首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large body of evidence strongly suggests that the shergottite, nakhlite, and Chassigny (SNC) meteorites are from Mars. Various mechanisms for the ejection of large rocks at martian escape velocity (5 kilometers per second) have been investigated, but none has proved wholly satisfactory. This article examines a number of possible ejection and cosmic-ray exposure histories to determine which is most plausible. For each possible history, the Melosh spallation model is used to estimate the size of the crater required to produce ejecta fragments of the required size with velocities >/=5 kilometers per second and to produce a total mass of solid ejecta consistent with the observed mass flux of SNC meteorites. Estimates of crater production rates on Mars are then used to evaluate the probability that sufficiently large craters have formed during the available time. The results indicate that the SNC meteorites were probably ejected from a very large crater (> 100 kilometers in diameter) about 200 million years ago, and that cosmic-ray exposure of the recovered meteorites was initiated after collisional fragmentation of the original ejecta in space at much later times (0.5 to 10 million years ago).  相似文献   

2.
Coronal magnetic fields are dynamic, and field lines may misalign, reassemble, and release energy by means of magnetic reconnection. Giant releases may generate solar flares and coronal mass ejections and, on a smaller scale, produce x-ray jets. Hinode observations of polar coronal holes reveal that x-ray jets have two distinct velocities: one near the Alfvén speed ( approximately 800 kilometers per second) and another near the sound speed (200 kilometers per second). Many more jets were seen than have been reported previously; we detected an average of 10 events per hour up to these speeds, whereas previous observations documented only a handful per day with lower average speeds of 200 kilometers per second. The x-ray jets are about 2 x 10(3) to 2 x 10(4) kilometers wide and 1 x 10(5) kilometers long and last from 100 to 2500 seconds. The large number of events, coupled with the high velocities of the apparent outflows, indicates that the jets may contribute to the high-speed solar wind.  相似文献   

3.
Astrophysical jets are linear structures associated with stars and galaxies which span about seven orders of magnitude in size; the largest jets emanating from galaxies are about 100 times the size of our galaxy and are the largest single objects in the universe. Jets associated with stars are composed of ionized gas moving away from the star with velocities of a few hundred kilometers per second. Extragalactic jets are composed of relativistic particles, magnetic field, and probably additional amounts of cooler ionized plasma either originally ejected in the jet or entired by it out of the surrounding gaseous medium. The initial outflow velocity for extragalactic jets may be relativistic, and average outflow speeds of several thousand kilometers per second are likely. The energy flux carried by extragalactic jets may be in excess of 10(46) ergs per second, depending upon the nature of the jet. A definition of jet properties, deduced from their interaction with the ambient medium, can place essential constraints on models for the central power source in the parent galaxy or quasi-stellar object where they originate.  相似文献   

4.
The calculated energy efficiency of mass ejection for iron and anorthosite objects striking an anorthosite planet at speeds of 5 to 45 kilometers per second decreases with increasing impact velocity at low escape velocities. At escape velocities of >10(5) and >2 x 10(4) centimeters per second, respectively, the slower impactors produce relatively less ejecta for a given impact energy. The impact velocities at which ejecta losses equal meteorite mass gains are found to be approximately 20, 35, and 45 kilometers per second for anorthosite objects and approximately 25, 35, and 40 kilometers per second for iron objects striking anorthosite surfaces for the gravity fields of the moon, Mercury, and Mars.  相似文献   

5.
Observations on shocked quartz in Cretaceous-Tertiary (K-T) boundary sediments compellingly tied to Chicxulub crater raise three problems. First, in North America shocked quartz occurs above the main K-T ejecta layer. Second, shocked quartz is more abundant west than east of Chicxulub. Third, shocked quartz reached distances requiring initial velocities up to 8 kilometers per second, corresponding to shock pressures that would produce melt, not the moderate-pressure shock lamellae observed. Shock devolatilization and the expansion of carbon dioxide and water from impacted wet carbonate, producing a warm, accelerating fireball after the initial hot fireball of silicate vapor, may explain all three problems.  相似文献   

6.
Satellite and research vessel observations of sea surface temperature during the southwest monsoon of 1979 show the development of large wedge-shaped areas of cold water along the Somali coast at both 5 degrees and 10 degrees N during June and July. The cold water associated with the large northern and southern Somali eddy systems could be traced several hundred kilometers offshore. By late August the cold wedge at 5 degrees N translated northeastward as far as 10 degrees N at speeds of 15 to 30 centimeters per second, indicating a coalescence of the systems.  相似文献   

7.
Binzel RP  Xu S 《Science (New York, N.Y.)》1993,260(5105):186-191
For more than two decades, asteroid 4 Vesta has been debated as the source for the eucrite, diogenite, and howardite classes of basaltic achondrite meteorites. Its basaltic achondrite spectral properties are unlike those of other large main-belt asteroids. Telescopic measurements have revealed 20 small (diameters 相似文献   

8.
Marcus AH 《Science (New York, N.Y.)》1968,160(3834):1333-1335
The incremental frequency distribution of Martian crater diameters larger than 20 to 30 kilometers follows an inverse-square law, with density equal to that of craters on the lunar continents. This finding accords with the prediction that lunar continents and the Martian surface carry an equilibrium density (saturation) of craters originating in meteoroidal impact. Therefore crater statistics alone cannot be used for estimation of the age of the Martian surface.  相似文献   

9.
Photographic observations from a network of 60 cameras in western Canada are used to derive the influx rate of meteorites on the earth's surface, the first time instrumental data have been used for this purpose. Forty-three observed events are believed to have dropped between 0.1 and 12 kilograms of meteorites each. The flux values are corrected for a minor latitude effect and agree with earlier estimates near 10 kilograms but vary more slowly with mass. Eight events per year drop at least 1 kilogram of meteorites in an area of 10(6) square kilometers.  相似文献   

10.
The heating of the solar chromosphere and corona is a long-standing puzzle in solar physics. Hinode observations show the ubiquitous presence of chromospheric anemone jets outside sunspots in active regions. They are typically 3 to 7 arc seconds = 2000 to 5000 kilometers long and 0.2 to 0.4 arc second = 150 to 300 kilometers wide, and their velocity is 10 to 20 kilometers per second. These small jets have an inverted Y-shape, similar to the shape of x-ray anemone jets in the corona. These features imply that magnetic reconnection similar to that in the corona is occurring at a much smaller spatial scale throughout the chromosphere and suggest that the heating of the solar chromosphere and corona may be related to small-scale ubiquitous reconnection.  相似文献   

11.
Lunar seismic data from artificial impacts recorded at three Apollo seismometers are interpreted to determine the structure of the moon's interior to a depth of about 100 kilomneters. In the Fra Mauro region of Oceanus Procellarum, the moon has a layered crust 65 kilometers thick. The seismic velocities in the upper 25 kilometers are consistent with those in lunar basalts. Between 25 and 65 kilometers, the nearly constant velocity (6.8 kilometers per second) corresponds to velocities in gabbroic and anorthositic rocks. The apparent velocity is high (about 9 kilometers per second) in the lunar mantle immediately below the crust.  相似文献   

12.
A year-long monitoring program within an elongated channel-fan system in Bute Inlet of British Columbia, Canada, detected active sand-transporting turbidity currents. Measurements of bottom velocities and sediment collected in traps, as well as damage to moorings and equipment, captured the signatures of frequent energetic events. Maximum calculated velocities achieved were 335 centimeters per second, with flow thicknesses of more than 30 meters. Coarse sand was transported at least 6 to 7.5 meters above the sea floor. Turbidity currents flowed a minimum distance of 25.9 kilometers, but possibly as far as 40 to 50 kilometers, over bottom slopes of generally less than 1 degrees.  相似文献   

13.
Ice-edge eddies in the fram strait marginal ice zone   总被引:1,自引:0,他引:1  
Five prominent ice-edge eddies in Fram Strait on the scale of 30 to 40 kilometers were observed over deep water within 77 degrees N to 79 degrees N and 5 degrees W to 3 degrees E. The use of remote sensing, a satellite-tracked buoy, and in situ oceanographic measurements showed the presence of eddies with orbital speeds of 30 to 40 centimeters per second and lifetimes of at least 20 days. Ice ablation measurements made within one of these ice-ocean eddies indicated that melting, which proceeded at rates of 20 to 40 centimeters per day, is an important process in determining the ice-edge position. These studies give new insight on the formation, propagation, and dissipation of ice-edge eddies.  相似文献   

14.
Near-infrared images of the Venus night side show bright contrast features that move from east to west, in the direction of the cloud-top atmospheric superrotation. Recently acquired images of the Venus night side along with earlier spectroscopic observations allow identification of the mechanisms that produce these features, their level of formation, and the wind velocities at those levels. The features are detectable only at wavelengths near 1.74 and 2.3 micrometers, in narrow atmospheric windows between the CO(2) and H(2)O bands. The brightest features have brightness temperatures near 480 Kelvin, whereas the darkest features are more than 50 Kelvin cooler. Several factors suggest that this radiation is emitted by hot gases at altitudes below 35 kilometers in the Venus atmosphere. The feature contrasts are produced as this thermal radiation passes through a higher, cooler, atmospheric layer that has horizontal variations in transparency. The 6.5-day east-west rotation period of the features indicates that equatorial wind speeds are near 70 meters per second in this upper layer. Similar wind speeds have been measured by entry probes and balloons at altitudes between 50 and 55 kilometers in the middle cloud layer. The bright features indicate that there are partial clearings in this cloud deck. The presence of these clearings could decrease the efficiency of the atmospheric greenhouse that maintains the high surface temperatures on Venus.  相似文献   

15.
Winds in the lower atmosphere of Venus, inferred from three-dimensional radio interferometric tracking of the descents of the Pioneer day and north probes, are predominantly easterly with speeds of about 1 meter per second near the surface, 50 meters per second at the bottom of the clouds, and more than 200 meters per second within the densest, middle cloud layer. Between about 25 and 55 kilometers altitude the average flow was slanted equatorward, with superimposed wavelike motions and alternating layers of high and low shear.  相似文献   

16.
Micrometer-size silicate flakes do not accrete during impacts in the velocity range 1.5 to 9.5 kilometers per second. Conventional accretionary theories for silicate bodies are applicable only to particles whose orbits are similar. Metal-silicate fractionation in the solar system may have been affected by differences in the accretionary behavior of the metal and silicate particles.  相似文献   

17.
Earlier observations of a seismic waveguide in the northwestern Pacific with a velocity of 8.3 kilometers per second to distances of approximately 30 degrees are complemented by suggestions of a possible waveguide with a velocity of 7.8 kilometers per second to distances well in excess of 30 degrees .  相似文献   

18.
The structure, energetics, and dynamics of shock conditions generated in a nano-cluster upon impact on a crystalline surface are investigated with molecular-dynamics simulations for a 561-atom argon cluster incident with a velocity of 3 kilometers per second onto a sodium chloride surface. The "piling-up" shock phenomenon occurring upon impact, coupled with cascades of energy and momentum transfer processes and inertial confinement of material in the interior of the cluster, creates a transient medium lasting for about a picosecond and characterized by extreme local density, pressure, and kinetic temperature. The nano-shock conditions and impulsive nature of interactions in the newly formed compressed nonequilibrium environment open avenues for studying chemical reactivity and dynamics catalysed via cluster impact.  相似文献   

19.
Speeds as high as 44 centimeters per second were observed 200 meters above the ocean bottom under the Gulf Stream at 70 degrees W longitude and were associated with time-dependent motion that had a speed range of 40 centimeters per second and a time scale of about 30 days. These deep current fluctuations appear to be coupled with fluctuations in the surface position of the Stream and with surface and bottom current fluctuations 200 kilometers to the north.  相似文献   

20.
Binder AB 《Science (New York, N.Y.)》1966,152(3725):1053-1055
Comparison of the distributions of Martian and lunar crater diameters indicates that the visible surface of Mars is 2.2 to 3 x 10(9) years old. This result implies that in the early history of Mars large-scale subaerial erosion occurred. Of 69 Martian craters with diameters greater than 10 kilometers, 13 percent have central peaks. This compares favorably with the frequency (11.7 percent) of central peaks among lunar craters and may indicate that the central peaks are a direct result of the impact mechanism rather than post-impact volcanism. A well-defined system of lineaments is shown in the Mariner photographs. The presence of these lineaments may indicate that Mars has lost appreciable angular momentum during its history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号