaturated hydraulic conductivity of soil due to salinization was also observed.  相似文献   

11.
耕作方式对土壤水动态变化及夏玉米产量的影响   总被引:32,自引:2,他引:30  
一个连续2年的田间耕作试验在夏玉米生长期内完成,分析对比3种不同耕作方式对土壤水动态变化过程及对作物产量的影响。耕作扰动对土壤水动态变化的影响是明显的,夏玉米生长初期免耕下的表层土壤持有较高的水分,这归因于土壤非耕扰动、冬小麦残茬覆盖以及耕层土壤孔隙尺度分布的变化;另一方面,深松土壤受到耕作活动的强烈干扰,苗期耕层土壤蓄水明显小于传统耕作。耕作方式对土壤水差异的影响伴随着作物的生长发育过程显著减弱。深松耕作对作物根系生长发育状况及作物增产效果的作用是十分显见的。  相似文献   

12.
《Applied soil ecology》2011,47(3):390-397
Aggregation is important for soil functioning, providing physical protection of organic matter and microbial inhabitants. Tillage disrupts aggregates, increases wind and water erosion of soils and exposes formerly protected organic matter to decomposition and losses. Microbial biomass and community dynamics in dry-sieved aggregate-size classes from long-term no-till (NT) and conventionally tilled (CT) soils were examined using phospholipid fatty acid analysis (PLFA). Bacterial, fungal, and total biomass were up to 32% greater in NT compared to CT aggregates. Aggregate size also affected microbial biomass, which was highest in the 1–2 mm size class. Arbuscular mycorrhizal fungi (AMF) were particularly affected by tillage disturbance with increases of 40–60% among aggregate-size classes in NT vs. CT, but glomalin related soil protein concentration was not different between tillage treatments or among aggregate-size classes. Bacterial stress biomarkers were higher in CT than NT aggregates but were not significantly correlated with total C, total N or C:N ratio, indicating that the physiological status of bacteria within aggregates was not simply governed by the quantity of available resources. Ordination analysis of PLFA profiles demonstrated a shift in microbial community structure between NT and CT aggregates, correlated with AMF abundance in NT aggregates and increased bacterial stress biomarkers in CT aggregates. Our results demonstrated greater microbial biomass and altered microbial community structure in NT vs. CT aggregates. This work demonstrates that tillage management influences microbial community structure within aggregates and may provide a potential explanation for differences in process rates observed in NT vs. CT soils. Further research into the processes that govern community structure in aggregates from NT and tilled soils is needed to better understand how the interaction of microorganisms with their physical environment affects nutrient turnover and availability.  相似文献   

13.
Electrical resistivity tomography (ERT) is a promising non‐destructive tool to characterize agricultural soils where management effects are superimposed on natural variability. The aim of our study was to test whether ERT was capable of detecting stones and tillage effects in a soil with a variable rock fragment content. Field experiments were conducted by performing a set of three two‐dimensional (2D) resistivity tomographies across two management systems (tillage/no tillage) replicated twice on each transect, using dipole‐dipole configuration and 0.25‐m inter‐electrode spacing. Soil texture, bulk density and water content were measured destructively. Greater average electrical resistivity (ER) was found in tilled plots, with maximum values of up to 1700 Ohm m. However, when the spatial correlation structure was considered in a mixed‐effects model, no significant difference in ER was found between tilled and untilled plots. Empirical semivariograms showed less spatial continuity and more noise in tilled plots. Resistivity was strongly correlated with rock fragment content (r = 0.68), with greater average values in ploughed plots, which may possibly be linked to kinetic sieving after ploughing. ERT was able to identify the position of gravel lenses and was also sensitive to the presence of clay (r = ?0.45): a linear trend in resistivity across the field (r = 0.80) was consistent with a decreasing clay content (r = ?0.68). Resistivity was correlated with rock fragments, clay and an interaction variable (water × rock fragments). There was a poor fit for the tilled plot where resistivity peaks could be linked to the presence of voids, but their detection would have required a resolution greater than that which we adopted.  相似文献   

14.
No-tillage is generally assumed to increase infiltration and reduce runoff, but runoff from a claypan soil in Central Missouri, however, was greater from no-tillage plots than from moldboard plowed plots. The effect of simulated rainfall on infiltration and random roughness of tilled and untilled soil was measured. Four different tillage systems, each with and without surface cover were studied. An exponential decay function describes the change in random roughness for tilled soil exposed to rainfall kinetic energy. Although the differences were not statistically significant, among the uncovered tilled plots those with the highest random roughness had the highest infiltration. The bare no-tillage treatment had the lowest infiltration. Plots protected with shredded foam rubber infiltrated 88–248% more rainfall than similar bare plots.  相似文献   

15.
Low and extremely variable precipitations limit dryland crop production in the semi-arid areas of Aragón (NE Spain). These areas are also affected by high annual rates of topsoil losses by both wind and water erosion. A long-term experiment to determine the feasibility of conservation tillage in the main winter barley production areas of Aragón was initiated in 1989 at four locations, three on loam to silt loam soils (Xerollic Calciorthid) and one on a silty clay loam (Fluventic Ustochrept), receiving between 300 and 600 mm of average annual rainfall. In this study, we compared, under both continuous cropping and cereal-fallow rotation, the effects of conventional tillage (mouldboard plough) and two conservation tillage systems, reduced tillage (chisel plough) and no-tillage, on soil water content and penetration resistance during the first two growing seasons. Whereas reduced and conventionally tilled treatments generally had similar soil water content during the experimental period, the effects of no-tillage were inconsistent. No-tilled plots had from 26% less to 17% more stored soil water (0–80 cm) than conventional tilled plots at the beginning of the growing season. In contrast to the conventional and reduced tillage treatments, penetration resistances were between 2 and 4 MPa after sowing in most of the plough layer (0–40 cm) under no-tillage at all sites. Fallow efficiencies in moisture storage in the cereal-fallow rotation, when compared with the continuous cropping system, ranged from −8.7 to 12%. The highest efficiencies were recorded when the rainfall in the months close to primary tillage exceeded 100 mm. Since this event is very unlikely, long fallowing (9–10 months) appears to be an inefficient practice for water conservation under both conventional and conservation management. Our results suggest that, up to now, only reduced tillage could replace conventional tillage without adverse effects on soil water content and penetration resistance in the dryland cereal-growing areas of Aragón.  相似文献   

16.
The adoption of conservation agriculture (CA), based on minimal soil movement, permanent soil cover with crop residues or growing plants and crop rotation has advanced rapidly in the Americas and Australia over the last three decades. One of the immediate benefits of CA in dryland agriculture is improved rainfall-use efficiency through increased water infiltration and decreased evaporation from the soil surface, with associated decreases in runoff and soil erosion. This paper focuses on the effect of CA techniques on soil moisture relations in two researcher-managed trials in Zambia and Zimbabwe. In 2005/2006 and 2006/2007, we found significantly higher water infiltration on both sites on CA fields compared to conventionally ploughed fields. At Henderson Research Station, Zimbabwe, on a sandy soil, a direct seeded CA treatments had a 49% and 45% greater infiltration rate than the conventionally tilled plots after a simulated rainfall in both seasons. At Monze Farmer Training Centre, Zambia, on a finer-textured soil, the same treatment had 57% and 87% greater infiltration rate than the conventionally tilled control treatment in both seasons. Treatments that included reduced tillage and surface residue retention had less water runoff and erosion on runoff plots at Henderson Research Station, Zimbabwe. On average, soil moisture was higher throughout the season in most CA treatments than in the conventionally tilled plots. However, the full potential of CA in mitigating drought was not evident as there was no significant drought period in either season. Results suggest that CA has the potential to increase the productivity of rainfall water and therefore reduce the risk of crop failure, as was apparent at the Monze Farmer Training Centre, Zambia, in 2005/2006 when a period of moisture stress at tassling affected CA treatments less than the conventionally tilled treatment.  相似文献   

17.
Penetration resistance, bulk density, soil water content and root growth of oats were intensively studied in a tilled and an untilled grey brown podzolic loess soil. Bulk density and penetration resistance were higher in the top layer of the untilled soil compared with the tilled soil. In the latter, however, a traffic pan existed in the 25–30 cm soil layer which had higher bulk density and penetration resistance than any layer of the untilled soil. Above the traffic pan, rooting density (cm root length per cm3 of soil) was higher but below the pan it was lower than at the same depth in the untilled soil. Root growth was linearly related to penetration resistance. The limiting penetration resistance for root growth was 3.6 MPa in the tilled Ap-horizon but 4.6-5.1 MPa in the untilled Ap-horizon and in the subsoil of both tillage treatments. This difference in the soil strength-root growth relationship is explained by the build up of a continuous pore system in untilled soil, created by earthworms and the roots from preceding crops. These biopores, which occupy < 1% of the soil volume, can be utilized by roots of subsequent crops as passages of comparatively low soil strength. The channeling of bulk soil may counteract the possible root restricting effect of an increased soil strength which is frequently observed in the zero tillage system.  相似文献   

18.
Soil structure and the effect of management practices   总被引:7,自引:0,他引:7  
To evaluate the impact of management practices on the soil environment, it is necessary to quantify the modifications to the soil structure. Soil structure conditions were evaluated by characterizing porosity using a combination of mercury intrusion porosimetry, image analysis and micromorphological observations. Saturated hydraulic conductivity and aggregate stability were also analysed.

In soils tilled by alternative tillage systems, like ripper subsoiling, the macroporosity was generally higher and homogeneously distributed through the profile while the conventional tillage systems, like the mouldboard ploughing, showed a significant reduction of porosity both in the surface layer (0–100 mm) and at the lower cultivation depth (400–500 mm). The higher macroporosity in soils under alternative tillage systems was due to a larger number of elongated transmission pores. Also, the microporosity within the aggregates, measured by mercury intrusion porosimetry, increased in the soil tilled by ripper subsoiling and disc harrow (minimum tillage). The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the higher hydraulic conductivity in the soil tilled by ripper subsoiling. Aggregates were less stable in ploughed soils and this resulted in a more pronounced tendency to form surface crust compared with soils under minimum tillage and ripper subsoiling.

The application of compost and manure improved the soil porosity and the soil aggregation. A better aggregation indicated that the addition of organic materials plays an important role in preventing soil crust formation.

These results confirm that it is possible to adopt alternative tillage systems to prevent soil physical degradation and that the application of organic materials is essential to improve the soil structure quality.  相似文献   


19.
Different methods of tillage are investigated in a field trial in Austria. In those variants where soils are treated with a cultivator respectively a plough in autumn the contents of mineral N (Nmin) in 0-90cm soil depth increased significantly. Therefore the danger of N-leaching or N-losses in autumn or winter is higher in intensively tilled soils (without plant cover) than in soils with minimum tillage (treatment only with rotary driller without any primary treatment before seeding). In this variant Nmin-contents are lower even at the beginning of vegetation due to the plant cover and reduced tillage. At this time the potential of N mineralisation is higher in the minimum tilled plots compared to the more intensively tilled soils due to the accumulation of organic matter. However, despite enhanced potential N availability the N contents of the crops did not increase. The yields don't differ in the investigated tillage systems and N balances are the highest under minimum tillage, therefore a higher N fertilisation in this variant cannot be recommended. An adaptation of N fertilisation according to the lower mineral N contents in spring should be investigated.  相似文献   

20.
《CATENA》2001,45(3):185-207
In northern Ecuador, soils of high altitude grasslands (páramos) are mainly non-allophanic Andisols developed on Holocenic volcanic ash. These soils have a high water retention capacity and are the “water tank” of central Ecuador. To assess the effect of land use (burning and tillage) on soil hydrodynamic properties, rainfall simulation was conducted at two different sites. At Pichincha near Quito, the simulation was conducted on a recent volcanic ash soil comparing natural, tilled and burned plots. At El Angel, the simulation was conducted on a mature non-allophanic Andisol comparing natural, recently tilled and formerly cultivated plots.On natural plots, the infiltration rate was very high and sediment loss very low. Results for infiltration rate and runoff indicated that land use change on páramos increased runoff flow and reduced saturated hydraulic conductivity. Superficial reorganisation of the soil surfaces occurred on tilled plots at both sites. This crusting process was fast and resulted in surfaces with very low conductivity at Pichincha. The same processes seemed to be slower at El Angel. The soil surface of recent Andisols at Pichincha was prone to crusting whereas the mature Andisol, at El Angel, with a lower bulk density, was compacted when the kinetic energy of raindrops was high. Water repellency occurred after burning at Pichincha and following long natural air drying after tillage in the non-allophanic A horizon at El Angel. Water repellency combined with the low bulk density of soil aggregates explain the intensity of sediment losses in the abandoned soils after cultivation (Bare fallow plots). Erosion occurred in these areas through floating hydrophobic and stable aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号