首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis [Beetle & A. Young] S.L. Welsh) plant communities with degraded native herbaceous understories occupy vast expanses of the western United States. Restoring the native herbaceous understory in these communities is needed to provide higher-quality wildlife habitat, decrease the risk of exotic plant invasion, and increase forage for livestock. Though mowing is commonly applied in sagebrush communities with the objective of increasing native herbaceous vegetation, vegetation response to this treatment in degraded Wyoming big sagebrush communities is largely unknown. We compared mowed and untreated control plots in five Wyoming big sagebrush plant communities with degraded herbaceous understories in eastern Oregon for 3 yr posttreatment. Native perennial herbaceous vegetation did not respond to mowing, but exotic annuals increased with mowing. Density of cheatgrass (Bromus tectorum L.), a problematic exotic annual grass, was 3.3-fold greater in the mowed than untreated control treatment in the third year posttreatment. Annual forb cover, largely consisting of exotic species, was 1.8-fold greater in the mowed treatment compared to the untreated control in the third year posttreatment. Large perennial grass cover was not influenced by mowing and remained below 2%. Mowing does not appear to promote native herbaceous vegetation in degraded Wyoming big sagebrush plant communities and may facilitate the conversion of shrublands to exotic annual grasslands. The results of this study suggest that mowing, as a stand-alone treatment, does not restore the herbaceous understory in degraded Wyoming big sagebrush plant communities. We recommend that mowing not be applied in Wyoming big sagebrush plant communities with degraded understories without additional treatments to limit exotic annuals and promote perennial herbaceous vegetation.  相似文献   

2.
Piñon (Pinus spp.) and juniper (Juniperus spp.) trees are reduced to restore native vegetation and avoid severe fires where they have expanded into sagebrush (Artemisia tridentata Nutt.) communities. However, what phase of tree infilling should treatments target to retain desirable understory cover and avoid weed dominance? Prescribed fire and tree felling were applied to 8–20-ha treatment plots at 11 sites across the Great Basin with a tree-shredding treatment also applied to four Utah sites. Treatments were applied across a tree infilling gradient as quantified by a covariate tree dominance index (TDI = tree cover/[tree + shrub + tall perennial grass cover]). Mixed model analysis of covariance indicated that treatment × covariate interactions were significant (P &spilt; 0.05) for most vegetation functional groups 3 yr after treatment. Shrub cover was most reduced with fire at any TDI or by mechanical treatment after infilling resulted in over 50% shrub cover loss (TDI &spigt; 0.4). Fire increased cheatgrass (Bromus tectorum L.) cover by an average of 4.2% for all values of TDI. Cutting or shredding trees generally produced similar responses and increased total perennial herbaceous and cheatgrass cover by an average of 10.2% and 3.8%, at TDIs ≥ 0.35 and ≥ 0.45. Cheatgrass cover estimated across the region was &spilt; 6% after treatment, but two warmer sites had high cheatgrass cover before (19.2% and 27.2%) and after tree reduction (26.6% and 50.4%). Fuel control treatments are viable management options for increasing understory cover across a range of sites and tree cover gradients, but should be accompanied by revegetation on warmer sites with depleted understories where cheatgrass is highly adapted. Shrub and perennial herbaceous cover can be maintained by mechanically treating at lower TDI. Perennial herbaceous cover is key for avoiding biotic and abiotic thresholds in this system through resisting weed dominance and erosion.  相似文献   

3.
Prescribed fire in rangeland ecosystems is applied for a variety of management objectives, including enhancing productivity of forage species for domestic livestock. In the big sagebrush (Artemisia tridentata Nutt.) steppe of the western United States, fire has been a natural and prescribed disturbance, temporarily shifting vegetation from shrub–grass codominance to grass dominance. There is limited information on the impacts of grazing to community dynamics following fire in big sagebrush steppe. This study evaluated cattle grazing impacts over four growing seasons after prescribed fire on Wyoming big sagebrush (Artemisia tridentata subsp. Wyomingensis [Beetle & Young] Welsh) steppe in eastern Oregon. Treatments included no grazing on burned and unburned sagebrush steppe, two summer-grazing applications after fire, and two spring-grazing applications after fire. Treatment plots were burned in fall 2002. Grazing trials were applied from 2003 to 2005. Vegetation dynamics in the treatments were evaluated by quantifying herbaceous canopy cover, density, annual yield, and perennial grass seed yield. Seed production was greater in the ungrazed burn treatments than in all burn–grazed treatments; however, these differences did not affect community recovery after fire. Other herbaceous response variables (cover, density, composition, and annual yield), bare ground, and soil surface litter did not differ among grazed and ungrazed burn treatments. All burn treatments (grazed and ungrazed) had greater herbaceous cover, herbaceous standing crop, herbaceous annual yield, and grass seed production than the unburned treatment by the second or third year after fire. The results demonstrated that properly applied livestock grazing after low-severity, prescribed fire will not hinder the recovery of herbaceous plant communities in Wyoming big sagebrush steppe.  相似文献   

4.
Big sagebrush (Artemisia tridentata Nutt.) plant communities often require management to reduce shrub density and rehabilitate understory vegetation. We studied vegetation responses to a two-way chain harrow treatment and broadcast seeding of 12 herbaceous species at eight Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle & Young) sites. These sites differed in land-use history; five were cultivated for dryland wheat production during the 1950 ? 1980s and then seeded with introduced forage grasses (C-S), while three had not been exposed to this land-use legacy (non C-S). Our objective was to evaluate whether the C-S legacy influences the magnitude of vegetation change following contemporary treatment. Before treatment, C-S sites had lower sagebrush cover, higher dead sagebrush cover, and higher broom snakeweed (Gutierrezia sarothrae [Pursh] Britton & Rusby) cover than adjacent non C-S sites. Plant community change 3 years after treatment, determined with multivariate ordination analysis of species composition, varied between site histories, and response to treatment was most strongly correlated with reductions in sagebrush cover, increases in perennial grasses, and increases in 10 other herbaceous species—including some undesirable species and four that were seeded in 2010. Five years after treatment, mature sagebrush cover remained reduced for both land-use histories, yet density of sagebrush seedlings and broom snakeweed increased in C-S sites during the second and third years after treatment. In addition, perennial forb cover increased for C-S sites, while perennial grass biomass increased for non C-S sites. Our results emphasize that broad variability in plant community responses to sagebrush reduction and seeding is possible within the same ecological site classification and that legacy effects due to the combination of past cultivation and seeding should be considered when planning restoration projects, including the consideration that seeding may not always be necessary on C-S sites.  相似文献   

5.
Fire plays a central role in influencing ecosystem patterns and processes. However, documentation of fire seasonality and plant community response is limited in semiarid grasslands. We evaluated aboveground biomass, cover, and frequency response to summer, fall, and spring fires and no fire on silty and clayey sites in semiarid, C3-dominated grassland. The magnitude of change in biomass between years was greater than any differences among fire treatments. Still, differences existed among seasons of fire. Summer fire reduced non-native annual forb frequency (3% vs. 10% ± 2%) and Hesperostipa comata, reduced native annual forbs the first year, increased Poa secunda and bare ground, and increased Vulpia octoflora the second year. Fall fire increased grass biomass (1224 vs. 1058 ± 56 kg ? ha? 1), but fall fire effects were generally similar to those of summer fire. Spring fire effects tended to be intermediate between no fire and summer and fall fire with the exception that spring fire was most detrimental to H. comata the first growing season and did not increase bare ground. All seasons of fire reduced litter, forb biomass, and frequency of Bromus japonicus and Artemisia spp., and they reduced H. comata, V. octoflora, and native annual forbs the first year, but increased basal cover of C3 perennial grasses (2.2% vs. 0.6% ± 0.4%). Fire during any season increased dominance of native species compared with no fire (6.6% vs. 2.0% ± 1.0% basal cover) and maintained productivity. Seasonal timing of fire manipulated species composition, but increased C3 perennial grass cover and native species dominance with fire during any season indicated that using fire was more important than the season in which it occurred. In addition, fire effects on the vegetation components tended to be counter to previously observed effects of grazing, suggesting fire and grazing may be complementary.  相似文献   

6.
A decrease in fire frequency and past grazing practices has led to dense mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) stands with reduced herbaceous understories. To reverse this trend, sagebrush-reducing treatments often are applied with the goal of increasing herbaceous vegetation. Mechanical mowing is a sagebrush-reducing treatment that commonly is applied; however, information detailing vegetation responses to mowing treatments generally are lacking. Specifically, information is needed to determine whether projected increases in perennial grasses and forbs are realized and how exotic annual grasses respond to mowing treatments. To answer these questions, we evaluated vegetation responses to mowing treatments in mountain big sagebrush plant communities at eight sites. Mowing was implemented in the fall of 2007 and vegetation characteristics were measured for 3 yr post-treatment. In the first growing season post-treatment, there were few vegetation differences between the mowed treatment and untreated control (P > 0.05), other than sagebrush cover being reduced from 28% to 3% with mowing (P < 0.001). By the second growing season post-treatment, perennial grass, annual forb, and total herbaceous vegetation were generally greater in the mowed than control treatment (P < 0.05). Total herbaceous vegetation production was increased 1.7-fold and 1.5-fold with mowing in the second and third growing seasons, respectively (P < 0.001). However, not all plant functional groups increased with mowing. Perennial forbs and exotic annual grasses did not respond to the mowing treatment (P > 0.05). These results suggest that the abundance of sagebrush might not be the factor limiting some herbaceous plant functional groups, or they respond slowly to sagebrush-removing disturbances. However, this study suggests that mowing can be used to increase herbaceous vegetation and decrease sagebrush in some mountain big sagebrush plant communities without promoting exotic annual grass invasion.  相似文献   

7.
Juniper and piñon coniferous woodlands have increased 2- to 10-fold in nine ecoregions spanning the Intermountain Region of the western United States. Control of piñon-juniper woodlands by mechanical treatments and prescribed fire are commonly applied to recover sagebrush steppe rangelands. Recently, the Sage Grouse Initiative has made conifer removal a major part of its program to reestablish sagebrush habitat for sage grouse (Centrocercus urophasianus) and other species. We analyzed data sets from previous and ongoing studies across the Great Basin characterizing cover response of perennial and annual forbs that are consumed by sage grouse to mechanical, prescribed fire, and low-disturbance fuel reduction treatments. There were 11 sites in western juniper (Juniperus occidentalis Hook.) woodlands, 3 sites in singleleaf piñon (Pinus monophylla Torr. & Frém.) and Utah juniper (Juniperus osteosperma [Torr.] Little), 2 sites in Utah juniper, and 2 sites in Utah juniper and Colorado piñon (Pinus edulis Engelm). Western juniper sites were located in mountain big sagebrush (A. tridentata ssp. vaseyana) steppe associations, and the other woodlands were located in Wyoming big sagebrush (A. tridentata ssp. wyomingensis) associations. Site potential appears to be a major determinant for increasing perennial forbs consumed by sage grouse following conifer control. The cover response of perennial forbs, whether increasing (1.5- to 6-fold) or exhibiting no change, was similar regardless of conifer treatment. Annual forbs favored by sage grouse benefitted most from prescribed fire treatments with smaller increases following mechanical and fuel reduction treatments. Though forb abundance may not consistently be enhanced, mechanical and fuel reduction conifer treatments remain good preventative measures, especially in phase 1 and 2 woodlands, which, at minimum, maintain forbs on the landscape. In addition, these two conifer control measures, in the short term, are superior to prescribed fire for maintaining the essential habitat characteristics of sagebrush steppe for sage grouse.  相似文献   

8.
Comparisons of tree-removal treatments to reduce the cover of single-leaf pinyon (Pinus monophylla Torr. and Frém.) and Utah juniper (Juniperus osteosperma [Torr.] Little), and subsequently increase native herbaceous cover in black sagebrush (Artemisia nova A. Nelson), are needed to identify most cost-effective methods. Two adjacent vegetation management experiments were initiated in 2006 and monitored until 2010 in eastern Nevada to compare the costs and efficacy of various tree reduction methods. One Department of Energy (DOE) experiment compared a control to five treatments: bulldozing imitating chaining ($205 · ha-1), lop-pile-burn ($2 309 · ha-1), lop-and-scatter ($1 297 · ha-1), feller-buncher and chipper ($4 940 · ha-1), and mastication ($1 136 · ha-1), whereas a second Bureau of Land Management (BLM) experiment compared one-way chaining ($205 · ha-1) to a control treatment. Chaining and bulldozing resulted in the least reduction of tree cover among the treatments. In the DOE experiment, forb cover only decreased in the mastication treatment. Litter increased in all methods. Slash cover was lowest in the control and lop-pile-burn treatments, intermediate in the feller-buncher and mastication treatments, and highest in the bulldozing and lop-and-scatter treatments. By 2010, forb cover and the combined cover of dead shrubs and trees were increased and decreased, respectively, by chaining in the BLM experiment. Nonnative annual grass and biotic crust were absent or uncommon before and after treatment implementation. In both experiments, tree removal resulted in a nonsignificant increase in perennial grass cover even 4 yr post-treatment. An ecological return-on-investment (EROI) metric was developed to compare perennial grass cover and tree cover per unit area cost of each active treatment. By 2010, chaining or bulldozing, followed by mastication, showed the highest EROI for improving perennial grass and decreasing tree cover. Mastication is recommended for restoration of smaller tree-encroached areas, whereas land managers should reconsider smooth chaining, despite its negative perceptions, for rapid and cost-efficient restoration of large landscapes obligates.  相似文献   

9.
Solarization (covering soil and vegetation with plastic) has long been used in agriculture to control undesirable plants, but solarization of invasive plants in rangelands has shown mixed and species-specific results. Yellow bluestem (Bothriochloa ischaemum (L.) Keng var. songarica (Rupr. ex Fisch & C.A. Mey) Celarier & Harlan), an invasive perennial C4 grass, is common throughout the southern Great Plains and is not controlled by winter prescribed fire. We tested whether solarization (tarping) with black plastic, combined with winter prescribed fire, could control yellow bluestem. We applied three treatments (with four replicates): solarization (August to November 2017) + fire (January 2018), trimming + fire, and fire only. Results after two growing seasons show that total yellow bluestem cover in solarized + fire plots was reduced to 54% ± 10% (mean ± standard error), lower than trimmed + fire (82% ± 5%, p < 0.01) and fire only plots (78% ± 6%, p = 0.01). Forb cover in solarized + fire plots (15% ± 4%) was much higher than trimmed + fire (4% ± 1%, p < 0.01) and fire only plots (3% ± 1%, p < 0.01). Native forb richness was only slightly higher in solarized + fire plots (16 ± 2 species) compared to fire only (10 ± 2 species, p = 0.08) and trimmed + fire plots (10 ± 1 species, p = 0.08). Interestingly, native forb richness in all plots increased compared to pre-treatment values (2 ± 1 species for all treatments, p < 0.01). Solarization + winter fire can slightly decrease yellow bluestem cover and greatly increase native forb cover, creating islands of diversity in otherwise low-diversity grasslands. However, repeated treatments or alternative techniques will be needed for full control of yellow bluestem.  相似文献   

10.
Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody fuels and increase resistance to exotic annuals, but may alter resource availability and inadvertently favor invasive species. We used four study sites within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) to evaluate 1) how vegetation and soil resources were affected by treatment, and 2) how soil resources influenced native herbaceous perennial and exotic annual grass cover before and following treatment. Treatments increased resin exchangeable NH4+, NO3-, H2PO4-, and K+, with the largest increases caused by prescribed fire and prolonged by application of imazapic. Burning with imazapic application also increased the number of wet growing degree days. Tebuthiuron and imazapic reduced exotic annual grass cover, but imazapic also reduced herbaceous perennial cover when used with prescribed fire. Native perennial herbaceous species cover was higher where mean annual precipitation and soil water resources were relatively high. Exotic annual grass cover was higher where resin exchangeable H2PO4- was high and gaps between perennial plants were large. Prescribed fire, mowing, and tebuthiuron were successful at increasing perennial herbaceous cover, but the results were often ephemeral and inconsistent among sites. Locations with sandy soil, low mean annual precipitation, or low soil water holding capacity were more likely to experience increased exotic annual grass cover after treatment, and treatments that result in slow release of resources are needed on these sites. This is one of few studies that correlate abiotic variables to native and exotic species cover across a broad geographic setting, and that demonstrates how soil resources potentially influence the outcome of management treatments.  相似文献   

11.
If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass &lsqb;Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants &spigt; 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences on plant communities.  相似文献   

12.
Seed mixes used for postfire seeding in the Great Basin are often selected on the basis of short-term rehabilitation objectives, such as ability to rapidly establish and suppress invasive exotic annuals (e.g., cheatgrass, Bromus tectorum L.). Longer-term considerations are also important, including whether seeded plants persist, continue to suppress invasives, and promote recovery of desired vegetation. To better understand long-term effects of postfire seed mixes, we revisited study sites in Tintic Valley, Utah, where seeding experiments had been initiated after the 1999 Railroad wildfire. Four different mixes, including two comprised entirely of native species, had been applied using rangeland drills at a shrubland site and aerial seeding followed by one-way Ely chaining at a woodland site. New vegetation data collected 16 years post fire revealed changes relative to 3 years post fire. We found significant increases in total cover of seed-mix species in all treatments, including the unseeded control where these species were present as residual populations or had spread from seeded treatments. Significant increases of seed-mix species cover and density were observed in blocks where seeding treatments had previously been considered unsuccessful. Some seed-mix species, particularly rhizomatous grasses, increased while others declined. Exotic annual forb cover decreased in all treatments while cheatgrass increased in the unseeded control and to a lesser extent in the native-only seeded treatments. Recruitment of non-seed-mix native perennials was highest in the unseeded control. Results indicate that postfire seeding has lasting effects on vegetation composition and structure, implying that seed mixes should be carefully formulated to promote long-term management objectives. Seed mixes containing large amounts of competitive introduced species may be especially effective for long-term cheatgrass suppression, but native-only mixes can also serve this purpose to a lesser degree while avoiding drawbacks of non-native species introductions.  相似文献   

13.
Western juniper (Juniperus occidentalis Hook.) has expanded into sagebrush steppe plant communities the past 130 ? 150 yr in the northern Great Basin. The increase in juniper reduces herbage and browse for livestock and big game. Information on herbaceous yield response to juniper control with fire is limited. We measured herbaceous standing crop and yield by life form in two mountain big sagebrush communities (MTN1, MTN2) and a Wyoming/basin big sagebrush (WYOBAS) community for 6 yrs following prescribed fire treatments to control western juniper. MTN1 and WYOBAS communities were early-successional (phase 1) and MTN2 communities were midsuccessional (phase 2) woodlands before treatment. Prescribed fires killed all juniper and sagebrush in the burn units. Total herbaceous and perennial bunchgrass yields increased 2 to 2.5-fold in burn treatments compared with unburned controls. Total perennial forb yield did not differ between burns and controls in all three plant communities. However, tall perennial forb yield was 1.6- and 2.5-fold greater in the WYOBAS and MTN2 burned sites than controls. Mat-forming perennial forb yields declined by 80 ? 90% after burning compared with controls. Cheatgrass yield increased in burned WYOBAS and MTN2 communities and at the end of the study represented 10% and 22% of total yield, respectively. Annual forbs increased with burning and were mainly composed of native species in MTN1 and MTN2 communities and non-natives in WYOBAS communities. Forage availability for livestock and wild ungulates more than doubled after burning. The additional forage provided on burned areas affords managers greater flexibility to rest and treat additional sagebrush steppe where juniper is expanding, as well as rest or defer critical seasonal habitat for wildlife.  相似文献   

14.
It has recently been proposed that the cost of rehabilitating medusahead (Taeniatherum caput-medusae [L.] Nevski)–invaded rangelands may be reduced by concurrently seeding desired vegetation and applying the preemergent herbicide imazapic. However, the efficacy of this “single-entry” approach has been inconsistent, and it has not been compared to the multiple-entry approach where seeding is delayed 1 yr to decrease herbicide damage to nontarget seeded species. We evaluated single- and multiple-entry approaches in medusahead-invaded rangelands in southeastern Oregon with seeding for both approaches occurring in October 2011. Before seeding and applying herbicide, all plots were burned to improve medusahead control with imazapic and prepare the seedbed for drill seeding–introduced perennial bunchgrasses. Both approaches effectively controlled medusahead during the 2 yr postseeding. However, almost no seeded bunchgrasses established with the single-entry treatment (< 0.5 individals · m-2), probably as a result of nontarget herbicide mortality. Perennial grass cover and density in the single-entry treatment did not differ from the untreated control. In contrast, the multiple-entry treatment had on average 6.5 seeded bunchgrasses · m-2 in the second year postseeding. Perennial grass (seeded and nonseed species) cover was eight times greater in the multiple-entry compared to the single-entry treatment by the second year postseeding. These results suggest that the multiple-entry approach has altered the community from annual-dominated to perennial grass–dominated, but the single-entry approach will likely be reinvaded and dominated medusahead without additional treatments because of a lack of perennial vegetation.  相似文献   

15.
Treatments to reduce shrub cover are commonly implemented with the objective of shifting community structure away from shrub dominance and toward shrub and perennial grass codominance. In sagebrush (Artemisia L.) ecosystems, shrub reduction treatments have had variable effects on target shrubs, herbaceous perennials, and non-native annual plants. The factors mediating this variability are not well understood. We used long-term data from Utah’s Watershed Restoration Initiative project to assess short-term (1  4 yr post-treatment) and long-term (5  12 yr post-treatment) responses of sagebrush plant communities to five shrub reduction treatments at 94 sites that span a range of abiotic conditions and sagebrush community types. Treatments were pipe harrow with one or two passes, aerator, and fire with and without postfire seeding. We analyzed effect sizes (log of response ratio) to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush (A. tridentata Nutt. ssp. wyomingensis Beetle & Young) communities, but in mountain big sagebrush (ssp. vaseyana [Rydb.] Beetle) communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses (largely invasive cheatgrass, Bromus tectorum L.) increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.  相似文献   

16.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic annual grass invading western rangelands. Invasion by medusahead is problematic because it decreases livestock forage production, degrades wildlife habitat, reduces biodiversity, and increases fire frequency. Revegetation of medusahead-invaded sagebrush steppe is needed to increase ecosystem and economic productivity. Most efforts to revegetate medusahead-infested plant communities are unsuccessful because perennial bunchgrasses rarely establish after medusahead control. The effects of prescribed burning (spring or fall), fall imazapic application, and their combinations were evaluated for medusahead control and the establishment of seeded large perennial bunchgrasses. One growing season after treatments were applied, desert wheatgrass (Agropyron desertorum [Fisch. ex Link] Schult.) and squirreltail (Elymus elymoides [Raf.] Swezey) were drill seeded into treatment plots, except for the control treatment. Vegetation characteristics were measured for 2 yr postseeding (second and third year post-treatment). Medusahead was best controlled when prescribed burned and then treated with imazapic (P < 0.05). These treatments also had greater large perennial bunchgrass cover and density compared to other treatments (P < 0.05). The prescribed burned followed by imazapic application had greater than 10- and 8-fold more perennial bunchgrass cover and density than the control treatment, respectively. Prescribed burning, regardless of season, was not effective at controlling medusahead or promoting establishment of perennial bunchgrasses. The results of this study question the long-term effectiveness of using imazapic in revegetation efforts of medusahead-infested sagebrush steppe without first prescribed burning the infestation. Effective control of medusahead appears to be needed for establishment of seeded perennial bunchgrasses. The results of this study demonstrate that seeding desert wheatgrass and squirreltail can successfully revegetate rangeland infested with medusahead when medusahead has been controlled with prescribed fire followed by fall application of imazapic.  相似文献   

17.
Fire suppression has led to large fuel accumulations in many regions of the United States. In response to concerns about associated wildfire hazards, land managers in the western United States are carrying out extensive fuel-reduction thinning programs. Although reductions in cover by woody vegetation seem likely to cause changes in herbaceous communities, few published studies have reported on consequences of such treatments for native or exotic plant species. We compared vegetation and abiotic characteristics between paired thinned and unthinned chaparral and oak woodland communities of southwestern Oregon 4–7 yr posttreatment and contrasted impacts of manual vs. mechanical treatments. Herbaceous cover increased on thinned sites, but species richness did not change. Herbaceous communities at thinned sites had an early postdisturbance type of composition dominated by native annual forbs and exotic annual grasses; cover by annuals was nearly twice as high on treated as on untreated sites. Absolute and proportional cover of native annual forbs increased more than any other trait group, whereas exotic annual forbs and native perennial forbs declined. Exotic annual grass cover (absolute and proportional) increased, whereas cover by native perennial grasses did not. Shrub reestablishment was sparse after thinning, probably because of a lack of fire-stimulated germination. Manual and mechanical treatment impacts on abiotic site conditions differed, but differences in vegetation impacts were not statistically significant. Fuel-reduction thinning may have some unintended negative impacts, including expansion of exotic grasses, reductions in native perennial species cover, persistent domination by annuals, and increased surface fuels. Coupled with sparse tree or shrub regeneration, these alterations suggest that ecological-state changes may occur in treated communities. Such changes might be mitigated by retaining more woody cover than is currently retained, seeding with native perennials after treatment, or other practices; further research is needed to inform management in these ecosystems.  相似文献   

18.
Increased cover of perennial grasses and forbs would increase the wildlife and forage value of many Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities, as well as increase their resistance to weeds. We compared six mechanical treatments in conjunction with seeding a Wyoming big sagebrush community in northern Utah over a 10-yr period. The treatments included disk plow followed by land imprinter, one-way Ely chain, one- and two-way pipe harrow, all applied in fall, and meadow aerator applied in fall and spring. A mixture of native and introduced grasses and forbs was broadcast seeded at 18.3 kg PLS ha? 1 after the disk and before the imprinter and all other treatments. The experiment was installed in three randomized blocks, and density and cover data were collected before treatment in 2001 and 1, 2, 5, and 10 yr after treatment. All treatments initially reduced sagebrush and residual herbaceous cover and increased seeded species cover compared with the untreated control. By 10 yr after treatment, sagebrush cover was 24.5% ± 0.35% on the control, 1.6% ± 0.28% on the disk imprinter treatment, and 11.7% ± 0.79% on all other treatments. At that time, seeded grass cover was 16.5% ± 1.22% on the disk imprinter treatment and an average of 2% ± 0.1% on all other mechanical treatments. Sagebrush seedlings were recruited in all of the mechanical treatments, but least in the disk imprinter treatment. After 10 yr, the untreated control was dominated by decadent sagebrush and rabbitbrush, the disk imprinter treatment was dominated by seeded perennial grasses, and the other mechanical treatments shared dominance of sagebrush and native perennial grasses. Mechanical treatments changed the composition of this community while retaining sagebrush, but greatest understory increases were associated with greatest control of sagebrush and establishment of seeded species by disk imprinting.  相似文献   

19.
Managers reduce piñon (Pinus spp.) and juniper (Juniperus spp.) trees that are encroaching on sagebrush (Artemisia spp.) communities to lower fuel loads and increase cover of desirable understory species. All plant species in these communities depend on soil water held at &spigt; -1.5 MPa matric potential in the upper 0.3 m of soil for nutrient diffusion to roots and major growth in spring (resource growth pool). We measured soil water matric potentials and temperatures using gypsum blocks and thermocouples buried at 0.01–0.3 m on tree, shrub, and interspace microsites to characterize the seasonal soil climate of 13 tree-encroached sites across the Great Basin. We also tested the effects of initial tree infilling phase and tree control treatments of prescribed fire, tree cutting, and tree shredding on time of available water and soil temperature of the resource growth pool on nine sites. Both prescribed fire and mechanical tree reduction similarly increased the time that soil water was available (matric potential &spigt; -1.5 MPa) in spring, but this increase was greatest (up to 26 d) when treatments were applied at high tree dominance. As plant cover increased with time since treatment, the additional time of available water decreased. However, even in the fourth year after treatment, available water was 8.6 d and 18 d longer on treatments applied at mid and high tree dominance compared to untreated plots, indicating ongoing water availability to support continued increases in residual plants or annual invaders in the future. To increase resistance to invasive annual grasses managers should either treat at lower or mid tree dominance when there is still high cover of desirable residual vegetation or seed desirable species to use increased resources from tree reduction. This strategy is especially critical on warmer sites, which have high climate suitability to invasive species such as cheatgrass (Bromus tectorum L.)  相似文献   

20.
There has been increasing interest in the use of summer fires to limit woody plant encroachment on grasslands, but information regarding effects of such fires on perennial grass recovery and annual forb production is also needed. Our objective was to examine effects of fire seasonality and intensity on the woody legume honey mesquite (Prosopis glandulosa Torr.), the C4 midgrass tobosagrass (Pleuraphis mutica Buckl.), and the annual forb common broomweed (Amphiachyris dracunculoides [DC.] Nutt.). Treatments included summer fires, high-intensity winter fires, low-intensity winter fires, and no burn in replicated plots. None of the fire treatments caused whole-plant mortality (root kill) in mesquite. Mesquite aboveground mortality (top kill) was much greater after summer and high-intensity winter fires than low-intensity winter fires. Tobosagrass total yield (live + dead) was lower following summer fires and was not enhanced by any of the fire treatments for two growing seasons postfire when compared to the no-burn condition. However, tobosagrass live yield was 40% greater in the high-intensity winter fire treatment than the no-burn condition the first summer postfire and recovered in the other fire treatments by the end of the first growing season postfire. Tobosagrass percentage of live tissue was greatest in the summer fire treatment at the end of each of the two growing seasons postfire. Common broomweed cover increased in the summer fire treatment and decreased in both winter fire treatments relative to the no-burn condition by the end of the first growing season postfire. Summer fire offered no clear advantage over high-intensity winter fire with respect to mesquite suppression. However, the increase in late-season tobosagrass percentage live tissue caused by summer fire may be advantageous for forage quality. In addition, patch burning summer fires to increase broomweed cover in selected areas may be useful for wildlife habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号