首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative trait loci analyses were applied to data from Suffolk and Texel commercial sheep flocks in the United Kingdom. The populations comprised 489 Suffolk animals in three half-sib families and 903 Texel animals in nine half-sib families. Phenotypic data comprised measurements of live weight at 8 and 20 wk of age and ultrasonically measured fat and muscle depth at 20 wk. Lambs and their sires were genotyped across candidate regions on chromosomes 1, 2, 3, 4, 5, 6, 11, 18, and 20. Data were analyzed at the breed level, at the family level, and across extended families when families were genetically related. The breed-level analyses revealed a suggestive QTL on chromosome 1 in the Suffolk breed, between markers BM8246 and McM130, affecting muscle depth, although the effect was only significant in one of the three Suffolk families. A two-QTL analysis suggested that this effect may be due to two adjacent QTL acting in coupling. In total, 24 suggestive QTL were identified from individual family analyses. The most significant QTL affected fat depth and was segregating in a Texel family on chromosome 2, with an effect of 0.62 mm. The QTL was located around marker ILSTS030, 26 cM distal to myostatin. Two of the Suffolk and two of the Texel sires were related, and a three-generation analysis was applied across these two extended families. Seven suggestive QTL were identified in this analysis, including one that had not been detected in the individual family analysis. The most significant QTL, which affected muscle depth, was located on chromosome 18 near the callipyge and Carwell loci. Based on the phenotypic effect and location of the QTL, the data suggest that a locus similar to the Carwell locus may be segregating in the United Kingdom Texel population.  相似文献   

2.
In a previous study, QTL for carcass composition and meat quality were identified in a commercial finisher cross. The main objective of the current study was to confirm and fine map the QTL on SSC4 and SSC11 by genotyping an increased number of individuals and markers and to analyze the data using a combined linkage and linkage disequilibrium analysis method. A modified version of the method excludes linkage disequilibrium information from the analysis, enabling the comparison of results based on linkage information only or results based on combined linkage and linkage disequilibrium information. Nine additional paternal half-sib families were genotyped for 18 markers, resulting in a total of 1,855 animals genotyped for 15 and 13 markers on SSC4 and SSC11, respectively. The QTL affecting meat color on SSC4 was confirmed, whereas the QTL affecting LM weight could not be confirmed. The combined linkage and linkage disequilibrium analysis resulted in the identification of new significant effects for 14 traits on the 2 chromosomes. Heritabilities of the QTL effects ranged from 1.8 to 13.2%. The analysis contributed to a more accurate positioning of QTL and further characterized their phenotypic effect. However, results showed that even greater marker densities are required to take full advantage of linkage disequilibrium information and to identify haplotypes associated with favorable QTL alleles.  相似文献   

3.
A genome scan to detect QTL influencing growth and carcass-related traits was conducted in a Charolais x Holstein crossbred cattle population. Phenotypic measurements related to growth and carcass traits were made on the 235 second-generation crossbred males of this herd (F2 and reciprocal backcrosses), which were born in 4 consecutive annual cohorts. Traits measured in vivo were related to birth dimensions, growth rates, and ultrasound measurements of fat and muscle depth. The animals were slaughtered near a target BW of 550 kg, and a wide range of postmortem traits were measured: visual assessment of carcass conformation and carcass fatness, estimated subcutaneous fat percentage, weights of kidney knob and channel fat, and weights of carcass components after commercial and full-tissue dissections. The whole population, including grandparents, parents, and the crossbred bulls, was genotyped initially for 139 genome-wide microsatellite markers. Twenty-six additional markers were subsequently analyzed to increase marker density on some of the chromosomes where QTL had been initially identified. The linear regression analyses based on the 165 markers revealed a total of 51 significant QTL at the suggestive level, 21 of which were highly significant (F-value >or=9; based on the genome-wide thresholds obtained in the initial scan). A large proportion of the highly significant associations were found on chromosomes 5 and 6. The most highly significant QTL was localized between markers DIK1054 and DIK082 on chromosome 6 and explained about 20% of the phenotypic variance for the total bone proportion estimated after the commercial dissection. In the adjacent marker interval on this chromosome, 2 other highly significant QTL were found that explain about 30% of the phenotypic variance for birth dimension traits (BW and body length at birth). On chromosome 5, the most significant association influenced the lean:bone ratio at the forerib joint and was flanked by markers DIK4782 and BR2936. Other highly significant associations were detected on chromosomes 10 (estimated subcutaneous fat percentage), 11 (total saleable meat proportion), 16 (prehousing growth rate), and 22 (bone proportion at the leg joint). These results provide a useful starting point for the identification of the genes associated with traits of direct interest to the beef industry, using fine mapping or positional candidate gene approaches.  相似文献   

4.
The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives < 0.05) were observed for birth weight and longissimus area on chromosome 5, for longissimus area on chromosome 6, for retail product yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives < 1) the presence of QTL was detected for several traits. Putative QTL for birth weight were detected on chromosomes 1, 2, and 3, and for weaning weight on chromosome 29. For hot carcass weight, QTL were detected on chromosomes 10, 18, and 29. Four QTL for yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat tenderness measured as Warner-Bratzler shear force at 14 d postmortem on chromosomes 20 and 29. These results present a complete scan in all available progeny in this family. Regions underlying QTL need to be assessed in other populations.  相似文献   

5.
A three-generation resource family was created by crossing two Berkshire grandsires with nine Yorkshire granddams to identify QTL affecting growth, body composition, and meat quality. A total of 512 F2 offspring were evaluated for 11 traits related to growth and body composition and 28 traits related to meat quality. All animals were initially genotyped for 125 markers across the genome. The objectives of this advanced phase of the project were to further identify and characterize QTL after genotyping for another 33 markers in special regions of interest, and to develop and apply methods for detecting QTL with parent-of-origin effects. New marker linkage maps were derived and used in QTL analysis based on line-cross least squares regression-interval mapping. A decision tree for identifying QTL with parent-of-origin effects was developed based on tests against the Mendelian mode of expression. Empirical significance thresholds were derived at chromosomewise and genomewise levels using specialized permutation strategies to create data under the null hypothesis appropriate for each test. Significance thresholds derived by the permutation tests were validated based on simulation of a pedigree and data structure similar to the Berkshire-Yorkshire population. The addition of 33 markers resulted in the discovery of 29 new QTL at the 5% chromosomewise level using the Mendelian model of analysis. Thirteen of the original QTL were no longer significant at the 5% chromosomewise level. A total of 33 QTL with parent-of-origin effects were identified, including QTL with paternal expression for backfat and loin muscle area on chromosome 2, near IGF2, and QTL with maternal expression for drip loss and reflectance on chromosome 9. Tests for imprinting against Mendelian expression identified much fewer QTL with parent-of-origin effects than tests based on significance of paternal and maternal alleles, which have been used in other studies. The detected QTL and their identified mode of expression will allow further research in these QTL regions and their utilization in marker-assisted improvement of meat quality.  相似文献   

6.
Breeding goals in pigs are subject to change and are directed much more toward retail carcass yield and meat quality because of the high economic value of these traits. The objective of this study was to estimate genetic parameters of growth, carcass, and meat quality traits. Carcass components included ham and loin weights as primal cuts, which were further dissected into boneless subprimal cuts. Meat quality traits included pH, drip loss, purge, firmness, and color and marbling of both ham and loin. Phenotypic measurements were collected on a commercial crossbred pig population (n = 1,855). Genetic parameters were estimated using REML procedures applied to a bivariate animal model. Heritability estimates for carcass traits varied from 0.29 to 0.51, with 0.39 and 0.51 for the boneless subprimals of ham and loin, respectively. Heritability estimates for meat quality traits ranged from 0.08 to 0.28, with low estimates for the water holding capacity traits and higher values for the color traits: Minolta b*(0.14), L* (0.15), a* (0.24), and Japanese color scale (0.25). Heritability estimates differed for marbling of ham (0.14) and loin (0.31). Neither backfat nor ADG was correlated with loin depth (r(g) = 0.0), and their mutual genetic correlation was 0.27. Loin primal was moderately correlated with ham primal (r(g) = 0.31) and more strongly correlated with boneless ham (r(g) = 0.58). Backfat was negatively correlated with (sub)primal cut values. Average daily gain was unfavorably correlated with subprimals and with most meat quality characteristics measured. Genetic correlations among the color measurements and water-holding capacity traits were high (average r(g) = 0.70), except for Minolta a* (average r(g) = 0.17). The estimated genetic parameters indicate that meat quality and valuable cut yields can be improved by genetic selection. The estimated genetic parameters make it possible to predict the response to selection on performance, carcass, and meat quality traits and to design an effective breeding strategy fitting pricing systems based on retail carcass and quality characteristics.  相似文献   

7.
The identification of QTL related to production traits that are relevant for the pig industry has been mostly performed by using divergent crosses. The main objective of the current study was to investigate whether these growth, fatness, and meat quality QTL, previously described in diverse experimental populations, were segregating in a Landrace commercial population selected for litter size, backfat thickness, and growth performance. We have found QTL for carcass weight (posterior P > 0.75), cutlet weight (posterior P > 0.99), weight of ham (posterior P > 0.75), shoulders weight (posterior probability > 0.99), and shear firm-ness (posterior P > 0.99) on pig Chromosome 2. Moreover, QTL with posterior P > 0.75 for fat thickness between the 3rd and 4th ribs (Chromosome 7), rib weights (Chromosome 8), backfat thickness (Chromosomes 8, 9, and 10), and b Minolta color component (Chromosome 7) were identified. These results indicate that commercial purebred populations retain a significant amount of genetic variation, even for traits that have been selected for many generations.  相似文献   

8.
A genome-wide scan for QTL affecting economically important traits in beef production was performed using an F(2) resource family from a Japanese Black x Limousin cross, where 186 F(2) animals were measured for growth, carcass, and meat-quality traits. All family members were genotyped for 313 informative microsatellite markers that spanned 2,382 cM of bovine autosomes. The centromeric region of BTA2 contained significant QTL (i.e., exceeding the genome-wide 5% threshold) for 5 carcass grading traits [LM area, beef marbling standards (BMS) number, luster, quality grade, and firmness), 8 computer image analysis (CIA) traits [LM lean area, ratio of fat area (RFA) to LM area, LM area, RFA to musculus (M.) trapezius area, M. trapezius lean area, M. semispinalis lean area, RFA to M. semispinalis area, and RFA to M. semispinalis capitis area], and 5 meat quality traits (contents of CP, crude fat, moisture, C16:1, and C18:2 of LM). A significant QTL for withers height was detected at 80.3 cM on BTA5. We detected significant QTL for the C14:0 content in backfat and C14:0 and C14:1 content in intermuscular fat around the 62.3 to 71.0 cM region on BTA19 and for C14:0, C14:1, C18:1, and C16:0 content and ratio of total unsaturated fatty acid content to total SFA content in intramuscular fat at 2 different regions on BTA19 (41.1 cM for C14:1 and 62.3 cM for the other 4 traits). Overall, we identified 9 significant QTL regions controlling 27 traits with genome-wide significance of 5%; of these, 22 traits exceeded the 1% genome-wide threshold. Some of the QTL affecting meat quality traits detected in this study might be the same QTL as previously reported. The QTL we identified need to be validated in commercial Japanese Black cattle populations.  相似文献   

9.
In an experimental cross between Meishan and Dutch Large White and Landrace lines, 785 F2 animals with carcass information and their parents were typed for molecular markers covering the entire porcine genome. Linkage was studied between these markers and eight meat quality traits. Quantitative trait locus analyses were performed using interval mapping by regression under two genetic models: 1) the line-cross approach, where the founder lines were assumed to be fixed for different QTL alleles and 2) a half-sib model where a unique allele substitution effect was fitted within each of the 38 half-sib families. The line-cross approach included tests for genomic imprinting and sex-specific QTL effects. In total, three genome-wide significant and 26 suggestive QTL were detected. The significant QTL on chromosomes 3, 4, and 13, affecting meat color, were only detected under the half-sib model. Failure of the line-cross approach to detect the meat color QTL suggests that the founder lines have similar allele frequencies for these QTL. This study provides information on new QTL affecting meat quality traits. It also shows the benefit of analyzing experimental data under different genetic and statistical models.  相似文献   

10.
A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits.  相似文献   

11.
This study was conducted to detect quantitative trait loci (QTL) affecting growth and beef carcass fatness traits in an experimental population of Angus and Brahman crossbreds. The three-generation mapping population was generated with 602 progeny from 29 reciprocal backcross and three F2 full-sib families, and 417 genetic markers were used to produce a sex-averaged map of the 29 autosomes spanning 2,642.5 Kosambi cM. Alternative interval-mapping approaches were applied under line-cross (LC) and random infinite alleles (RA) models to detect QTL segregating between and within breeds. A total of 35 QTL (five with genomewide significant and 30 with suggestive evidence for linkage) were found on 19 chromosomes. One QTL affecting yearling weight was found with genomewide significant evidence for linkage in the interstitial region of bovine autosome (BTA) 1, and an additional 19 QTL were detected with suggestive evidence for linkage under the LC model. Many of these QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects the fact that heterosis for growth is known to be appreciable in crosses among Brahman and British breeds. Four QTL affecting growth were detected with genomewide significant evidence for linkage under the RA model on BTA 2 and BTA 6 for birth weight, BTA 5 for yearling weight, and BTA 23 for hot carcass weight. An additional 11 QTL were detected with suggestive evidence for linkage under the RA model. None of the QTL (except for yearling weight on BTA 5) detected under the RA model were found by the LC analyses, suggesting the segregation of alternate alleles within one or both of the parental breeds. Our results reveal the utility of implementing both the LC and RA models to detect dominant QTL and also QTL with similar allele frequency distributions within parental breeds.  相似文献   

12.
Most QTL detection studies in pigs have been carried out in experimental F(2) populations. However, segregation of a QTL must be confirmed within a purebred population for successful implementation of marker-assisted selection. Previously, QTL for meat quality and carcass traits were detected on SSC 7 in a Duroc purebred population. The objectives of the present study were to carry out a whole-genome QTL analysis (except for SSC 7) for meat production, meat quality, and carcass traits and to confirm the presence of segregating QTL in a Duroc purebred population. One thousand and four Duroc pigs were studied from base to seventh generation; the pigs comprised 1 closed population of a complex multigenerational pedigree such that all individuals were related. The pigs were evaluated for 6 growth traits, 7 body size traits, 8 carcass traits, 2 physiological traits, and 11 meat quality traits, and the number of pigs with phenotypes ranged from 421 to 953. A total of 119 markers were genotyped and then used for QTL analysis. We utilized a pedigree-based, multipoint variance components approach to test for linkage between QTL and the phenotypic values using a maximum likelihood method; the logarithm of odds score and QTL genotypic heritability were estimated. A total of 42 QTL with suggestive linkages and 3 QTL with significant linkages for 26 traits were detected. These included selection traits such as daily BW gain, backfat thickness, loin eye muscle area, and intramuscular fat content as well as correlated traits such as body size and meat quality traits. The present study disclosed QTL affecting growth, body size, and carcass, physiological, and meat quality traits in a Duroc purebred population.  相似文献   

13.
Although pork producers typically aim to optimize growth rates, occasionally it is necessary to slow growth, such as when harvest facility capacity is limited. In finishing pigs, numerous dietary strategies can be used to slow growth so pigs are at optimal slaughter body weights when harvest facility capacity and/or access is restored. However, the impact of these diets on pork carcass quality is largely unknown. Thus, this study aimed to evaluate the efficacy of dietary strategies to slow growth in late finishing pigs and evaluate their effects on carcass composition and pork quality. Mixed-sex pigs (n = 897; 125 ± 2 kg BW) were randomly allotted across 48 pens and assigned to 1 of 6 dietary treatments (n = 8 pens/treatment): (1) Control diet representative of a typical finisher diet (CON); (2) diet containing 3% calcium chloride (CaCl2); (3) diet containing 97% corn and no soybean meal (Corn); (4) diet deficient in isoleucine (LowIle); (5) diet containing 15% neutral detergent fiber (NDF) from soybean hulls (15% NDF); and (6) diet containing 20% NDF from soybean hulls (20% NDF). Over 42 d, pen body weights and feed disappearance were collected. Pigs were harvested in 3 groups (14, 28, and 42 d on feed) and carcass data collected. From the harvest group, 1 loin was collected from 120 randomly selected carcasses (20 loins/treatment) to evaluate pork quality traits. Overall, ADG was reduced in CaCl2, Corn, and 20% NDF pigs compared with CON pigs (P < 0.001). However, ADFI was only reduced in CaCl2 and 20% NDF pigs compared with CON (P < 0.001). Feed efficiency was reduced in CaCl2 and Corn pigs compared with CON (P < 0.001). Hot carcass weights were reduced in CaCl2 pigs at all harvest dates (P < 0.001) and were reduced in Corn and 20% NDF pigs at days 28 and 42 compared with CON pigs (P < 0.001). In general, CaCl2 and 20% NDF diets resulted in leaner carcasses, whereas the Corn diet increased backfat by 42 d on test (P < 0.05). Loin pH was reduced and star probe increased in CaCl2 pigs compared with CON pigs (P < 0.05); no treatments differed from CON pigs regarding drip loss, cook loss, color, firmness, or marbling (P ≥ 0.117). Overall, these data indicate that several dietary strategies can slow finishing pig growth without evidence of behavioral vices. However, changes to carcass composition and quality were also observed, indicating quality should be taken into consideration when choosing diets to slow growth.  相似文献   

14.
A directed search for QTL affecting carcass traits was carried out in the region of growth differentiation factor 8 (GDF8, also known as myostatin) on ovine chromosome 2 in seven Texel-sired half-sib families totaling 927 progeny. Weights were recorded at birth, weaning, ultrasound scanning, and slaughter. Ultrasonic measures of LM cross-sectional dimensions and s.c. fat above the LM were made, with the same measurements made on the LM after slaughter. Following slaughter, linear measurements of carcass length and width were made on all carcasses, and legs and loins from 540 lambs were dissected. Genotyping was carried out using eight microsatellite markers from FCB128 to RM356 on OAR 2 and analyzed using Haley-Knott regression. There was no evidence for QTL for growth rates or linear carcass traits. There was some evidence for QTL affecting LM dimensions segregating in some sire families, although it was not consistent between ultrasound and carcass measures of the same traits. There was strong and consistent evidence for a QTL affecting muscle and fat traits in the leg that mapped between markers BM81124 and BULGE20 for the four sires that were heterozygous in this region, but not for the three sires that were homozygous. The size of the effect varied across the four sires, ranging from 0.5 to 0.9 of an adjusted SD for weight-adjusted leg muscle traits, and ranging from 0.6 to 1.2 of an adjusted SD for weight-adjusted leg fat traits. The clearest effect shown was for multivariate analysis combining all leg muscle and fat traits analyzed across sires, where the -log(10) probability was 14. Animals carrying the favorable haplotype had 3.3% more muscle and 9.9% less fat in the leg relative to animals carrying other haplotypes. There was evidence for a second peak in the region of marker TEXAN2 for one sire group. It seems that a QTL affecting muscle and fat traits exists within the New Zealand Texel population, and it maps to the region of GDF8 on OAR2.  相似文献   

15.
A QTL affecting leg muscle and fat traits has been identified within the New Zealand Texel population. The QTL maps to a region on OAR 2 with a two-marker haplotype test established at markers BULGE20 and BM81124. These markers encompass the likely position of Growth Differentiation Factor 8 (GDF8). The pleiotropic effects of this QTL on meat quality traits are tested. Objective measures of meat quality including pH, color (L*, a*, and b*), and tenderness (as assessed by Warner-Bratzler shear force measurements) were assessed on longissimus and semi-membranosus muscles of 540 progeny from six Texel sires. Four of these sires were subsequently identified as segregating for leg muscle and fat traits. For these segregating sires, comparison of progeny that had inherited the favorable haplotype from their sire with those that had received the alternate haplotype revealed no significant differences in the meat quality traits assessed. This finding suggests that the muscling QTL does not have pleiotropic effects on meat quality. A general scan for meat quality QTL was carried out using genotype data for eight markers from FCB128 to RM356 flanking 122cM of OAR 2 using Haley-Knott regression. This analysis revealed two QTL for a single sire. A QTL detected in the region of Marker INRA40 for color L* mapped to a site close to the muscling QTL, but there was evidence to suggest it is at a distinct locus. The QTL in the region of Marker RM356 might map distal to Marker RM356, as no peak was observed. This QTL, which seems to affect pH, color a*, color b*, and Warner-Bratzler shear measurements, requires further characterization.  相似文献   

16.
A multigeneration crossbred Meishan-White composite resource population was used to identify quantitative trait loci (QTL) for age at first estrus (AP) and the components of litter size: ovulation rate (OR; number of ova released in an estrous period) and uterine capacity (UC). The population was established by reciprocally mating Meishan (ME) and White composite (WC) pigs. Resultant F1 females were mated to either ME or WC boars to produce backcross progeny (BC) of either 3/4 WC 1/4 ME or 1/4 WC 3/4 ME. To produce the next generation (F3), 3/4 WC 1/4 ME animals were mated to 1/4 WC 3/4 ME animals yielding half-blood (1/2 WC 1/2 ME) progeny. A final generation (F4) was produced by inter se mating F3 animals. Measurements for AP and OR were recorded on 101 BC, 389 F3, and 110 F4 gilts, and UC data were from 101 BC and 110 F4 first parity litters. A genomic scan was conducted with markers (n = 157) spaced approximately 20 cM apart. All parental, F1, BC, and F4 animals but only 84 F3 animals were genotyped and included in this study. The QTL analysis fitted a QTL at 1-cM intervals throughout the genome, and QTL effects were tested using approximate genome-wide significance levels. For OR, a significant (E[false positive] < .05) QTL was detected on chromosome 8, suggestive (E[false positive] < 1.0) QTL were detected on chromosomes 3 and 10, and two additional regions were detected that may possess a QTL (E[false positive] < 2.0) on chromosomes 9 and 15. Two regions possessed suggestive evidence for QTL affecting AP on chromosomes 1 and 10, and one suggestive region on chromosome 8 was identified for UC. Further analyses of other populations of swine are necessary to determine the extent of allelic variation at the identified QTL.  相似文献   

17.
Identification of quantitative trait loci affecting reproduction in pigs   总被引:14,自引:0,他引:14  
The objective of this research was to identify chromosomal regions harboring QTL affecting reproduction in pigs. A three-generation resource population was developed by crossing low-indexing pigs from a randomly selected control line (C) with high-indexing pigs of a line selected for increased index of ovulation rate and embryonic survival (I). Differences between Lines I and C at Generation 10 were 6.7 ova and 3.3 fetuses at 50 d of gestation and 3.1 fully formed and 1.6 live pigs at birth. Phenotypic data were collected on F2 females, born in three replicates, for ovulation rate (n = 423), age at puberty (n = 295), litter size (n = 370), and number of nipples (n = 428). Litter-size data included number of fully formed, live, stillborn, and mummified pigs. Grandparent, F1, and F2 animals were genotyped for 151 microsatellite markers distributed across all 18 autosomes and the X chromosome. Genotypic data were available on 423 F2 females. Average spacing between markers was 19.3 Kosambi centimorgans. Calculations of logarithms of odds (LOD) scores were by least squares, and fixed effects for sire-dam combination and replicate were included in the models. Genome-wide significance level thresholds of 5% and 10% were calculated using a permutation approach. There was evidence (P < 0.05) for QTL affecting ovulation rate on SSC9, age at puberty on SSC7 and SSC8, number of nipples on SSC8 and SSC11, number of stillborn pigs on SSC5 and SSC13, and number of fully formed pigs on SSC11. There was evidence (P < 0.10) for additional QTL affecting age at puberty on SSC7, SSC8, and SSC12, number born live on SSC11, and number of nipples on SSC1, SSC6, and SSC7. Litter size is lowly heritable and sex-limited. Therefore, accuracy of selection for litter size may be enhanced by marker-assisted selection. Ovulation rate and age at puberty are laborious to measure, and thus marker-assisted selection may provide a practical and efficient method of selection.  相似文献   

18.
We constructed a pig F2 resource population by crossing a Meishan sow and a Duroc boar to locate economically important trait loci. The F2 generation was composed of 865 animals (450 males and 415 females) from four F1 males and 24 F1 females and was genotyped for 180 informative microsatellite markers spanning 2,263.6 cM of the whole pig genome. Results of the genome scan showed evidence for significant quantitative trait loci (<1% genomewise error rate) affecting weight at 30 d and average daily gain on Sus scrofa chromosome (SSC) 6, carcass yield on SSC 7, backfat thickness on SSC 7 and SSC X, vertebra number on SSC 1 and SSC 7, loin muscle area on SSC 1 and SSC 7, moisture on SSC 13, intramuscular fat content on SSC 7, and testicular weight on SSC 3 and SSC X. Moreover, 5% genomewise significant QTL were found for birth weight on SSC 7, average daily gain on SSC 4, carcass length on SSC 6, SSC 7, and SSC X and lightness (L value) on SSC 3. We identified 38 QTL for 28 traits at the 5% genomewise level. Of the 38 QTL, 24 QTL for 17 traits were significant at the 1% genomewise level. Analysis of marker genotypes supported the breed of origin results and provided further evidence that a suggestive QTL for circumference of cannon bone also was segregating within the Meishan parent. We identified genomic regions related with growth and meat quality traits. Fine mapping will be required for their application in introgression programs and gene cloning.  相似文献   

19.
This study presents a new method that combines QTL mapping and gene introgression. The effectiveness of this method for simultaneous detection and introgression of a desirable QTL from a donor line into a recipient line was evaluated by simulation. For evaluation, we used the fourth backcross generation of 2 inbred lines. The difference between the 2 lines for the trait of interest was described entirely by 1 QTL, with the donor line carrying the superior allele. Nine scenarios, combinations of 3 heritabilities (h(2) = 0.10, 0.05, or 0.01) and 3 population sizes (N = 100, 500, or 1,000) were considered in the simulation. Selection of parents for the next backcross was based solely upon the estimated probability of carrying the superior allele after a QTL analysis. Estimates of the QTL location and allele substitution effect in most scenarios were comparable to the true values. However (with either small h(2) or N) the QTL allele substitution effect was underestimated, and location was also biased. The SE of the estimates decreased with increasing N. The retained donor chromosome segment and linkage drag were close to the expected values from other published work. In general, combined detection and introgression of genes underlying desirable traits not only saves at least 1 generation, but also it ensures that the desirable QTL is introgressed where its function is simultaneously tested in a planned environment and recipient genome structure.  相似文献   

20.
The objective of this study was to identify quantitative trait loci for economically important traits in two families segregating an inactive copy of the myostatin gene. Two half-sib families were developed from a Belgian Blue x MARC III (n = 246) and a Piedmontese x Angus (n = 209) sire. Traits analyzed were birth, weaning, and yearling weight (kg); preweaning average daily gain (kg/d); postweaning average daily gain (kg/d); hot carcass weight (kg); fat depth (cm); marbling score; longissimus muscle area (cm2); estimated kidney, pelvic, and heart fat (%); USDA yield grade; retail product yield (%); fat yield (%); and wholesale rib-fat yield (%). Meat tenderness was measured as Warner-Bratzler shear force at 3 and 14 d postmortem. The effect of the myostatin gene was removed using phase information from six microsatellite markers flanking the locus. Interactions of the myostatin gene with other loci throughout the genome were also evaluated: The objective was to use markers in each family, scanning the genome approximately every 25 to 30 centimorgans (cM) on 18 autosomal chromosomes, excluding 11 autosomal chromosomes previously analyzed. A total of 89 markers, informative in both families, were used to identify genomic regions potentially associated with each trait. In the family of Belgian Blue inheritance, a significant QTL (expected number of false-positives = 0.025) was identified for marbling score on chromosome 3. Suggestive QTL for the same family (expected number of false-positives = 0.5) were identified for retail product yield on chromosome 3, for hot carcass weight and postweaning average daily gain on chromosome 4, for fat depth and marbling score on chromosome 8, for 14-d Warner-Bratzler shear force on chromosome 9, and for marbling score on chromosome 10. Evidence suggesting the presence of an interaction for 3-d Warner-Bratzler shear force between the myostatin gene and a QTL on chromosome 4 was detected. In the family of Piedmontese and Angus inheritance, evidence indicates the presence of an interaction for fat depth between the myostatin gene and chromosome 8, in a similar position where the evidence suggests the presence of a QTL for fat depth in the family with Belgian Blue inheritance. Regions identified underlying QTL need to be assessed in other populations. Although the myostatin gene has a considerable effect, other loci with more subtle effects are involved in the expression of the phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号