首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent interest in soil tillage and residue management has focused on low-input sustainable agriculture. This study was conducted to investigate the effect of three tillage systems (no-till, chisel plow, and moldboard plow) and four residue placements (bare, normal, mulch, and double mulch) on a most recently detected enzyme in soils, arylamidase activity. This enzyme catalyzes the hydrolysis of an N-terminal amino acid from peptides, amides, or arylamides. Results showed that arylamidase activity is greatly affected by tillage and crop residue placement. The greatest activity was found with chisel/mulch, moldboard plow/mulch, and no-till/double mulch, and the lowest with moldboard plow/normal and no-till/bare. Arylamidase activity was significantly correlated with organic C (r=0.59**) and soil pH CaCl2 (r=0.55**), and decreased with soil depth. Results of this work suggest that the activity of this enzyme is affected by soil management, and indicate its potential ecological significance because of its role in the N cycle.  相似文献   

2.
This study was carried out to investigate the long‐term influence of lime application and tillage systems (no‐till, ridge‐till, and chisel plow) on the activities of phosphatases and arylsulfatase in soils at four research sites in Iowa, USA. The activities of the following enzymes were studied: acid and alkaline phosphatases, phosphodiesterase, and arylsulfatase at their optimal pH values. With the exception of acid phosphatase, which was significantly (P < 0.001) but negatively correlated with soil pH (r ranged from –0.65** to –0.98***), the activities of other enzymes were significantly (P < 0.001) and positively correlated with soil pH, with r values ranging from 0.65** to 0.99*** for alkaline phosphatase, from 0.79*** to 0.97*** for phosphodiesterase, and from 0.66*** to 0.97*** for arylsulfatase. The Δ activity/Δ pH values were calculated to determine the sensitivity of each enzyme to changes in soil pH. Acid phosphatase was the most sensitive and arylsulfatase the least sensitive to changes in soil pH. Activities of the enzymes were greater in the 0 – 5 cm depth samples than those in 0 – 15 cm samples under no‐till treatment. With the exception of acid phosphatase, enzyme activities were mostly significantly (P < 0.001) and positively correlated with microbial biomass C (Cmic), with r values ranging from 0.28 (not significant) to 0.83*** and with microbial biomass N (Nmic), with r values ranging from 0.31 (not significant) to 0.94***. Liming and tillage systems significantly affected the activities of some enzymes but not others, as was evident from the specific activity values (g of p‐nitrophenol released kg–1 Corg h–1).  相似文献   

3.
There is an increasing interest in assessing the effects of tillage systems and residue management on biochemical processes, especially enzyme activities, of soils. This study was carried out to investigate the effects of three tillage systems (no-till, chisel plow and moldboard plow) and four residue placements (bare, normal, mulch and double mulch) on the activity of N-acetyl-β-glucosaminidase (NAGase, EC 3.2.1.30) involved in C and N cycling in soils. The activity values were significantly affected by tillage and residue management practices, being greatest in soils with no-till/double mulch and least with no-till/bare and moldboard/normal. Also, they were the highest under no-till/ double mulch-treated soils. Linear regression analyses showed that the activity of NAGase was significantly correlated with organic C in the surface soils (r=0.89***) and with organic C content at different depths (r=0.97***). The NAGase activity values were significantly correlated with the arylamidase activity values of the soils (r=0.63**), suggesting that tillage and residue management practices have similar impacts on the activities of these enzymes. The activity of this enzyme decreased markedly with increasing depth of the surface soil (0-15 cm) of the no-till/ double mulch-treated plots.  相似文献   

4.
Effect of tillage and residue management on enzyme activities in soils   总被引:14,自引:3,他引:14  
Recent interest in soil tillage and residue management has focused on low-input sustainable agriculture. In this study we investigated the effect of three tillage systems (no-till, chisel plow, and moldboard plow) and four residue placements (bare, normal, mulch, and double mulch) on the activities of four amidohydrolases (amidase, L-asparaginase, L-glutaminase, and urease) in soils from four replicated field-plots. Correlation coefficients (r) for linear regressions between the activities of each of the enzymes and organic C or pH and between all possible paired amidohydrolases were also calculated. The results showed that the effects of tillage and residue management on pH in the 28 surface soil (0–15 cm) samples were not significant. The organic C content, however, was affected significantly by the different tillage and residue-management practices studied, being the greatest in soils with notill/double mulch treatment, and the least with no-till/bare and moldboard/normal treatments. Within the same tillage system, mulch treatment resulted in greater organic C content compared with normal or bare treatment. The activities of the amidohydrolases studied were generally greater in mulch-treated plots than in non-treated plots, and were significantly correlated with organic C contents of soils, with r values ranging from 0.70*** to 0.90***. Linear regression analyses of enzyme activities on pH values (in 0.01 M CaCl2) of the 28 surface soils showed significant correlations for L-asparaginase, L-glutaminase, and urease, with r values of 0.74***, 0.77***, and 0.72***, respectively, but not for amidase (r=0.24). The activities of the four amidohydrolases studied in the 40 soil samples tested were significantly intercorrelated, with r values ranging from 0.72*** to 0.92***. The activities of the four amidohydrolases decreased with increasing soil depth of the plow layer, and were accompanied by a decrease in organic C content.  相似文献   

5.
Abstract

Recent interest in soil tillage, cropping systems, and residue management has focused on low‐input sustainable agriculture. This study was carried out to evaluate the effects of various management systems on aspartase activity in soils. This enzyme [L‐aspartate ammonia‐lyase, EC 4.3.1.1] catalyzes the hydrolysis of L‐aspartate to fumarate and NH3. It may play a significant role in the mineralization of organic N in soils. The management systems consisted of three cropping systems [continuous corn (Zea mays L.) (CCCC); corn‐soybean [Glycine max (L.) Merr.]‐corn‐soybean (CSCS); and corn‐oat (Avena sativa L.)‐meadow‐meadow (COMM) {meadow was a mixture of alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.)] at three long‐term field experiments initiated in 1954, 1957, and 1978 in Iowa and sampled in June 1987. The plots received 0 or 180 (or 200) kg ha?1 before corn and an annual application of 20 kg P and 56 kg K ha?1. The tillage systems (no‐tillage, chisel plow, and moldboard plow) were initiated in 1981 in Wisconsin and sampled in May 1991. The crop residue treatments were: bare, normal, mulch, and double (2×) mulch. The residue in the study was corn stalks. Results showed that, in general, crop rotation in combination with N fertilizer treatments affected aspartase activity in the following order: COMM>CSCS>CCCC. Because of nitrification of the NH4 + or NH4 +‐forming fertilizers, which resulted in decreasing the pH values, N fertilizer application, in general, decreased the aspartase activity in soils in the order: CCCC>CSCS>COMM. The effect of tillage and residue management practices on aspartase activity in soils showed a very wide variation. The trend was as follows: no‐till/2× mulch>chisel plow/mulch>moldboard plow/mulch>no‐till normal>chisel plow/normal>no‐till bare>moldboard plow/normal. Aspartase activity decreased with increasing depth in the plow layer (0–15 cm) of the no‐till/2× mulch. The decreased activity was accompanied by decreasing organic C and pH with depth. Statistical analyses using pooled data (28 samples) showed that aspartase activity was significantly, linearly correlated with organic C (r=0.78***) and exponentially with soil pH (r=0.53**). The variation in the patterns and magnitudes of activity distribution among the profiles of the four replicated plots was probably due to the spatial variability in soils.  相似文献   

6.
Soil physical condition following tillage influences crop yield, but the desired condition cannot be adequately evaluated with current techniques. This study was conducted to determine a soil condition index (SCI) that could be used to select the type of implement needed to achieve an optimal seedbed with minimum energy input. Effects of bulk density, moisture content, and penetration resistance resulting from three tillage systems (no-till, chisel plow and moldboard plow), on the growth of corn (Zea mays L.) were studied. The experiment was conducted in Boone County, Ames, IA, on soils that are mostly Aquic Hapludolls, Typic Haplaquolls and Typic Hapludolls with slopes ranging from 0 to 5%. The results are from the 2000 season, which had normal weather conditions and yield levels for the Iowa state. The average corn grain yield at this site was 9.36 Mg/ha. At the V2 corn growth stage, the average dry biomass was 1.34 g per plant. The soil physical properties were normalized with respect to reference values and combined via multiple regression analysis against corn biomass at V2 stage into the SCI. Mean SCI values for the no-till, chisel and moldboard plow treatments were 0.86, 0.76, and 0.73, respectively, all with a standard error of 0.0127. The lower the SCI, the more optimum the soil physical conditions. An analysis of variance showed significant differences among mean SCI for each treatment (p-value=0.001). The use of the SCI could improve the tillage decision-making process in environments similar the one studied.  相似文献   

7.
Numerous investigators of tillage system impacts on soil organic carbon (OC) or total nitrogen (N) have limited their soil sampling to depths either at or just below the deepest tillage treatment in their experiments. This has resulted in an over-emphasis on OC and N changes in the near-surface zones and limited knowledge of crop and tillage system impacts below the maximum depth of soil disturbance by tillage implements. The objective of this study was to assess impacts of long-term (28 years) tillage and crop rotation on OC and N content and depth distribution together with bulk density and pH on a dark-colored Chalmers silty clay loam in Indiana. Soil samples were taken to 1 m depth in six depth increments from moldboard plow and no-till treatments in continuous corn and soybean–corn rotation. Rotation systems had little impact on the measured soil properties; OC content under continuous corn was not superior to the soybean–corn rotation in either no-till or moldboard plow systems. The increase in OC (on a mass per unit area basis) with no-till relative to moldboard plow averaged 23 t ha−1 to a constant 30 cm sampling depth, but only 10 t ha−1 to a constant 1.0 m sampling depth. Similarly, the increase in N with no-till was 1.9 t ha−1 to a constant 30 cm sampling depth, but only 1.4 t ha−1 to a constant 1.0 m sampling depth. Tillage treatments also had significant effects on soil bulk density and pH. Distribution of OC and N with soil depth differed dramatically under the different tillage systems. While no-till clearly resulted in more OC and N accumulation in the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply with depth. Indeed, moldboard plowing resulted in substantially more OC and N, relative to no-till, in the 30–50 cm depth interval despite moldboard plowing consistently to less than a 25 cm depth. Our results suggest that conclusions about OC or N gains under long-term no-till are highly dependent on sampling depth and, therefore, tillage comparisons should be based on samples taken well beyond the deepest tillage depth.  相似文献   

8.
With the increasing use of conservation tillage, many questions about the long-term effects of tillage system on soil physical properties have been raised. Studies were conducted to evaluate saturated hydraulic conductivity (KSAT), macropore characteristics and air permeability of two silty soils as affected by long-term conservation tillage systems in the state of Indiana. Measurements were taken during the tenth year of a tillage study on a Chalmers silty clay loam (Typic Haplaquoll) and the fifth year of a study on a Clermont silt loam (Typic Ochraqualf). Tillage systems were moldboard plow, chisel, ridge till-plant, and no-till in a rotation of corn (Zea mays L.) and soya beans (Glycine max L.). Saturated hydraulic conductivity was measured on large soil columns (25 × 25 × 40 cm) before spring tillage, and macropore size and continuity were assessed with staining techniques. Intact soil cores (8 cm diam × 10 cm) were collected in early July in the row and non-trafficked interrow at three depths (10–20, 20–30, and 30–40 cm) and were analyzed for air permeability (Kair), air-filled porosity and bulk density. Saturated hydraulic conductivity values were in the order plow > chisel > ridge till > no-till for the Chalmers soil and were significantly greater in the plow treatment than in the other 3 tillage systems on the Clermont soil. Differences in KSAT between the 2 soils were generally greater than differences among tillage systems, and coefficients of variation were lower for treatments that did not include may fall tillage operations. At the 10-cm depth on the Chalmers soil, the chisel treatment had the greatest number of stained cylindrical channels, whereas for the Clermont soil the ridge till had the greatest number at this depth. Although the no-till treatment had similar or fewer total channels, it had the most continuous channels from the 10-cm depth to the 20- and 30-cm depths on both soils. Tillage system, row position and depth all affected Kair. On the Chalmers soil, plow, chisel and ridge systems had lower Kair between rows than in the row at the 10–20-cm depth, whereas no-till had constant Kair in the row and between the row. On the Clermont soil, ridge till had the highest Kair of all treatments at the 10–20-cm depth, and no-till had the highest Kair of all treatments at the 20–30-cm depth.  相似文献   

9.
土壤磷酸酶活性对施肥-种植-耕作制度的响应   总被引:14,自引:1,他引:14  
沈菊培  陈利军 《土壤通报》2005,36(4):622-627
植物所需的磷素营养,主要来源于土壤内源、外源无机磷。而大量存在的有机磷类化合物在土壤磷酸酶的作用下催化水解为无机磷,不仅是土壤内源无机磷的主要来源,也是土壤磷素循环的一个重要的环节。土壤磷酸酶在土壤中主要以吸附态的形式存在,其活性受到施肥、种植和耕作制度的影响。本文对国内外不同施肥方式、种植及耕作制度下土壤磷酸酶(酸性磷酸酶、中性磷酸酶、碱性磷酸酶、磷酸二酯酶、磷酸三酯酶、焦磷酸酶)活性响应进行综述,拟为不同农业管理制度下土壤磷酸酶活性的调节提供依据。  相似文献   

10.
Conventional tillage creates soil physical conditions that may restrict earthworm movement and accelerate crop residue decomposition, thus reducing the food supply for earthworms. These negative impacts may be alleviated by retaining crop residues in agroecosystems. The objective of this study was to determine the effects of various tillage and crop residue management practices on earthworm populations in the field and earthworm growth under controlled conditions. Population assessments were conducted at two long-term (15+ years) experimental sites in Québec, Canada with three tillage systems: moldboard plow/disk harrow (CT), chisel plow or disk harrow (RT) and no tillage (NT), as well as two levels of crop residue inputs (high and low). Earthworm growth was assessed in intact soil cores from both sites. In the field, earthworm populations and biomass were greater with long-term NT than CT and RT practices, but not affected by crop residue management. Laboratory growth rates of Aporrectodea turgida (Eisen) in intact soil cores were affected by tillage and residue inputs, and were positively correlated with the soil organic C pool, suggesting that tillage and residue management practices that increase the soil organic C pool provide more organic substrates for earthworm growth. The highest earthworm growth rates were in soils from RT plots with high residue input, which differed from the response of earthworm populations to tillage and residue management treatments in the field. Our results suggest that tillage-induced disturbance probably has a greater impact than food availability on earthworm populations in cool, humid agroecosystems.  相似文献   

11.
Because the adoption of conservation tillage requires long-term evaluation, the effect of tillage and residue management on corn (Zea mays L.) grain and stover yields was studied for 13 seasons in east central Minnesota. Three primary tillage methods (no-till (NT), fall chisel plow (CH), fall moldboard plow (MB)) and two residue management schemes (residue removal versus residue returned) were combined in a factorial design experiment on a Haplic Chernozem silt loam soil in Minnesota. No significant effects on grain yield were seen due to tillage treatments in 9 out of 13 years. The NT treatment resulted in lower yields than CH and MB treatments in years 6 and 7, and lower than the MB in year 8, indicating a gradual decrease in yield over time with continuous use of NT. There were differences due to residue management in 8 out of 13 years. The residue-returned treatments contributed about 1 Mg ha−1 greater yields in intermediate level dry years such as years 3 and 6, which had cumulative growing season precipitation 20 and 30% below the 9-year average, respectively. In excessively dry or long-term-average years, residues resulted in little yield difference between treatments. The most pronounced effects of residues were with the CH treatment for which yields were greater in 8 out of 13 years. The ratio of grain to total dry matter yield averaged 0.56 and did not vary with time or between treatments. These results apply primarily to soils wherein the total water storage capacity and accumulated rainfall are insufficient to supply optimum available water to the crop throughout the growing season. Under conditions with deeper soils or in either wetter or drier climates, the results may differ considerably.  相似文献   

12.
Long-term tillage effects on soil quality   总被引:6,自引:0,他引:6  
Public interest in soil quality is increasing, but assessment is difficult because soil quality evaluations are often purpose- and site-specific. Our objective was to use a systems engineering methodology to evaluate soil quality with data collected following a long-term tillage study on continuous corn (Zea mays L.). Aggregate characteristics, penetration resistance, bulk density, volumetric water content, earthworm populations, respiration, microbial biomass, ergosterol concentrations, and several soil-test parameters (pH, P, K, Ca, Mg, Total-N, Total-C, NH4-N, and NO3-N) were measured on Orthic Luvisol soil samples collected from Rozetta and Palsgrove silt loam (fine-silty, mixed, mesic Typic Hapludalfs) soils. Plots managed using no-till practices for 12 years before samples were collected for this study had surface soil aggregates that were more stable in water and had higher total carbon, microbial activity, ergosterol concentrations, and earthworm populations than either the chisel or plow treatments. Selected parameters were combined in the proposed soil quality index and gave ratings of 0.48, 0.49, or 0.68 for plow, chisel, or no-till treatments, respectively. This indicated that long-term no-till management had improved soil quality. The prediction was supported by using a sprinkler infiltration study to measure the amount of soil loss from plots that had been managed using no-till or mold-board plow tillage. We conclude that no-till practices on these soils can improve soil quality and that the systems engineering methodology may be useful for developing a more comprehensive soil quality index that includes factors such as pesticide and leaching potentials.  相似文献   

13.
The weed seed bank of a long-term tillage study in subarctic Alaska was studied at the end of 10 years of continuous spring barley (Hordeum vulgare L.). Tillage treatments were: no-till, disked once (spring), disked twice (spring and fall), and chisel plow (fall). Soil cores were obtained from each tillage treatment and seeds were manually separated from soil after washing through sieves. Tillage treatment had a significant effect on seed density of shepherds purse (Capsella bursa-pastoris (L.) Medic.), cinquefoil (Potentilla norvegica L.), foxtail barley (Hordeum jubatum L.), and on total seed density. Seed density was higher for these species and total seed density was greater under no-till than under other tillage treatments. Seed density was higher near the soil surface under no-till and chisel plow treatments than under disked treatments, which helps explain the greater difficulty of controlling weeds under reduced tillage.  相似文献   

14.
Mechanized agriculture is increasing rapidly in the Cerrado region of Brazil, causing concerns about water quality, off-site impacts, and sustainability. Our objective was to determine the impact of tillage on soil biological activity and aggregate stability in an Oxisol typical to the region. Three different tillage practices common to the Cerrado region (no-till, disk harrow, and disk plow) and an area under native vegetation were examined. Five different soil enzyme activities, C- and N-mineralization, organic C, total N, and aggregate distribution were determined. Total N, acid phosphatase, arylamidase, and C- and N-mineralization were the most sensitive to changes in tillage management. For each of these analyses, the no-till system had greater concentrations or activities (18–186%) than disk plow in the 0–5 cm layer. Significant differences observed in the 0–5 cm depth did not necessarily translate into total profile differences to a depth of 30 cm. No-till had significantly greater levels of total N, and C- and N-mineralization (20–127%) than the disk harrow system. Total N ranged from 1.8 to 2.2 kg m−3; C- and N-mineralization (24-day incubation) ranged from 2.8 to 6.8 and 0.04 to 0.10 kg m−3, respectively, among tillage systems and soil depths. Enzyme activities in all treatments were more strongly correlated with total soil N than with soil organic C (SOC), contrary to the norm in temperate soils where the stronger correlation is with SOC. Mean weight diameter of water stable aggregates was related to SOC (r = 0.73) and total N (r = 0.92), indicating that soil organic matter does play a significant role in stabilizing aggregates in Oxisols. Results indicated the importance of reducing tillage as a means of increasing soil biological activity of the topsoil in the Cerrado region of Brazil. By understanding the effects of tillage on soil biological properties, management systems can be implemented that improve natural nutrient cycling processes and soil structure, resulting in increased agricultural sustainability of tropical ecosystems.  相似文献   

15.
Soil organic carbon (SOC) distribution is altered by residue management practices, but the effect on total C mass is not well understood, especially in warm regions. The objective of this study was to determine the effect of residue management practices on SOC distribution and amount across an 1100 km transect (northwest to southeast) of Texas. Long-term (>10 years) continuous cropping rotation and residue management plots located near Bushland, Temple, and Corpus Christi, Texas, were sampled incrementally with depth for SOC distribution and mass. The mass of SOC varied among locations depending on management, and climatic conditions. No-tillage management resulted in increased SOC concentration and mass in the surface 0.07 m in comparison to more intensive tillage management (e.g., sweep, chisel plow, moldboard plow). Fertilization had little effect on C sequestration at any site. Carbon sequestration decreased as mean annual temperature increased. Carbon may be sequestered in soil under Texas climatic conditions, but the amounts may be quite small.  相似文献   

16.
Abstract

The use of conservation tillage methods, including ridge tillage, has increased dramatically in recent years. At the present time, there is great concern that farmers are applying more nitrogen (N) fertilizer than is environmentally or economically sound. In order to determine if N requirement for optimum yield differs with tillage system, tests were initiated to study tillage and N effects on N content, soil moisture content, and yield of corn (Zea mays L.). The study was established in 1987 on two soil types, an Estelline soil (Pachic Haploboroll) and an Egan soil (Udic Haplustoll), located in eastern South Dakota. Five rates of N (0, 65, 130, 195, and 260 kg ha?1) were applied to plots managed with 3 tillage systems: chisel plow, moldboard plow, and ridge. On the Estelline soil, in both 1988 and 1989, ridge‐tilled plots contained a greater amount of water in the soil profile at emergence and at mid silk than did plots in the other two tillage systems. Soil moisture content at mid silk was significantly correlated with earleaf N, total N uptake, and grain yield in 1988 and earleaf N and grain yield in 1989. However, the correlation coefficients were higher in 1988 than in 1989. On the Egan soil, there were no significant differences in soil moisture content among tillage systems. On the Estelline soil, corn grain yield was affected by a tillage x N‐rate interaction in 1988. Maximum yield within the ridge system was achieved with the 130 kg ha?1 rate. In 1989 on the Estelline soil, yield was affected by tillage and N rate, but there was no interaction between factors. When averaged over N rates, yields were 7.1, 6.6, and 6.5 Mg ha?1 in the ridge, moldboard, and chisel systems, respectively. In 1988 plant total N uptake was greater in the ridge system than the moldboard or chisel systems; in 1989 uptake was affected by N rate alone. On the Egan soil, tillage did not affect soil moisture, total N uptake or grain yield in either year. Corn grain yield increased with increasing N rate up to the 195 kg ha?1 rate. This study indicates that, on some soil types, ridge tillage can improve soil water holding capacity, N utilization and yield of corn.  相似文献   

17.
Abstract

Tillage, cropping system, and cover crops have seasonal and long‐term effects on the nitrogen (N) cycle and total soil organic carbon (C), which in turn affects soil quality. This study evaluated the effects of crop, cover crop, and tillage practices on inorganic N levels and total soil N, the timing of inorganic N release from hairy vetch and soybean, and the capacity for C sequestration. Cropping systems included continuous corn (Zea mays L.) and stalk residue, continuous corn and hairy vetch (Vicia villosa Roth), continuous soybeans (Glycine max L.) plus residue, and two corn/soybean rotations in corn alternate years with hairy vetch and ammonium nitrate (0, 85, and 170 kg N ha?1). Subplot treatments were moldboard plow and no tillage. Legumes coupled with no tillage reduced the N fertilizer requirement of corn, increased plant‐available N, and augmented total soil C and N stores.  相似文献   

18.
Conservation tillage systems are advocated worldwide for sustainable crop production; however, their favorable effects on soil properties are subject to the length of their use. The following study aimed at using the CENTURY agroecosystem model to simulate long-term changes in soil organic carbon (SOC) fractions and wheat (Triticum aestivum L.) production. Tillage systems include conventional tillage (CT, control), minimum tillage, chisel plow (CP) and zero tillage with (R+) and without residues (R?) in fallow-wheat system. The model validation with 2-year field experiment showed that the simulated results were strongly correlated with observed results for total organic carbon (r2 = 0.94), active soil carbon (r2 = 0.91), slow soil carbon (r2 = 0.84) and passive soil carbon (r2 = 0.85). Similarly, model simulations for biomass and grain yields were, respectively, 81% and 76% correlated with observed results. The long-term simulations predicted that SOC stock and its fractions will gradually build up, crop biomass and grain yield will enhance with crop residue retention, especially under chisel plough in comparison of existing CT system. The study concludes that CP and retention of crop residues have potential to improve SOC contents and ultimately crop production.  相似文献   

19.
Summary Soil enzyme activities (acid and alkaline phosphatase, arylsulfatase, -glucosidase, urease and amidase) were determined (0- to 20-cm depth) after 55 years of crop-residue and N-fertilization treatment in a winter wheat (Triticum aestivum L.)-fallow system on semiarid soils of the Pacific Northwest. All residues were incorporated and the treatments were: straw (N0), straw with fall burn (N0FB), straw with spring burn (N0SB), straw plus 45 kg N ha–1 (N45), straw plus 90 kg N ha–1 (N90), straw burned in spring plus 45 kg N ha–1 (N45SB), straw burned in spring plus 90 kg N ha–1 (N90SB), straw plus 2.24 T ha–1 pea-vine residue and straw plus 22.4 T ha–1 of straw-manure. Enzyme activities were significantly (P<0.001) affected by residue management. The highest activities were observed in the manure treated soil, ranging from 36% (acid phosphatase) to 190% increase in activity over the control (N0). The lowest activities occurred in the N0FB (acid phosphatase, arylsulfatase and -glucosidase) and N90 treated soils (alkaline phosphatase, amidase and urease). Straw-burning had a significant effect only on acid phosphatase activity, which decreased in spring burn treated soil when inorganic N was applied. Urease and amidase activity decreased with long-term addition of inorganic N whereas the pea vine and the manure additions increased urease and amidase activity. There was a highly significant effect from the residue treatments on soil pH. Arylsulfatase, urease, amidase and alkaline phosphatase activities were positively correlated and acid phosphatase activity was negatively correlated with soil pH. Enzyme activities were strongly correlated with soil organic C and total N content. Except for acid phosphatase, there was no significant relationship between enzyme activity and grain yield.Journal Paper No. 8072 of the Agricultural Experimental Station, Oregon State University, Corvallis, OR 97331, USA  相似文献   

20.
Enzyme activities in a limed agricultural soil   总被引:11,自引:2,他引:9  
 This study assessed the effect of eight lime application rates, with four field replications, on the activities of 14 enzymes involved in C, N, P, and S cycling in soils. The enzymes were assayed at their optimal pH values. The soil used was a Kenyon loam located at the Northeast Research Center in Nashua, Iowa. Lime was applied in 1984 at rates ranging from 0 to 17,920 kg effective calcium carbonate equivalent (ha–1), and surface samples (0–15 cm) were taken after 7 years. Results showed that organic C and N were not significantly affected by lime application, whereas the soil pH was increased from 4.9 to 6.9. The activities of the following enzymes were assayed: α- and β-glucosidases, α- and β-galactosidases, amidase, arylamidase, urease, l-glutaminase, l-asparaginase, l-aspartase, acid and alkaline phosphatases, phosphodiesterase, and arylsulfatase. With the exception of acid phosphatase, which was significantly (P<0.001) but negatively correlated with soil pH (r=–0.69), the activities of all the other enzymes were significantly (P<0.001)and positively correlated with soil pH, with r values ranging from 0.53 for the activity of α-galactosidase to 0.89 for alkaline phosphatase and phosphodiesterase. The Δ activity/Δ pH values ranged from 4.4 to 38.5 for the activities of the glycosidases, from 1.0 to 107 for amidohydrolases and arylamidase, 97 for alkaline phosphatase, 39.4 for phosphodiesterase, and 11.2 for arylsulfatase. This value for acid phosphatase was –35.0. The results support the view that soil pH is an important indicator of soil health and quality. Received: 3 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号