首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective control methods need to be developed to reduce crested wheatgrass (Agropyron cristatum [L.] Gaertner) monocultures and promote the establishment of native species. This research was designed to determine effective ways to reduce crested wheatgrass and establish native species while minimizing weed invasion. We mechanically (single- or double-pass disking) and chemically (1.1 L · ha?1 or 3.2 L · ha?1 glyphosate–Roundup Original Max) treated two crested wheatgrass sites in northern Utah followed by seeding native species in 2005 and 2006. The study was conducted at each site as a randomized block split plot design with five blocks. Following wheatgrass-reduction treatments, plots were divided into 0.2-ha subplots that were either unseeded or seeded with native plant species using a Truax Rough Rider rangeland drill. Double-pass disking in 2005 best initially controlled wheatgrass and decreased cover from 14% to 6% at Lookout Pass and from 14% to 4% at Skull Valley in 2006. However, crested wheatgrass recovered to similar cover percentages as untreated plots 2–3 yr after wheatgrass-reduction treatments. At the Skull Valley site, cheatgrass cover decreased by 14% on herbicide-treated plots compared to an increase of 33% on mechanical-treated plots. Cheatgrass cover was also similar on undisturbed and treated plots 2 yr and 3 yr after wheatgrass-reduction treatments, indicating that wheatgrass recovery minimized any increases in weed dominance as a result of disturbance. Native grasses had high emergence after seeding, but lack of survival was associated with short periods of soil moisture availability in spring 2007. Effective wheatgrass control may require secondary treatments to reduce the seed bank and open stands to dominance by seeded native species. Manipulation of crested wheatgrass stands to restore native species carries the risk of weed invasion if secondary treatments effectively control the wheatgrass and native species have limited survival due to drought.  相似文献   

2.
Relative benefit of introducing forage species to the Northern Great Plains have been examined with contradictory conclusions. In most cases, studies were either confounded by time of establishment or treatments were not randomized and lacked independence. We examined aboveground net primary production (ANPP) in northern mixed prairie using a randomized complete block design with four treatments: crested wheatgrass (Agropyron cristatum [L.] Gaertn.), Russian wildrye (Psathyrostachys juncea [Fisch.] Nevski), a native control that was not harvested, and a harvested native. The experiment was conducted in a Stipa–Agropyron–Bouteloua site and a Stipa–Bouteloua site over 13 yr and 12 yr, respectively. The data were analyzed by sampling period (Stipa–Agropyron–Bouteloua: 1, 1994 to 1997; 2, 1998 to 2001; 3, 2002 to 2006; and Stipa–Bouteloua: 1, 1995 to 1998; 2, 1999 to 2002; 3, 2003 to 2006). ANPP among treatments was influenced (P < 0.05) by site and its interaction with treatment and sampling period (1 to 3). ANPP from the native-control, harvested-native, crested wheatgrass, and Russian wildrye treatments was 220.9, 183.9, 300.8, and 189.6 g · m–2 (SEM = 11.2), respectively, in the Stipa–Agropyron–Bouteloua site and 122.9, 98.2, 216.3, and 115.9 g · m–2 (SEM = 12.0), respectively, in the Stipa–Bouteloua site. Mean ANPP (SEM) within each sampling period (1 to 3) was 186.4 (9.1), 135.4 (5.8), and 263.9 (8.8) g · m–2 in the Stipa–Agropyron–Bouteloua site, respectively, and 124.5 (6.4), 138.6 (6.1), and 151.3 (10.5) g · m–2 in the Stipa–Bouteloua site, respectively. Russian wildrye in the Stipa–Bouteloua site and crested wheatgrass in both sites was relatively more productive in the first period after establishment than in subsequent years. The study confirms the relative ANPP advantage of crested wheatgrass over native on the Stipa–Bouteloua site but not on the Stipa–Agropyron–Bouteloua site, whereas Russian wildrye exhibited no ANPP advantage over the native on either site.  相似文献   

3.
Cheatgrass (Bromus tectorum L.) is an exotic annual grass causing ecosystem degradation in western US rangelands. We investigated potential mechanisms by which crested wheatgrass (Agropyron cristatum L. Gaertn., Agropyron desertorum &lsqb;Fisch. {Ex Link} Scult.]) suppresses the growth and invasibility of cheatgrass. Research focused on monthly mineral soil N availability and the proportional concentration of NH4+-N in a crested wheatgrass community by microsite (crested wheatgrass, unvegetated interspace, shrub subcanopy) and soil depth (0–15, 15–30 cm) over a 1-yr period. Mineral soil N in crested wheatgrass microsites ranged from 0.24 to 1.66 mmol · kg-1 and was not appreciably lower than the other microsites or other ecosystems we have measured in the Great Basin. The molar proportion of NH4+-N in the mineral N pool of crested wheatgrass averaged over 85% for the year and is significantly higher than the other microsites and far greater than other plant communities we have measured in the Great Basin. We conclude that crested wheatgrass does not suppress cheatgrass by controlling mineral N below a threshold level; rather, we hypothesize that it may limit nitrification and thereby reduce NO3--N availability to the nitrophile cheatgrass.  相似文献   

4.
Restoring western US rangelands from a site dominated by invasive annuals, such as cheatgrass and medusahead, to a diverse, healthy, perennial plant ? dominated ecosystem can be difficult with native grasses. This study describes the establishment and trends in persistence (plant/m2) of native grass cultivars and germplasm compared with typically used crested and Siberian wheatgrasses at four locations in Idaho (one), Wyoming (one), and Utah (two) that range in mean average annual precipitation (MAP) from 290 to 415 mm. Sites were cultivated and fallowed 1 yr before planting using two glyphosate applications to control weeds. We monitored seedling establishment of 10 perennial cool-season grass species and plant persistence over 5 yr. Precipitation during the seeding year varied with the Utah sites locations reviving below MAP (4% and 14%), while the Wyoming and Idaho sites received above MAP at 8% and 26%, respectively. Across these four sites, native grass seedling establishment of bottlebrush squirreltail (29 ± 0.08 [standard error] seedling/m2), bluebunch (28 ± 0.05), slender (30 ± 0.05), and Snake River wheatgrasses (28 ± 0.08) was similar to “Vavilov II” Siberian wheatgrass (36 ± 3.20). By yr 5, western, Snake River, and thickspike wheatgrasses were the only native grasses to have plant densities similar to Vavilov II (37 ± 0.29) Siberian and “Hycrest II” (36 ± 0.29) crested wheatgrasses. On sites receiving between 290 and 415 mm MAP, our data suggest that native grasses are able to establish but in general lack the ability to persist except for western, Snake River, and thickspike wheatgrasses, which had plant densities similar to crested and Siberian wheatgrasses after 5 yr.  相似文献   

5.
Past seedings of crested wheatgrass (Agropyron cristatum [L.] Gaertn. and A. desertorum [Fisch. ex Link] Schult.) have the potential to persist as stable, near-monospecific stands, thereby necessitating active intervention to initiate greater species diversity and structural complexity of vegetation. However, the success of suppression treatments and native species seedings is limited by rapid recovery of crested wheatgrass and the influx of exotic annual weeds associated with herbicidal control and mechanical soil disturbances. We designed a long-term study to evaluate the efficacy of low-disturbance herbicide and seed-reduction treatments applied together or alone and either once or twice before seeding native species. Consecutive herbicide applications reduced crested wheatgrass density for up to 6 ? 7 yr depending on study site, but seed removal did not reduce crested wheatgrass abundance; however, in some cases combining herbicide application with seed removal significantly increased densities of seeded species relative to herbicide alone, especially for the site with a more northern aspect. Although our low-disturbance treatments avoided the pitfalls of secondary exotic weed influx, we conclude that crested wheatgrass suppression must reduce established density to values much lower than 4 ? 7 plants/m2, a range that has not been obtained by ours or any previous study, in order to diminish its competitive influence on seed native species. In addition, our results indicated that site differences in environmental stress and land-use legacies exacerbate the well-recognized limitations of native species establishment and persistence in the Great Basin region.  相似文献   

6.
The Northern Great Plains grasslands respond differently under various climatic conditions; however, there have been no detailed studies investigating the interannual variability in carbon exchange across the entire Northern Great Plains grassland ecosystem. We developed a piecewise regression model to integrate flux tower data with remotely sensed data and mapped the 8-d and 500-m net ecosystem exchange (NEE) for the years from 2000 to 2006. We studied the interannual variability of NEE, characterized the interannual NEE difference in climatically different years, and identified the drought impact on NEE. The results showed that NEE was highly variable in space and time across the 7 yr. Specifically, NEE was consistently low (?35 to 322 g C·m?2·yr?1) with an average annual NEE of ?2 ± 242 g C·m?2·yr?1 and a cumulative flux of ?152 g C·m?2. The Northern Great Plains grassland was a weak source for carbon during 2000–2006 because of frequent droughts, which strongly affected the carbon balance, especially in the Western High Plains and Northwestern Great Plains. Comparison of the NEE map with a drought monitor map confirmed a substantial correlation between drought and carbon dynamics. If drought severity or frequency increases in the future, the Northern Great Plains grasslands may become an even greater carbon source.  相似文献   

7.
Many rangeland restoration sites in the Intermountain West are environmentally challenging due to low precipitation and invasive species competition; thus, more effective native plant materials are needed. We aim to develop improved Snake River wheatgrass (Elymus wawawaiensis) germplasm through hybridization of this widely used bunchgrass with its nearest relative, the rhizomatous thickspike wheatgrass (E. lanceolatus), followed by backcrossing to Snake River wheatgrass. This approach can potentially introduce desirable adaptive traits from thickspike wheatgrass into Snake River wheatgrass. We measured shoot and root dry matter per plant (DMPP), specific leaf area, C:N ratio, and specific root length (SRL) of nine Elymus populations at two planting densities (25 and 7.8 plants m? 2) in two repeated field experiments established from transplants in May 2005 and 2006, both at Millville, Utah. Populations included “Bannock” thickspike wheatgrass; “Secar,” “Discovery,” and three experimental Snake River wheatgrass populations; and three interspecific backcross hybrid populations. Compared with Snake River wheatgrass, the backcross hybrids displayed 10.4 ? 33.7% greater shoot DMPP (P < 0.0001) but 12.5 ? 16.5% lower root dry matter (DM) density (P < 0.05) across 6 and 2 comparisons, respectively, resulting in reduced root-to-shoot ratio. Compared with Snake River wheatgrass, Bannock displayed 38.6 ? 158.2% greater shoot DMPP (P < 0.0001) across six comparisons. In addition, Bannock displayed 22.4% lower SLA (P < 0.01) and 11.1% higher C:N ratio (P < 0.05) than Snake River wheatgrass and the backcross hybrids, traits suggestive of a low-nutrient growth strategy. These data suggest that Bannock achieved its consistently greater shoot DMPP during each growth period despite such a strategy. Hence, its greater productivity likely relates to a superior temporal and/or spatial ability to sequester resources that fuel growth. In this regard, Bannock displayed similar (P > 0.05) or 17% greater (P < 0.05) root DM density and 13.4% greater (P < 0.05) SRL than Snake River wheatgrass, as well as rhizomes.  相似文献   

8.
Postfire succession in mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) ecosystems results in a gradual shift from herbaceous dominance to dominance by shrubs. Determining the quality, quantity, and distribution of carbon (C) in rangelands at all stages of succession provides critical baseline data for improving predictions about how C cycling will change at all stages of succession under altered climate conditions. This study quantified the mass and distribution of above- and belowground (to 1.8-m depth) biomass at four successional stages (2, 6, 20, and 39 yr since fire) in Wyoming to estimate rates of C pool accumulation and to quantify changes in ecosystem carbon to nitrogen (C∶N) ratios of the pools during recovery after fire. We hypothesized that biomass C pools would increase over time after fire and that C∶N ratios would vary more between pools than during succession. Aboveground and live coarse roots (CR) biomass increased to 310 and 17 g C · m?2, but live fine roots (FR) mass was static at about 225 g C · m?2. Fine litter (≤ 1-cm diameter) accounted for about 70% of ecosystem C accumulation rate, suggesting that sagebrush leaves decompose slowly and contribute to a substantial soil organic carbon (SOC) pool that did not change during the 40 yr studied. Total ecosystem C (not including SOC) increased 16 g · m?2 · yr?1 over 39 yr to a maximum of 1 100 g · m?2; the fastest accumulation occurred during the first 20 yr. C∶N ratios ranged from 11 for forb leaves to 110 for large sagebrush wood and from 85 for live CR to 12 for bulk soil and were constant across growth stages. These systems may be resilient to grazing after fire because of vigorous regrowth of persistent bunchgrasses and stable pools of live FR and SOC.  相似文献   

9.
Crested wheatgrass (Agropyron cristatum [L] Gaertm. and Agropyron desertorum [Fisch.] Schult.), an introduced bunchgrass, has been seeded on millions of hectares of sagebrush steppe. It can establish near-monocultures; therefore, reestablishing native vegetation in these communities is often a restoration goal. Efforts to restore native vegetation assemblages by controlling crested wheatgrass and seeding diverse species mixes have largely failed. Restoring sagebrush, largely through planting seedlings, has shown promise in short-term studies but has not been evaluated over longer timeframes. We investigated the reestablishment of Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis [Beetle & A. Young] S.L. Welsh) in crested wheatgrass communities, where it had been broadcast seeded (seeded) or planted as seedlings (planted) across varying levels of crested wheatgrass control with a herbicide (glyphosate) for up to 9 yr post seeding/planting. Planting sagebrush seedlings in crested wheatgrass stands resulted in full recovery of sagebrush density and increasing sagebrush cover over time. Broadcast seeding failed to establish any sagebrush, except at the highest levels of crested wheatgrass control. Reducing crested wheatgrass did not influence density, cover, or size of sagebrush in the planted treatment, and therefore, crested wheatgrass control is probably unnecessary when using sagebrush seedlings. Herbaceous cover and density were generally less in the planted treatment, probably as a result of increased competition from sagebrush. This trade-off between sagebrush and herbaceous vegetation should be considered when developing plans for restoring sagebrush steppe. Our results suggest that planting sagebrush seedlings can increase the compositional and structural diversity in near-monocultures of crested wheatgrass and thereby improve habitat for sagebrush-associated wildlife. Planting native shrub seedlings may be a method to increase diversity in other monotypic stands of introduced grasses.  相似文献   

10.
Root proliferation is important in determining root foraging capability of rangeland grasses to unpredictable soil-nutrient pulses. However, root proliferation responses are often confounded by the inherent relative growth rate (RGR) of the particular species being compared. Additionally, inherent biomass allocation to roots (R:S ratio) can be associated with root RGR, hence likely influencing root foraging responses. The influence of relative growth rate and biomass allocation patterns on the speed and efficiency of root foraging responses at the critical seeding stage was examined in two important perennial rangeland grasses that occur widely in the Great Basin Region of the United States (Whitmar bluebunch wheatgrass [Pseudoroegneria spicata {Pursh} Löve] and Hycrest crested wheatgrass [Agropyron desertorum {Fisch. ex Link} Schult. × A. cristatum L. Gaert.]) as well as in the widespread exotic invasive annual grass, cheatgrass (Bromus tectorum L.). Greenhouse-grown seedlings were exposed to four nutrient regimes: uniform–low, uniform–high, soil-nutrient pulse, soil-nutrient depletion, and to either no clipping or clipping (80% removal of standing shoot biomass). Hycrest was the only species that exhibited root proliferation responses to the short-lived nutrient pulse, and this response occurred through root elongation rather than initiation of lateral root branches. Overall, defoliation inhibited proliferation-based root responses to a larger extent than topological-based root responses. Defoliated plants of Hycrest interrupted root development (topological index did not change) following shoot defoliation compared to undefoliated plants. In contrast, root topological developmental patterns were the same for defoliated and undefoliated plants of Whitmar, whereas cheatgrass exhibited an intermediate response between Whitmar and Hycrest. Our results suggest that inherent biomass allocation to roots contributes to enhanced capabilities of proliferation-based root responses.  相似文献   

11.
Long-term control of the invasive annual grass cheatgrass is predicated on its biological suppression. Perennial grasses vary in their suppressive ability. We compared the ability of a non-native grass (“Hycrest” crested wheatgrass) and two native grasses (Snake River wheatgrass and bluebunch wheatgrass) to suppress cheatgrass. In a greenhouse in separate tubs, 5 replicates of each perennial grass were established for 96 d, on which two seeds of cheatgrass, 15 cm apart, were then sown in a semicircular pattern at distances of 10 cm, 30 cm, and 80 cm from the established perennial bunchgrasses. Water was not limiting. After 60 d growth, cheatgrass plants were harvested, dried, weight recorded, and tissue C and N quantified. Soil N availability was quantified at each location where cheatgrass was sown, both before sowing and after harvest. Relative to cheatgrass grown at 80 cm, all perennial grasses significantly reduced aboveground biomass at 30 cm (68% average reduction) and at 10 cm (98% average reduction). Sown at 10 cm from established perennial grasses, cheatgrass aboveground biomass was inversely related with perennial grass root mass per unit volume of soil. All cheatgrass sown at 10 cm from “Hycrest” crested wheatgrass died within 38 d. Before sowing of cheatgrass, soil 10 cm from established perennial grasses had significantly less mineral N than soil taken at 30 cm and 80 cm. Relative to cheatgrass tissue N for plants grown at 80 cm, cheatgrass nearest to the established perennial grasses contained significantly less tissue N. All perennial grasses inhibited the NO2 to NO3 nitrification step; for “Hycrest” crested wheatgrass, soil taken at 10 cm from the plant had a molar proportion of NO2 in the NO2 + NO3 pool of > 90%. In summary, a combination of reduced nitrogen availability, occupation of soil space by perennial roots, and attenuation of the nitrogen cycle all contributed to suppression of cheatgrass.  相似文献   

12.
Monotypic stands of crested wheatgrass (Agropyron cristatum [L] Gaertm. and Agropyron desertorum [Fisch.] Schult.), an introduced grass, occupy vast expanses of the sagebrush steppe. Efforts to improve habitat for sagebrush-associated wildlife by establishing a diverse community of native vegetation in crested wheatgrass stands have largely failed. Instead of concentrating on a diversity of species, we evaluated the potential to restore the foundation species, Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis [Beetle & A. Young] S. L. Welsh), to these communities. We investigated the establishment of Wyoming big sagebrush into six crested wheatgrass stands (sites) by broadcast seeding and planting seedling sagebrush across varying levels of crested wheatgrass control with glyphosate. Planted sagebrush seedlings survived at high rates (~ 70% planted sagebrush survival 3 yr postplanting), even without crested wheatgrass control. However, most attempts to establish sagebrush by broadcast seeding failed. Only at high levels of crested wheatgrass control did a few sagebrush plants establish from broadcasted seed. Sagebrush density and cover were greater with planting seedlings than broadcast seeding. Sagebrush cover, height, and canopy area were greater at higher levels of crested wheatgrass control. High levels of crested wheatgrass control also created an opportunity for exotic annuals to increase. Crested wheatgrass rapidly recovered after glyphosate control treatments, which suggests multiple treatments may be needed to effectively control crested wheatgrass. Our results suggest that planting sagebrush seedlings can structurally diversify monotypic crested wheatgrass stands to provide habitat for sagebrush-associated wildlife. Though this is not the full diversity of native functional groups representative of the sagebrush steppe, it is a substantial improvement over other efforts that have largely failed to alter these plant communities. We also hypothesize that planting sagebrush seedlings in patches or strips may provide a relatively inexpensive method to facilitate sagebrush recovery across vast landscapes where sagebrush has been lost.  相似文献   

13.
The importance of sexual reproduction in tussock grasses that regenerate through vegetative growth is unclear. Festuca gracillima Hook. f. was studied as a model because it is a perennial tussock-forming grass that produces abundant seed but rarely regenerates through seedlings. The Study area was the Magellanic Steppe, Patagonia, Argentina (182 mm rainfall), managed with sheep-grazing regimes of 0.65 (high), 0.21 (low), and 0 (exclosure) ewe equivalents · ha?1 · yr?1. Tussock size and spikelet production of 358 individuals were recorded over 5 yr. Yearly models of reproductive effort in relation to plant size were tested using a maximum likelihood procedure. Seed was collected and soil cores were tested for germination and viability. Survival and growth of cohorts of seedlings sown in nylon bags were recorded. Eighteen experimental plots were cleared, and seed establishment under protected and grazed conditions was registered. Reproductive effort varied with years and plant size, with a mean of 2.41%. Florets were produced at mean density of 544 ± 217 · m?2. Predispersal losses reduced viable seed production to 187 ± 48 seeds · m?2. Seed weighed 2–2.5 mg, with 65–95% germination. Postdispersal losses reduced the seed bank in spring to 33 ± 1.3 seeds · m?2. Seedling survival curves were negatively exponential, with 95% mortality in the first year. Up to 5% of resources were used for sexual reproduction in favorable years and a recruitment of 1–3 new seedlings · m?2 · yr?1 was expected. These new plants were not observed in undisturbed plots, but established naturally in cleared plots and reached a density of 1 plant · m?2 after 10 yr, together with 44 plants · m?2 of other species. Competition might block the final establishment in these grasslands. Grazing does not appear to interfere in any stage of seed reproduction. Seed production may not maintain population numbers but could enhance genetic variation in these clonal plant populations and enable dispersal and recolonization of disturbed areas.  相似文献   

14.
Broom snakeweed (Gutierrezia sarothrae [Pursh] Britton & Rusby) increases and dominates rangelands following disturbances, such as overgrazing, fire, and drought. However, if cattle can be forced to graze broom snakeweed, they may be used as a biological tool to control it. Cattle grazed broom snakeweed in May and August 2004–2007. Narrow grazing lanes were fenced to restrict availability of herbaceous forage to force cattle to graze broom snakeweed. They used 50–85% of broom snakeweed biomass. Mature broom snakeweed plant density declined because of prolonged drought, but the decline was greater in grazed lanes. At the end of the study, density of mature plants in grazed lanes was 0.31 plants · m-2, compared with 0.79 plants · m-2 in ungrazed pastures. Spring precipitation in 2005 was 65% above average, and a new crop of seedlings established following the spring grazing trial. Seedling establishment was greater in the spring-grazed lanes in which the soil had been recently disturbed, compared with the ungrazed transects and summer-grazed lanes. The cattle were not able to use the large volume of new broom snakeweed plants in the spring-grazed pasture. They did reduce the number of seedlings and juvenile plants in the summer-grazed pasture. Intense grazing pressure and heavy use did not adversely affect crested wheatgrass (Agropyron cristatum [L.] Gaertn.) cover, and it was actually higher in the summer grazed lanes than the ungrazed control transects. In moderate stands of broom snakeweed, cattle can be forced to graze broom snakeweed and reduce its density without adversely affecting the associated crested wheatgrass stand.  相似文献   

15.
Herbaceous vegetation comprises the main habitat type in cool-seasons grasslands and can be managed by various methods. We compared changes in plant communities and bird and mammal use of grasslands that were not managed, managed by mechanical methods (mowing), or managed by chemical methods (plant growth regulator). This 1-year study was conducted from May through October 2003 in Erie County, Ohio. Twelve circular 1.5 ha plots were established: 4 were not managed, 4 were mowed to maintain vegetation height between 9–15 cm, and 4 were sprayed with a plant growth regulator and mowed when vegetation exceeded 15 cm. We monitored vegetation growth, measured plant community composition, and observed all plots for wildlife activity each week. Vegetation in unmanaged plots was taller and denser (P < 0.001) than vegetation in mowed and growth regulator plots. Plant community characteristics differed among study plots (P < 0.001); managed plots had higher grass cover and lower woody cover than unmanaged plots. We observed more (P < 0.001) total birds per 5-minute survey in unmanaged than mowed or growth regulator plots. We observed more (P < 0.001) white-tailed deer (Odocoileus virginianus) in mowed plots than either control or growth regulator plots. We captured 13 small mammals in unmanaged plots and no small mammals in managed plots. Applying the plant growth regulator was not a cost-effective alternative to mowing for managing vegetation height in our study. Vegetation height management practices altered plant communities and animal use of grassland areas and thus might be useful for accomplishing species-specific habitat management objectives.  相似文献   

16.
Grazing management effects on soil property dynamics are poorly understood. A study was conducted to assess effects of grazing management and season on soil property dynamics and greenhouse gas flux within semiarid rangeland. Grazing management treatments evaluated in the study included two permanent pastures differing in stocking rate (moderately and heavily grazed pastures) and a fertilized, heavily grazed crested wheatgrass (Agropyron desertorum [Fisch. ex. Link] Schult.) pasture near Mandan, North Dakota. Over a period of 3 yr, soil properties were measured in the spring, summer, and fall at 0–5 cm and 5–10 cm. Concurrent to soil-based measurements, fluxes of carbon dioxide, methane, and nitrous oxidewere measured on 1-wk to 2-wk intervals and related to soil properties via stepwise regression. High stocking rate and fertilizer nitrogen (N) application within the crested wheatgrass pasture contributed to increased soil bulk density and extractable N, and decreased soil pH and microbial biomass compared to permanent pastures. Soil nitrate nitrogen tended to be greatest at peak aboveground biomass, whereas soil ammonium nitrogen was greatest in early spring. Drought conditions during the third year of the study contributed to nearly two-fold increases in extractable N under the crested wheatgrass pasture and the heavily grazed permanent pasture, but not the moderately grazed permanent pasture. Stepwise regression found select soil properties to be modestly related to soil–atmosphere greenhouse gas fluxes, with model r2 ranging from 0.09 to 0.76. Electrical conductivity was included most frequently in stepwise regressions and, accordingly, may serve as a useful screening indicator for greenhouse gas “hot spots” in grazing land.  相似文献   

17.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis &lsqb;Beetle & A. Young] S.L. Welsh) plant communities with degraded native herbaceous understories occupy vast expanses of the western United States. Restoring the native herbaceous understory in these communities is needed to provide higher-quality wildlife habitat, decrease the risk of exotic plant invasion, and increase forage for livestock. Though mowing is commonly applied in sagebrush communities with the objective of increasing native herbaceous vegetation, vegetation response to this treatment in degraded Wyoming big sagebrush communities is largely unknown. We compared mowed and untreated control plots in five Wyoming big sagebrush plant communities with degraded herbaceous understories in eastern Oregon for 3 yr posttreatment. Native perennial herbaceous vegetation did not respond to mowing, but exotic annuals increased with mowing. Density of cheatgrass (Bromus tectorum L.), a problematic exotic annual grass, was 3.3-fold greater in the mowed than untreated control treatment in the third year posttreatment. Annual forb cover, largely consisting of exotic species, was 1.8-fold greater in the mowed treatment compared to the untreated control in the third year posttreatment. Large perennial grass cover was not influenced by mowing and remained below 2%. Mowing does not appear to promote native herbaceous vegetation in degraded Wyoming big sagebrush plant communities and may facilitate the conversion of shrublands to exotic annual grasslands. The results of this study suggest that mowing, as a stand-alone treatment, does not restore the herbaceous understory in degraded Wyoming big sagebrush plant communities. We recommend that mowing not be applied in Wyoming big sagebrush plant communities with degraded understories without additional treatments to limit exotic annuals and promote perennial herbaceous vegetation.  相似文献   

18.
The invasive yellow bluestem (Bothriochloa ischaemum [L.] Keng) threatens native biodiversity, and its control is of interest to land managers involved in restoration of invaded grasslands. We used single, double, and triple applications of glyphosate (2.125 kg ai · ha?1 · application?1) over the course of one growing season in combinations at different timings (early, middle, late season) with and without a mechanical treatment of mowing or burning to determine the most effective control method. One year after treatment, burning and mowing prior to a mid-season single or double early, middle, and/or late season herbicide application resulted in a similar level of control of yellow bluestem relative to a triple herbicide application, all of which had greater control relative to herbicide treatment alone. Reproductive tiller density and visual obstruction increased 2 yr after treatment with two herbicide treatments applied either early and middle season or early and late season, but it was prevented with burning and mowing prior to herbicide application. With the exception of three herbicide applications, combining burning or mowing with herbicide applications provided more effective control of yellow bluestem than any individual herbicide applications. Burning or mowing likely improves glyphosate effectiveness by altering the invasive grass structure so that plants are clear of standing dead and have shorter, active regrowth to enhance herbicide effectiveness. During restoration projects requiring control of invasive yellow bluestem, an effective management option is a combination of mechanical and chemical control.  相似文献   

19.
Belowground plant biomass plays a critical role in the maintenance of riparian ecosystems and generally constitutes the majority of the total biomass on a site. Despite this importance, belowground dynamics of riparian plant species are not commonly investigated, in part because of difficulties of sampling in a belowground riparian environment. We investigated the field utility of a root-ingrowth sampling technique for measuring root production. We established four streamside sampling sites in southeastern Oregon, and randomly located four plots within each site. In each plot we established two 7.6-cm–diameter sand-filled ingrowth cores in September of 2004. In September of 2005 we harvested the cores with the use of a vacuum sampling technique in which a 5.1-cm–diameter camphored polyvinyl chloride casing was driven into the center of the root core and sand and root materials were suctioned out. Root-length density was determined by computer image analysis, and roots were dried and weighed to determine production by weight. Results indicate that root-length density averaged 7.2 (± 0.7) cm · cm-3 across sites and root-production index was 356.7 (± 20.6) g · m-2. Our index to root production by weight was consistent with previous estimates of annual root production reported in the literature. Our sampling technique proved to be a practical solution for root sampling in riparian environments, and helps overcome some of the difficulties in sequential coring of saturated soils. Use of any ingrowth core technique to index root production can potentially bias production estimates because of the artificial, root-free environment of the core. However, these biases should be consistent across sites, making ingrowth cores useful for determining differences between manipulative treatments.  相似文献   

20.
Aboveground net primary production (ANPP) is a variable that integrates many aspects of ecosystem functioning. Variability in ANPP is a key control for carbon input and accumulation in grasslands systems. In this study, we analyzed the spatial and temporal variability of ANPP of Uruguayan grasslands during 2000–2010. We used enhanced vegetation index (EVI) data provided by the MODIS-Terra sensor to estimate ANPP according to Monteith's (1972) model as the product of total incident photosynthetically active radiation, the fraction of the radiation absorbed by green vegetation, and the radiation use efficiency. Results showed that ANPP varied spatially among geomorphological units, increasing from the north and midwest of Uruguay to the east and southeast. Hence, Cuesta Basáltica grasslands were the least productive (399 g DM · m-2 · yr-1), while grasslands of the Sierras del Este and Colinas y Lomas del Este displayed the highest productivity (463 and 465 g DM · m-2 · yr-1, respectively). This pattern is likely related to differences in soil depth and associated variation in water availability among geomorphological units. Seasonal variability in ANPP indicated peak productivity in the spring in all units, but differences in annual trends over the 10-yr study period suggested that ANPP drivers are operating spatially distinct. Understanding the spatial and temporal variability of ANPP of grasslands are prerequisites for sustainable management of grazing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号