共查询到6条相似文献,搜索用时 0 毫秒
1.
Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China 总被引:7,自引:0,他引:7
In semi-arid areas, crop growth is greatly limited by water. Amount of available water in soil can be increased by surface mulching and other soil management practices. Field experiments were conducted in 2005 and 2006 at Gaolan, Gansu, China, to determine the influence of ridge and furrow rainfall harvesting system (RFRHS), surface mulching and supplementary irrigation (SI) in various combinations on rainwater harvesting, amount of moisture in soil, water use efficiency (WUE), biomass yield of sweet sorghum (Sorghum bicolour L.) and seed yield of maize (Zea mays L.). In conventional fields without RFRHS, gravel-sand mulching produced higher biomass yield than plastic-mulching or straw-mulching. In plastic-mulched fields, an increasing amount of supplemental irrigation was needed to improve crop yield. There was no effect of RFRHS without plastic-covered ridge on rainwater harvesting when natural precipitation was less than 5 mm per event. This was due to little runoff of rainwater from frequent low precipitation showers, and most of the harvested rainwater gathered at the soil surface is lost to evaporation. In the RFRHS, crop yield and WUE were higher with plastic-covered ridges than bare ridges, and also higher with gravel-sand-mulched furrows than bare furrows in most cases, or straw-mulched furrows in some cases. This was most likely due to decreased evaporation with plastic or gravel-sand mulch. In the RFRHS with plastic-covered ridges and gravel-sand-mulched furrows, application of 30 mm supplemental irrigation produced the highest yield and WUE for sweet sorghum and maize in most cases. In conclusion, the findings suggested the integrated use of RFRHS, mulching and supplementary irrigation to improve rainwater availability for high sustainable crop yield. However, the high additional costs of supplemental irrigation and construction of RFRHS for rainwater harvesting need to be considered before using these practices on a commercial scale. 相似文献
2.
Estimating the potential of rainfed agriculture in India: Prospects for water productivity improvements 总被引:1,自引:0,他引:1
Bharat R. Sharma K.V. Rao K.P.R. Vittal Y.S. Ramakrishna U. Amarasinghe 《Agricultural Water Management》2010,97(1):23-30
A detailed district and agro-ecoregional level study comprising the 604 districts of India was undertaken to (i) identify dominant rainfed districts for major rainfed crops, (ii) make a crop-specific assessment of the surplus runoff water available for water harvesting and the irrigable area, (iii) estimate the efficiency of regional rain water use and incremental production due to supplementary irrigation for different crops, and (iv) conduct a preliminary economic analysis of water harvesting/supplemental irrigation to realize the potential of rainfed agriculture. A climatic water balance analysis of 225 dominant rainfed districts provided information on the possible surplus runoff during the year and the cropping season. On a potential (excluding very arid and wet areas) rainfed cropped area of 28.5 million ha, a surplus rainfall of 114 billion m3 (Bm3) was available for harvesting. A part of this amount of water is adequate to provide one turn of supplementary irrigation of 100 mm depth to 20.65 Mha during drought years and 25.08 Mha during normal years. Water used in supplemental irrigation had the highest marginal productivity and increase in rainfed production above 12% was achievable even under traditional practices. Under improved management, an average increase of 50% in total production can be achieved with a single supplemental irrigation. Water harvesting and supplemental irrigation are economically viable at the national level. Net benefits improved by about threefold for rice, fourfold for pulses and sixfold for oilseeds. Droughts have very mild impacts on productivity when farmers are equipped with supplemental irrigation. 相似文献
3.
J.S. Pachpute 《Agricultural Water Management》2010,97(9):1251-1258
A package of water management practices including pitcher irrigation method and water conserving techniques of manure application and mulching is experimented for sustainable growth and improved production of cucumber crop in Makanya village in North Eastern Tanzania. The increase in total yield due to package of water management practices is 203 per cent and water use efficiency obtained is 12.06 kg m−3. The seasonal water requirement of cucumber crop under package of water management practices ranges from 146.30 to 198.10 mm, which is on an average 4.19 times less as compared to control treatment of can irrigation. The irrigation interval in package of water management practices is 4.9 times higher than the can irrigation method. The water and labour uses are reduced by 75.9 and 73 per cent, respectively in package of water management practices. The results showed that the self-regulative nature of pitchers and moisture retention by water conserving techniques is helpful in mitigating water stress in crop root zone. The moisture retention period in soil is increased assisting reduction of labour hours required in irrigation. In local context, the water management practices included in the package are easy to understand, adopt, operate and maintain. 相似文献
4.
Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa 总被引:1,自引:0,他引:1
In the dry areas, water, not land, is the most limiting resource for improved agricultural production. Maximizing water productivity, and not yield per unit of land, is therefore a better strategy for dry farming systems. Under such conditions, more efficient water management techniques must be adopted. Supplemental irrigation (SI) is a highly efficient practice with great potential for increasing agricultural production and improving livelihoods in the dry rainfed areas. In the drier environments, most of the rainwater is lost by evaporation; therefore the rainwater productivity is extremely low. Water harvesting can improve agriculture by directing and concentrating rainwater through runoff to the plants and other beneficial uses. It was found that over 50% of lost water can be recovered at a very little cost. However, socioeconomic and environmental benefits of this practice are far more important than increasing agricultural water productivity. This paper highlights the major research findings regarding improving water productivity in the dry rainfed region of West Asia and North Africa. It shows that substantial and sustainable improvements in water productivity can only be achieved through integrated farm resources management. On-farm water-productive techniques if coupled with improved irrigation management options, better crop selection and appropriate cultural practices, improved genetic make-up, and timely socioeconomic interventions will help to achieve this objective. Conventional water management guidelines should be revised to ensure maximum water productivity instead of land productivity. 相似文献
5.
半干旱地区集雨旱作节水农业技术集成总体模式研究 总被引:5,自引:2,他引:5
在分析准格尔旗示范区生态、经济、社会等条件的基础上,针对以往集雨农业研究缺乏技术综合集成,导致工程布局和各个技术环节相互脱节的问题,抓住半干旱地区缺水制约经济发展与生态环境建设这个最大的障碍因素,以提高雨水集蓄率、水分利用率和利用转化效率为主线,综合运用3S技术、系统科学思想与实用农艺、水利工程技术,初步构筑起适合黄土高原北部地区集雨补灌条件下的综合技术集成模式,并结合示范区实际分析了雨水收集潜力,构建了三类农户生产应用子模式,取得了显著的经济与生态效益. 相似文献
6.
Complex combinations of biophysical and socio-economic constraints characterize the less-favored rural areas in developing countries. More so, these constraints are diverse as they vary considerably between households even in the same community. We propose multi-agent systems as a modeling approach well suited for capturing the complexity of constraints as well as the diversity in which they appear at the farm household level. Given that empirical multi-agent models based on mathematical programming share the characteristics of bio-economic farm models plus some additional features, one may interpret bio-economic farm models as a special case of multi-agent models without spatial dimension and direct interaction. Evidently, spatially explicit, connected multi-agent models have higher requirements in terms of development costs, empirical data and validation. Therefore, we see them as a complement, and not a substitute, to existing bio-economic modeling approaches. They might be the preferred model choice when heterogeneity and interactions of agents and environments are significant and, therefore, policy responses cannot be aggregated linearly. We illustrate the strength of empirical multi-agent models with simulation results from Uganda and Chile and indicate how they may assist policymakers in prioritizing and targeting alternative policy interventions especially in less-favored areas. 相似文献