首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elevations and ages of a sequence of three uplifted Pleistocene coral reefs on the Northwest Peninsula of Haiti have been determined. With the assignment of a sea level of +6 meters (relative to the present day) at 130,000 years before present and constant uplift of the reefs, the data indicate that sea level stood -10 and -13 meters at 108,000 and 81,000 years before present, respectively. These results are in substantial agreement with those reported for Barbados and New Guinea and support the hypothesis of constant uplift for each area. Sea level data from raised reefs indicate that the interglacial marine oxygen isotope oscillations during oxygen isotope stage 5 are a result of 30 percent ice volume effects and 70 percent temperature effects.  相似文献   

2.
Hydrographic time-series data recorded during the past 42 years in the upper 500 meters off the coast of southern California indicate that temperatures have increased by 0.8 degrees C uniformly in the upper 100 meters and that temperatures have risen significantly to depths of about 300 meters. The effect of warming the surface layer of the ocean and there by expanding the water column has been to raise sea level by 0.9 +/- 0.2 millimeter per year. Tide gauge records along the coast are coherent with steric height and show upward trends in sea level that vary from about 1 to 3 millimeters per year.  相似文献   

3.
A curve is constructed showing changes in sea level at the Santa Monica shelf over the past 18,000 years. The curve is based on radiocarbon dates, sedimentologic data, and high-resolution seismic stratigraphic analysis of late Quaternary terrace deposits. Sea level was 117 meters below its present position about 18,000 years ago. During the first 8000 years of the Flandrian transgression, sea level rose to at least 24 meters, fell to about 46 meters, and then rose to 20 meters, all below present sea level. Subsequently, sea level rose more slowly and without discernible interruption to its present position.  相似文献   

4.
Extensive dating of the fossil corals associated with the Waimanalo shoreline on Oahu has shown that 120,000 years ago the ocean was approximately 7.6 meters above its present level. Corals grown during that time constitute a major portion of the subaerial reef-derived material on the island, with exposures ranging from about 10 meters to near sea level. This evidence corroborates the notion that 120,000 years before the present was the last time during which the sea stood significantly higher than it does today. The reported benches at 3.7, 1.5, and 0.6 meters, if not of Recent origin, could be features created by brief halts of the sea during rapid regression shortly after the Waimanalo high stand.  相似文献   

5.
Uranium-series dating of corals from marine deposits of the U.S. Atlantic Coastal Plain coupled with paleoclimatic reconstructions based on ostracode (marine) and pollen (continent) data document at least five relatively warm intervals during the last 500,000 years. On the basis of multiple paleoenvironmental criteria, we determined relative sea level positions during the warm intervals, relative to present mean sea level, were 7 +/- 5 meters at 188,000 years ago, 7.5 +/- 1.5 meters at 120,000 years ago, 6.5 +/- 3.5 meters at 94,000 years ago, and 7 +/- 3 meters at 72,000 years ago. The composite sea level chronology for the Atlantic Coastal Plain is inconsistent with independent estimates of eustatic sea level positions during interglacial intervals of the last 200,000 years. Hydroisostatic adjustment from glacial-interglacial sea level fluctuations, lithospheric flexure, and isostatic uplift from sediment unloading due to erosion provide possible mechanisms to account for the discrepancies. Alternatively, current eustatic sea level estimates for the middle and late Quaternary may require revision.  相似文献   

6.
About 140,000 years ago, the breakup of large continental ice sheets initiated the Last Interglacial period. Sea level rose and peaked around 135,000 years ago about 14 meters below present levels. A record of Last Interglacial sea levels between 116,000 years to 136, 000 years ago is preserved at reef VII of the uplifted coral terraces of Huon Peninsula in Papua New Guinea. However, corals from a cave situated about 90 meters below the crest of reef VII are 130, 000 +/- 2000 years old and appear to have grown in conditions that were 6 degreesC cooler than those at present. These observations imply a drop in sea level of 60 to 80 meters. After 130,000 years, sea level began rising again in response to the major insolation maximum at 126,000 to 128,000 years ago. The early (about 140,000 years ago) start of the penultimate deglaciation, well before the peak in insolation, is consistent with the Devils Hole chronology.  相似文献   

7.
Teeth of mastodons and mammoths have been recovered by fishermen from at least 40 sites on the continental shelf as deep as 120 meters. Also present are submerged shorelines, peat deposits, lagoonal shells, anz relict sands. Evidently elephants and other large mammals ranged this region during the glacial stage of low sea level of the last 25,000 years.  相似文献   

8.
During the last interglacial period, ~125,000 years ago, sea level was at least several meters higher than at present, with substantial variability observed for peak sea level at geographically diverse sites. Speculation that the West Antarctic ice sheet collapsed during the last interglacial period has drawn particular interest to understanding climate and ice-sheet dynamics during this time interval. We provide an internally consistent database of coral U-Th ages to assess last interglacial sea-level observations in the context of isostatic modeling and stratigraphic evidence. These data indicate that global (eustatic) sea level peaked 5.5 to 9 meters above present sea level, requiring smaller ice sheets in both Greenland and Antarctica relative to today and indicating strong sea-level sensitivity to small changes in radiative forcing.  相似文献   

9.
Rapid flooding of the sunda shelf: A late-glacial sea-level record   总被引:4,自引:0,他引:4  
The increase in sea level from the last glacial maximum has been derived from a siliciclastic system on the tectonically stable Sunda Shelf in Southeast Asia. The time from 21 to 14 thousand calendar years before the present has been poorly covered in other records. The record generally confirms sea-level reconstructions from coral reefs. The rise of sea level during meltwater pulse 1A was as much as 16 meters within 300 years (14.6 to 14.3 thousand years ago).  相似文献   

10.
气候变化对马尾松和云南松分布的可能影响   总被引:10,自引:0,他引:10  
该文根据气候变化以及马尾松和云南松的生物学特性,利用Holdridge生命地带分类模型,应用生态信息系统分别预测了两个树种的地理位移趋势.结果表明:到2050年,马尾松分布区的北界将可能由目前的34°N北移到40°N,海拔上限将可能由目前的800m升高到1130m,总面积可能减少260万hm2.云南松可能北移不显著,但可能有东移趋势,分布区的海拔上限将可能由目前的2800m升高到3077m,总面积可能减少221.77万hm2  相似文献   

11.
Lower Cretaceous bulk carbonate from deep sea sediments records sudden inputs of strontium resulting from the exposure of continental shelves. Strontium data from an interval spanning 7 million years in the Berriasian-Valanginian imply that global sea level fluctuated about 50 meters over time scales of 200,000 to 500,000 years, which is in agreement with the Exxon sea level curve. Oxygen isotope measurements indicate that the growth of continental ice sheets caused these rapid sea level changes. If glaciation caused all the rapid sea level changes in the Cretaceous that are indicated by the Exxon curve, then an Antarctic ice sheet may have existed despite overall climatic warmth.  相似文献   

12.
Sneh Y  Klein M 《Science (New York, N.Y.)》1984,226(4676):831-832
Geological, geomorphological, and archeological data of changes in sea level during the Holocene at the Mediterranean coast of Dor provide a eustatic curve of the region. This curve shows that sea level was approximately 2 meters below the present level 4000 years ago, rose to 1 meter below the present level 3000 years ago, and was 1 meter higher than the present level 1500 years ago. It then dropped to 1 meter below the present level about 800 years ago.  相似文献   

13.
Micklin PP 《Science (New York, N.Y.)》1988,241(4870):1170-1176
The Aral Sea in the Soviet Union, formerly the world's fourth largest lake in area, is disappearing. Between 1960 and 1987, its level dropped nearly 13 meters, and its area decreased by 40 percent. Recession has resulted from reduced inflow caused primarily by withdrawals of water for irrigation. Severe environmental problems have resulted. The sea could dry to a residual brine lake. Local water use is being improved and schemes to save parts of the sea have been proposed. Nevertheless, preservation of the Aral may require implementation of the controversial project to divert water from western Siberia into the Aral Sea basin.  相似文献   

14.
A bluff on the eastern coast of Mexico reveals a cross section through an ancient beach deposit now lying 4 meters above sea level. Radio-carbon dates on the shells within the deposit reveal an age of 1940 years. The deposit appears to be valid evidence for submergence greater than that of the present, but whether that submergence was due to a higher eustatic stand of the sea or whether there has been an uplift of the land since that time cannot yet be determined.  相似文献   

15.
Uplifted coral terraces at Huon Peninsula, Papua New Guinea, preserve a record of sea level, sea-surface temperature, and salinity from the penultimate deglaciation. Remnants have been found of a shallow-water reef that formed during a pause, similar to the Younger Dryas, in the penultimate deglaciation at 130,000 +/- 2000 years ago, when sea level was 60 to 80 meters lower than it is today. Porites coral, which grew during this period, has oxygen isotopic values and strontium/calcium ratios that indicate that sea-surface temperatures were much cooler (22 degrees +/- 2 degreesC) than either Last Interglacial or present-day tropical temperatures (29 degrees +/- 1 degreesC). These observations provide further evidence for a major cooling of the equatorial western Pacific followed by an extremely rapid rise in sea level during the latter stages of Termination II.  相似文献   

16.
A chronology of Paleozoic sea-level changes   总被引:4,自引:0,他引:4  
Sea levels have been determined for most of the Paleozoic Era (542 to 251 million years ago), but an integrated history of sea levels has remained unrealized. We reconstructed a history of sea-level fluctuations for the entire Paleozoic by using stratigraphic sections from pericratonic and cratonic basins. Evaluation of the timing and amplitude of individual sea-level events reveals that the magnitude of change is the most problematic to estimate accurately. The long-term sea level shows a gradual rise through the Cambrian, reaching a zenith in the Late Ordovician, then a short-lived but prominent withdrawal in response to Hirnantian glaciation. Subsequent but decreasingly substantial eustatic highs occurred in the mid-Silurian, near the Middle/Late Devonian boundary, and in the latest Carboniferous. Eustatic lows are recorded in the early Devonian, near the Mississippian/Pennsylvanian boundary, and in the Late Permian. One hundred and seventy-two eustatic events are documented for the Paleozoic, varying in magnitude from a few tens of meters to approximately 125 meters.  相似文献   

17.
Thorium-230 ages of emergent marine deposits on Oahu, Hawaii, have a uniform distribution of ages from approximately 114,000 to approximately 131,000 years, indicating a duration for the last interglacial sea-level high stand of approximately 17,000 years, in contrast to a duration of approximately 8000 years inferred from the orbitally tuned marine oxygen isotope record. Sea level on Oahu rose to >/=1 to 2 meters higher than present by 131,000 years ago or approximately 6000 years earlier than inferred from the marine record. Although the latter record suggests a shift back to glacial conditions beginning at approximately 119,000 years ago, the Oahu coral ages indicate a near present sea level until approximately 114,000 years ago.  相似文献   

18.
Moore JG  Moore GW 《Science (New York, N.Y.)》1984,226(4680):1312-1315
Limestone-bearing gravel, the newly named Hulopoe Gravel, blankets the coastal slopes on Lanai. The deposit, which reaches a maximum altitude of 326 meters, formerly was believed to have been deposited along several different ancient marine strandlines, but dated submerged coral reefs and tide-gauge measurements indicate that the southeastern Hawaiian Islands sink so fast that former worldwide high stands of the sea now lie beneath local sea level. Evidence indicates that the Hulopoe Gravel and similar deposits on nearby islands were deposited during the Pleistocene by a giant wave generated by a submarine landslide on a sea scarp south of Lanai.  相似文献   

19.
Sub-sea-floor sediments may contain two-thirds of Earth's total prokaryotic biomass. However, this has its basis in data extrapolation from ~500-meter to 4-kilometer depths, whereas the deepest documented prokaryotes are from only 842 meters. Here, we provide evidence for low concentrations of living prokaryotic cells in the deepest (1626 meters below the sea floor), oldest (111 million years old), and potentially hottest (~100 degrees C) marine sediments investigated. These Newfoundland margin sediments also have DNA sequences related to thermophilic and/or hyperthermophilic Archaea. These form two unique clusters within Pyrococcus and Thermococcus genera, suggesting unknown, uncultured groups are present in deep, hot, marine sediments (~54 degrees to 100 degrees C). Sequences of anaerobic methane-oxidizing Archaea were also present, suggesting a deep biosphere partly supported by methane. These findings demonstrate that the sub-sea-floor biosphere extends to at least 1600 meters below the sea floor and probably deeper, given an upper temperature limit for prokaryotic life of at least 113 degrees C and increasing thermogenic energy supply with depth.  相似文献   

20.
Earth's long-term sea-level history is characterized by widespread continental flooding in the Cretaceous period (approximately 145 to 65 million years ago), followed by gradual regression of inland seas. However, published estimates of the Late Cretaceous sea-level high differ by half an order of magnitude, from approximately 40 to approximately 250 meters above the present level. The low estimate is based on the stratigraphy of the New Jersey margin. By assimilating marine geophysical data into reconstructions of ancient ocean basins, we model a Late Cretaceous sea level that is 170 (85 to 270) meters higher than it is today. We use a mantle convection model to suggest that New Jersey subsided by 105 to 180 meters in the past 70 million years because of North America's westward passage over the subducted Farallon plate. This mechanism reconciles New Jersey margin-based sea-level estimates with ocean basin reconstructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号