首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doppler-shifted hydrogen Lyman-alpha (Lyα) emission from galaxies is currently measured and used in cosmology as an indicator of star formation. Until now, the Milky Way emission has not been detected, owing to far brighter local sources, including the H (hydrogen) glow, i.e., solar Lyα radiation backscattered by interstellar atoms that flow within the solar system. Because observations from the Voyager spacecraft, now leaving the heliosphere, are decreasingly affected by the H glow, the ultraviolet spectrographs are detecting Lyα diffuse emission from our Galaxy. The surface brightness toward nearby star-forming regions is about 3 to 4 rayleighs. The escape fraction of the radiation from the brightest H II regions is on the order of 3% and is highly spatially variable. These results will help in constraining models of Lyα radiation transfer in distant galaxies.  相似文献   

2.
A rocket-borne photometer has detected far ultraviolet night glow radiations that are identified as Lyman-beta (HI 1026 angstroms), and the helium lines at 304 or 584 angstroms, or at both. At an altitude of 227 kilometers the measured intensity for Lyman-beta was about 10 rayleighs. The discrimination characteristics of the broad-band helium radiation filter give helium line intensities, at 227 kilometers, of 4.8 and 12 rayleighs, respectively, pending identification of the wavelength of the radiation as 304 or 584 angstroms. These ultraviolet radiations appear sufficient to maintain the night E and F(1) regions of the ionosphere.  相似文献   

3.
Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S III, S IV, and O III indicating an electron temperature of 10(5) K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (>/= 1000 K) wvith a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.  相似文献   

4.
Much has been learned about the electromagnetic interaction between Jupiter and its satellite Io from in situ observations. Io, in its motion through the Io plasma torus at Jupiter, continuously generates an Alfvén wing that carries two billion kilowatts of power into the jovian ionosphere. Concurrently, Io is acted upon by a J x B force tending to propel it out of the jovian system. The energy source for these processes is the rotation of Jupiter. This unusual planet-satellite coupling serves as an archetype for the interaction of a large moving conductor with a magnetized plasma, a problem of general space and astrophysical interest.  相似文献   

5.
Results from the occultation of the sun by Neptune imply a temperature of 750 +/- 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman alpha (340 +/- 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 +/- 5 kelvins, and the surface pressure is roughly 14 microbars.  相似文献   

6.
A rocket-borne spectrograph detected H I Lyman alpha emission from the disk of Saturn and from the vicinity of the planet. The signal is consistent with an emission brightness of 700 rayleighs for the disk and 200 rayleighs for the vicinity of Saturn. The emission from the vicinity of the planet may be due to a hydrogen atmosphere associated with the saturnian ring system.  相似文献   

7.
The global hydrogen Lyman alpha, helium (584 angstroms), and molecular hydrogen band emissions from Saturn are qualitatively similar to those of Jupiter, but the Saturn observations emphasize that the H(2) band excitation mechanism is closely related to the solar flux. Auroras occur near 80 degrees latitude, suggesting Earth-like magnetotail activity, quite different from the dominant Io plasma torus mechanism at Jupiter. No ion emissions have been detected from the magnetosphere of Saturn, but the rings have a hydrogen atmosphere; atomic hydrogen is also present in a torus between 8 and 25 Saturn radii. Nitrogen emission excited by particles has been detected in the Titan dayglow and bright limb scans. Enhancement of the nitrogen emission is observed in the region of interaction between Titan's atmosphere and the corotating plasma in Saturn's plasmasphere. No particle-excited emission has been detected from the dark atmosphere of Titan. The absorption profile of the atmosphere determined by the solar occultation experiment, combined with constraints from the dayglow observations and temperature information, indicate that N(2) is the dominant species. A double layer structure has been detected above Titan's limb. One of the layers may be related to visible layers in the images of Titan.  相似文献   

8.
Extreme ultraviolet spectral observations of the Jovian planetary system made during the Voyager 2 encounter have extended our knowledge of many of the phenomena and physical processes discovered by the Voyager 1 ultraviolet spectrometer. In the 4 months between encounters, the radiation from Io's plasma torus has increased in intensity by a factor of about 2. This change was accompanied by a decrease in plasma temperature of about 30 percent. The high-latitude auroral zones have been positively associated with the magnetic projection of the plasma torus onto the planet. Emission in molecular hydrogen bands has been detected from the equatorial regions of Jupiter, indicating planetwide electron precipitation. Hydrogen Lyman alpha from the dark side of the planet has been measured at an intensity of about 1 kilorayleigh. An observation of the occultation of alpha Leonis by Jupiter was carried out successfully and the data are being analyzed in detail.  相似文献   

9.
Preliminary analyses of Doppler data from Pioneer 10 during its encounter with Jupiter indicate that the mass of Io is about 20 percent greater than previously thought and that Io's mean density is about 3.5 grams per cubic centimeter. A determination of the dynamical flattening of Jupiter (a - b)/a (where a is the semimajor axis and b is the semiminor axis) is found to lie in the neighborhood of 0.065, which agrees with the value determined from satellite perturbations.  相似文献   

10.
Infrared observations of Io during the 1986 apparition of Jupiter indicate that a large eruptive event occurred on the leading side of Io on 7 August 1986, Universal Time. Measurements made at 4.8, 8.7, and 20 micrometers suggest that the source of the event was about 15 kilometers in radius with a model temperature of approximately 900 Kelvin. Together with previously reported events, these measurements indicate that high-temperature volcanic activity on the leading side of Io may be more frequent than previously thought. The inferred temperature is significantly above the boiling point of sulfur in a vacuum(715 Kelvin) and thus constitutes strong evidence for active silicate volcanism on the surface of Io.  相似文献   

11.
Spectroscopy of Io's Pele plume against Jupiter by the Hubble Space Telescope in October 1999 revealed absorption due to S2 gas, with a column density of 1.0 +/- 0.2 x 10(16) per square centimeter, and probably also SO(2) gas with a column density of 7 +/- 3 x 10(16) per square centimeter. This SO2/S2 ratio (3 to 12) is expected from equilibration with silicate magmas near the quartz-fayalite-magnetite or wüstite-magnetite buffers. Condensed S3 and S4, probable coloring agents in Pele's red plume deposits, may form by polymerization of the S2, which is unstable to ultraviolet photolysis. Diffuse red deposits near other Io volcanoes suggest that venting and polymerization of S2 gas is a widespread feature of Io volcanism.  相似文献   

12.
Two sets of ultraviolet images of the Jovian north aurora were obtained with the Faint Object Camera on board the Hubble Space Telescope. The first series shows an intense discrete arc in near corotation with the planet. The maximum apparent molecular hydrogen emission rate corresponds to an electron precipitation of approximately 1 watt per square meter, which is about 30,000 times larger than the solar heating by extreme ultraviolet radiation. Such a particle heating rate of the auroral upper atmosphere of Jupiter should cause a large transient temperature increase and generate strong thermospheric winds. Twenty hours after initial observation, the discrete arc had decreased in brightness by more than one order of magnitude. The time scale and magnitude of the change in the ultraviolet aurora leads us to suggest that the discrete Jovian auroral precipitation is related to large-scale variations in the current system, as is the case for Earth's discrete aurorae.  相似文献   

13.
Neutral sodium emissions encircling Jupiter exhibit an intricate and variable structure that is well matched by a simple loss process from Io's atmosphere. These observations imply that fast neutral sodium is created locally in the Io plasma torus, both near Io and as much as 8 hours downstream. Sodium-bearing molecules may be present in Io's upper atmosphere, where they are ionized by the plasma torus and swept downstream. The molecular ions dissociate and dissociatively recombine on a short time scale, releasing neutral fragments into escape trajectories from Jupiter. This theory explains a diverse set of sodium observations, and it implies that molecular reactions (particularly electron impact ionization and dissociation) are important at the top of Io's atmosphere.  相似文献   

14.
Brown RA  Ip WH 《Science (New York, N.Y.)》1981,213(4515):1493-1495
Several recent developments have implications for the neutral particle environment of Jupiter. Very hot sulfur ions have been detected in the Io torus with gyrospeeds comparable to the corotation speed, a phenomenon that would result from a neutral sulfur cloud. Current evidence supports the hypothesis that extensive neutral clouds of oxygen and sulfur exist in the Jupiter magnetosphere and that they are important sources of ions and energy for the Io torus.  相似文献   

15.
The preliminary analysis of data from the Pioneer 10 S-band radio occultation experinment has revealed the presence of an ionosphere on the Jovian satellite Io (JI) having an electron density peak of about 6 x 10(4) electrons per cubic centimeter at an altitude of approximately 60 to 140 kilometers. This suggests the presence of an atmosphere having a surface number density of about 10(10) to 10(12) per cubic centimeter, corresponding to an atmospheric surface pressure of between 10(-8) and 10(-10) bar, at or below the detection threshold of the Beta Scorpii stellar occultation. A measurement of the atmosphere of Jupiter was obtained down to the level of about 80 millibars, indicating a large temperature increase at about the 20 millibar level, which cannot be explained by the absorption of solar radiation by methane alone and can possibly be due to absorption by particulate matter.  相似文献   

16.
The plasma and field perturbations of magnetospheres that would surround magnetized galilean satellites embedded in the corotating jovian plasma differ from those produced by interaction with an unmagnetized conductor. If the intrinsic satellite dipole is antiparallel to that of Jupiter, the magnetosphere will be open. It is predicted that Io has an internal magnetic field with a dipole moment of 6.5 x 10(22) gauss-cubic centimeters antiparallel to Jupiter's, and Io's special properties can be interpreted on the basis of a reconnecting magnetosphere.  相似文献   

17.
Recent infrared radiometric observations of Jupiter have disclosed local temperatures in the North Equatorial Belt far in excess of those at the level of the solid ammonia clouds, and visual observations reveal an orange-brown coloration within this belt. We suggest that, in a multilayer cloud model, solar ultraviolet photolysis of hydrogen sulfide in regions where ammonia clouds are sparse or absent should lead to the production of substantial quantities of inorganic chromophores.  相似文献   

18.
Understanding the origin of the orbital resonances of the Galilean satellites of Jupiter will constrain the longevity of the extensive volcanism on Io, may explain a liquid ocean on Europa, and may guide studies of the dissipative properties of stars and Jupiter-like planets. The differential migration of the newly formed Galilean satellites due to interactions with a circumjovian disk can lead to the primordial formation of the Laplace relation n(1) - 3n(2) + 2n(3) = 0, where the n(i) are the mean orbital angular velocities of Io, Europa, and Ganymede, respectively. This contrasts with the formation of the resonances by differential expansion of the orbits from tidal torques from Jupiter.  相似文献   

19.
Hubble Space Telescope imaging observations of two nearby brown dwarfs, DENIS-P J1228.2-1547 and Kelu 1, made with the near-infrared camera and multiobject spectrometer (NICMOS), show that the DENIS object is resolved into two components of nearly equal brightness with a projected separation of 0.275 arc second (5 astronomical units for a distance of 18 parsecs). This binary system will be able to provide the first dynamical measurement of the masses of two brown dwarfs in only a few years. Upper limits to the mass of any unseen companion in Kelu 1 yield a planet of 7 Jupiter masses aged 0. 5 x 10(9) years, which would have been detected at a separation larger than about 4 astronomical units. This example demonstrates that giant planets could be detected by direct imaging if they exist in Jupiter-like orbits around nearby young brown dwarfs.  相似文献   

20.
Io: an intense brightening near 5 micrometers   总被引:1,自引:0,他引:1  
Spectrophotometric observations of the jovian satellite Io on 20 and 21 February 1978 (Universal Time) were made from 1.2 to 5.4 micrometers. Io's brightness at 4.7 to 5.4 micrometers was found to be three to five times greater at an orbital phase angle of 68 degrees than at orbital phase angles of 23 degrees (5.5 hours before the brightening) and 240 degrees (20 hours after the brightening). Since the 5-micrometer albedo of Io is near unity under ordinary conditions, the observed transient phenomenon must have been the result of an emission mechanism. Although several such mechanisms were examined, the actual choice is not clear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号