首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grain yield of crops can be expressed as a function of the intercepted radiation, the radiation use efficiency and the partitioning of above-ground biomass to grain yield (harvest index). When a wheat crop is grown under P deficiency the grain yield is reduced but it is not clear how these three components are affected. Our aim was (i) to identify which of these components were affected in spring bread wheat under P deficiency at field conditions and (ii) to relate the grain yield responses to processes of grain yield formation during the spike growth period. Three field experiments were conducted in the potentially high wheat yielding environment of southern Chile. All experiments had two levels of P availability: with (155 kg P ha−1) or without P fertilization (average soil P-Olsen concentration of 10 ppm, a medium level of P availability). High wheat grain yields were obtained varying between 815 and 1222 g m−2 with P applications. Experiments showed a grain yield reduction caused by P deficiencies of 35, 16 and 18% in experiments 1, 2 and 3, respectively. This was related (R2 = 0.99, P < 0.01) to a reduction in the total above-ground biomass at harvest and not to the harvest index. Reductions in above-ground biomass were due to a reduction in radiation intercepted under P deficiency without effecting radiation use efficiency. Grain number per square meter was the main yield component (R2 = 0.99, P < 0.01) that explained the grain yield reduction caused by the P deficiency which was due to low spike biomass at anthesis (R2 = 0.96, P < 0.05). The reduction in spike biomass at anthesis was related (R2 = 0.86, P < 0.01) to reductions in crop growth rate during the spike growth period as a consequence of a lower radiation intercepted during this period. This study showed that under high wheat yield conditions the main effect of a P deficiency on grain yield reduction was a negative impact on the total above-ground biomass due to the negative impact on intercepted radiation, particularly during the spike growth period, affecting negatively spike biomass at anthesis and consequently grain number and yield.  相似文献   

2.
Under Mediterranean environments, farmers usually prefer to sow barley rather than wheat as it is generally believed that barley yields more under stressful conditions. As terminal stresses such as high temperature and water are common constraints in Mediterranean regions, higher grain weight stability may confer a clear advantage in order to maintain higher yields. The objective of the present study was to compare the stability in terms of grain weight and its components for barley, bread wheat, and durum wheat, exploring a wide range of nitrogen and water availabilities in experiments conducted in a Mediterranean region. Grain weight ranged from 23.8 to 47.7 mg grain−1, being higher for durum wheat than barley and bread wheat. Durum wheat presented higher variability both in maximum grain filling rate and duration of grain filling period than bread wheat or barley. The three species responded similarly in terms of grain nitrogen content to changes in the environmental conditions explored. It is concluded that in terms of grain weight barley is as stable as bread wheat. However, durum wheat presented a lower stability than barley and bread wheat.  相似文献   

3.
Source or sink limitation of grain filling in cereals is often inferred from experiments in which the source:sink ratio is manipulated by shading, defoliation or grain removal. However, interpretation of this type of experiment is usually qualitative rather than quantitative in nature and the extent of any imbalance between the source and sink is not known. The objectives of the current work were: (1) to provide a detailed analysis of radiation interception, radiation-use efficiency (RUE) and carbohydrate storage reserves in winter barley in order to quantify the potential supply of photosynthates for grain filling; (2) to estimate the variation in source–sink balance between environments. Field experiments were conducted on cv Pearl at six sites in the UK and over 3 years. Crops were grown under a comparable husbandry regime at each site and received a full fertilizer and crop protection programme. When the cumulative interception of post-anthesis photosynthetically active radiation (PAR) was plotted against the increase in biomass to determine RUE, the pattern of response differed between sites and years; for some site/years the response was linear, for others it was non-linear where RUE decreased during the latter stages of grain filling. The extent and statistical significance of non-linearity was determined from the quadratic term of fitted 2nd order polynomials. There was no significant association between climatic variables, such as temperature, radiation or rainfall, and the value of the quadratic term of RUE. Neither could non-linearity of RUE be explained in terms of the shedding of leaf tissue during canopy senescence. There were weak associations (r2 < 0.3) between the extent of non-linearity and green area index (GAI), above-ground biomass, and specific leaf N, at ear emergence (Zadoks GS 59). A much stronger relationship (r2 = 0.63) was found between the source:sink ratio (green area per grain) at GS 59 and non-linearity of RUE. These results suggest that a major factor leading to the reduction in RUE during the second half of grain filling at some sites was feedback inhibition from a limited sink capacity. This conclusion is supported by a fairly strong positive association between RUE non-linearity and the apparent contribution of stem carbohydrate reserves to grain yield (r2 = 0.47). The potential assimilate supply for grain filling was estimated as (maximum post-anthesis RUE × PAR intercepted) + stem soluble carbohydrate reserves at GS 59. The potential supply exceeded the measured yield at all sites except one implying that crops were predominantly sink limited. The size of the excess, which is a measure of the relative source–sink balance during grain filling, differed widely between site/years.  相似文献   

4.
《Crop Protection》1988,7(5):338-343
Sixty-four cultivars and strains of cereals were evaluated under field conditions for differential feeding by grasshoppers, (Orthoptera:: Acrididae) and for their resistance to foliar disease. Grasshoppers actively fed on all triticale and durum wheat lines, on 11 of 12 bread wheat lines, and on 11 of 24 barley lines. Both the incidence and severity of foliar disease were high in all cereals. There was no correlation between grasshopper damage and resistance to foliar disease (r+ −0·059) in the barley but a positive trend appeared in wheat lines (bread r= +0·487; durum r= +0·295). The data suggest that present trends in breeding disease-resistant cereal cultivars will not introduce increased susceptibility to grasshopper damage.  相似文献   

5.
Several studies have been conducted to evaluate the response of crops, especially temperate cereals, to different source–sink ratios during grain filling. However, there is much less information about temperate legumes and even less work comparing the two. The objective of this study was to evaluate the response of both grain yield and grain nitrogen concentration of wheat (Triticum aestivum L.), narrow-leafed lupin (Lupinus angustifolius L.) and pea (Pisum sativum L.) to similar source reduction during grain filling. Two field experiments were conducted in a high yielding environment of Southern Chile. In experiment 1 wheat and narrow-leafed lupin were grown for two consecutive years. Experiment 2 evaluated wheat and pea on two sowing dates. In both experiments a reduction in the source–sink ratio was imposed by using black nets that intercepted 90% of the incident solar radiation from the commencement of the linear dry matter accumulation to physiological maturity. Grain yield was differentially (p < 0.01) decreased by the source reduction in lupin (98%), wheat (63%) and pea (26%). Given that these experiments were carried out in a high yielding environment, the higher response of wheat relative to previous studies supports the hypothesis that the higher the yield potential, the higher the source sensitivity of this crops during the grain filling period. On the other hand, source reduction positively affected (p < 0.05) grain nitrogen concentration in wheat (66%) and pea (18%) but negatively affected lupin (40%). The higher sensitivity of grain yield compared to that of grain nitrogen yield was the cause of the positive effect of the lower source–sink ratio recorded in wheat and pea. In contrast, source shortage in lupin decreased grain nitrogen concentration probably as result of the quick response of grain growth to source limitation. The contrasting sensitivities of lupin, wheat and pea to source reduction during grain filling prevent us to see grain yield and quality response of these crops as separate groups, i.e. temperate cereals vs. temperate legumes.  相似文献   

6.
The concept of aerobic culture is to save water resource while maintaining high productivity in irrigated rice ecosystem. This study compared nitrogen (N) accumulation and radiation use efficiency (RUE) in the biomass production of rice crops in aerobic and flooded cultures. The total water input was 800–1300 mm and 1500–3500 mm in aerobic culture and flooded culture, respectively, and four high-yielding rice cultivars were grown with a high rate of N application (180 kg N ha−1) at two sites (Tokyo and Osaka) in Japan in 2007 and 2008. The aboveground biomass and N accumulation at maturity were significantly higher in aerobic culture (17.2–18.5 t ha−1 and 194–233  kg N ha−1, respectively) than in flooded culture (14.7–15.8 t ha−1 and 142–173 kg N ha−1) except in Tokyo in 2007, where the surface soil moisture content frequently declined. The crop maintained higher N uptake in aerobic culture than in flooded culture, because in aerobic culture there was a higher N accumulation rate in the reproductive stage. RUE in aerobic culture was comparable to, or higher than, that in flooded culture (1.27–1.50 g MJ−1 vs. 1.20–1.37 g MJ−1), except in Tokyo in 2007 (1.30 g MJ−1 vs. 1.37 g MJ−1). These results suggest that higher biomass production in aerobic culture was attributable to greater N accumulation, leading to higher N concentration (N%) than in flooded culture. Cultivar differences in response to water regimes were thought to reflect differences in mainly (1) early vigor and RUE under temporary declines in soil moisture in aerobic culture and (2) the ability to maintain high N% in flooded culture.  相似文献   

7.
Over time, the relative effect of elevated [CO2] on the photosynthesis and dry matter (DM) production of rice crops is likely to be changed with increasing duration of CO2 exposure. However, there is no systemic information on interactive effects of elevated [CO2] and nitrogen (N) supply on seasonal changes in phosphorus (P) nutrient of rice crops. In order to investigate the interactive effects of these two factors on seasonal changes in plant P concentration, uptake, efficiency and allocation, a free-air CO2 enrichment (FACE) experiment was conducted at Wuxi, Jiangsu, China, in 2001–2003. A japonica cultivar with large panicle was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] and supplied with three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significantly increased shoot P concentration (dry base) over the season, the average responses varied between 7.3% and 16.2%. Shoot P uptake responses to FACE declined gradually with crop development, with average responses of 57%, 51%, 37%, 26% and 11% on average during the growth periods from transplanting to early-tillering (Period I), early-tillering to mid-tillering (Period II), mid-tillering to panicle initiation (Period III), panicle initiation to heading (Period IV) and heading to grain maturity (Period V), respectively. Seasonal changes in shoot P uptake ratio (i.e., the ratio of shoot P uptake during a given growth period to final shoot P acquisition at grain maturity) responses to FACE followed a similar pattern to that of shoot P uptake, with average responses of 19%, 14%, 3%, −5% and −16% in Periods I, II, III, IV and V of the growth period, respectively. As a result, FACE enhanced shoot P uptake by 33% at grain maturity. P allocation patterns among above-ground organs were not altered by FACE before heading, but it was modified after heading, with a shift in P allocation patterns towards vegetative organ. FACE resulted in the significant decrease in P-use efficiency for biomass across the season and P-use efficiency for grain yield and P harvest index at grain maturity. Generally, there were no interactions between [CO2] and N supply on above P nutrient variables measured. Data from this study has important implications for P management in rice production systems under future elevated [CO2] conditions.  相似文献   

8.
In the absence of serious post-anthesis stress, the potential supply of assimilates for grain filling in barley appears to exceed the storage (sink) capacity of the grains. The sink capacity is a function of the number of grains per unit land area and their potential size. In order to investigate the contribution of pre and early post-anthesis factors in the control of potential grain weight, regression analysis has been used to analyse data from field experiments conducted on winter barley crops cv. Pearl grown at six sites across the UK between 2002 and 2004. Crops were grown under a comparable husbandry regime with a full crop protection, growth regulator and fertilizer programme. The mean grain weight (MGW) varied from 35 to 46 mg at 100% dry matter over 17 site/year combinations. The variation in MGW between site/years was associated with differences in the rate rather than the duration of grain filling. MGW did not relate well to any measure of above ground growth or crop structure at ear emergence (Zadoks GS59). There was a significant positive linear relationship between MGW and the amount of radiation (PAR) intercepted per unit grain number between ear emergence and the start of rapid grain filling (r2 = 0.32, P = 0.023), but not over the whole grain filling period. This is consistent with the view that MGW is determined by potential grain size. A multiple regression model comprising five explanatory variables accounted for a much larger proportion of the total variation in MGW (r2 = 0.72, P = 0.013) than PAR interception on its own. There were significant positive associations of MGW with post-anthesis radiation use efficiency and PAR intercepted from GS59 to the start of rapid grain growth (RGG), and significant negative associations with the shoot number per plant, mean air temperature from GS39–59 and mean daily rainfall from GS59-RGG. The results suggest that both pre and post-anthesis conditions operate in concert to determine the potential grain weight of barley in temperate climates. The dry weight and water content of grains and ears followed a common pattern during grain growth for all site/years when the percentage moisture content was used as an index to normalise different rates of development. Use of the above data for predicting potential grain weight of barley prior to harvest is discussed.  相似文献   

9.
Soil acidity and Al toxicity are highly extended in agricultural lands of Chile, especially where wheat is widely sown. To evaluate quantitatively the response of wheat biomass and its physiological determinants (intercepted radiation and radiation use efficiency) to Al toxicity, two field experiments were conducted in an Andisol in Valdivia (39°47′S, 73°14′W), Chile, during the 2005–2006 and 2006–2007 growing seasons. Treatments consisted of a factorial arrangement of: (i) two spring wheat cultivars with different sensitivity to Al toxicity (the sensitive cultivar: Domo.INIA and the tolerant cultivar: Dalcahue.INIA) and (ii) five exchangeable Al levels (from 0 to 2.7 cmol(+) kg−1) with three replicates. Crop phenology and intercepted radiation (IR) were registered during the entire crop cycle, while 10 samples of above-ground biomass were taken at different stages between double ridge and maturity. Both biomass and leaf area index (LAI) were recorded in these 10 stages. Radiation use efficiency (RUE) was calculated as the slope of the relationship between accumulated above-ground biomass and accumulated photosynthetically active radiation intercepted by the canopy (IPARa). Crop phenology was little affected by soil Al treatments, showing only up to 17 days delay in the Al-sensitive cultivar under extreme Al treatments. Above-ground biomass at harvest was closely associated (R2 = 0.92) with the crop growth rate but no relationship (R2 = 0.14) was found between the crop cycle length. IPARa explained almost completely (R2 = 0.93) the above-ground biomass reached by the crop at harvest under the wide range of soil Al concentrations explored in both experiments. On the other hand, a weaker relationship was found between above-ground biomass and RUE. The effect of soil Al concentration on IPARa was mainly explained by LAI as a single relationship (R2 = 0.93) between IR (%) and LAI at maximum radiation interception showing a common light attenuation coefficient (k = 0.33).  相似文献   

10.
CIMMYT hexaploid spring wheat (Triticum aestivum L.) germplasm has played a global role in assisting wheat improvement. This study evaluated four classes of CIMMYT germplasm (encompassing a total of 273 lines), along with 15 Australian cultivars (Oz lines) for grain yield, yield components and physiological traits in up to 27 environments in Australia's north-eastern region, where terminal drought frequently reduces grain yield and grain size.Broadly-adapted CIMMYT germplasm selected for grain yield had greater yield potential and improved performance under drought stress, being up to 5% greater yielding in High-yielding (mean yield 429 g m−2) and 4-10% greater yielding than adapted Oz lines in Low-yielding environments (mean yield 185 g m−2). Whilst maintaining statistically similar harvest index and spikes m−2 compared to broadly-adapted Oz lines across all environments, sets of selected CIMMYT lines had greater canopy temperature depression (0.18-0.27 °C), dry weight stem−1 (0.20-0.37 g), increased grains spike−1 (0.8-3.4 grains), grain number m−2 (ca. 20-800 grains), and maturity biomass (56-83 g m−2). Compared to selected Oz lines, broadly-adapted CIMMYT lines had a smaller reduction in Low compared to High-yielding environments for these traits, especially dry weight stem−1, such that CIMMYT lines had ca. 25% and 10% greater dry weight stem−1 than the Oz lines in Low- and High-yielding environment groups, respectively. Broadly-adapted CIMMYT germplasm also had slightly higher stem water soluble carbohydrate concentration at anthesis (ca. 6 mg g−1), which contributed to their higher grain weight (ca. 0.5 mg grain−1), and maintained an agronomically appropriate time to anthesis and plant height. Thus current CIMMYT germplasm should be useful donor sources of traits to enrich breeding programs targeting variable production environments where there is a high probability of water deficit during grain filling. However, as multiple traits were important, efficient introgression of these traits in breeding programs will be complex.  相似文献   

11.
The critical crop nitrogen uptake is defined as the minimum nitrogen uptake necessary to achieve maximum biomass accumulation (W). Across a range of crops, the critical N uptake is related to W by a power function with a coefficient less than unity that suggests crop N uptake is co-regulated by both soil N supply and biomass accumulation. However, crop N demand is also often linearly related to the expansion of the leaf area index (LAI) during the vegetative growth period. This suggests that crop N demand could be also linked with LAI extension. In this paper, we develop theory to combine these two concepts within a common framework. The aim of this paper is to determine whether generic relationships between N uptake, biomass accumulation, and LAI expansion could be identified that would be robust across both species and environment types. To that end, we used the framework to analyze data on a range of species, including C3 and C4 ones and mono- and di-cotyledonous crops. All crops were grown in either temperate or tropical and subtropical environments without limitations on N supply. The relationship between N uptake and biomass was more robust, across environment types, than the relationship of LAI with biomass. In general, C3 species had a higher N uptake per unit biomass than C4 species, whereas dicotyledonous species tended to have higher LAI per unit biomass than monocotyledonous ones. Species differences in N uptake per unit biomass were partly associated with differences in LAI and N-partitioning. Consequently the critical leaf-N uptake per unit LAI (specific leaf nitrogen, SLN) was relatively constant across species at 1.8–2.0 g m−2, a value that was close to published data on the critical SLN of new leaves at the top of the canopy. Our results indicate that critical N uptake curves as a function of biomass accumulation may provide a robust platform for simulating N uptake of a species. However, if crop simulation models are to capture the genotypic and environmental control of crop N dynamics in a physiologically functional manner, plant growth has to be considered as the sum of a metabolic (e.g. leaves) and a structural (e.g. stems) compartment, each with its own demand for metabolic and structural N.  相似文献   

12.
Grain protein concentration (GPC) affects wheat nutritional value and several critical parameters for bread and pasta quality. A gene designated Gpc-B1, which is not functional in common and durum wheat cultivars, was recently identified in Triticum turgidum ssp. dicoccoides. The functional allele of Gpc-B1 improves nitrogen remobilization from the straw increasing GPC, but also shortens the grain filling period resulting in reduced grain weight in some genetic backgrounds. We developed isogenic lines for the Gpc-B1 introgression in six hexaploid and two tetraploid wheat genotypes to evaluate its effects on bread-making and pasta quality. In common wheat, the functional Gpc-B1 introgression was associated with significantly higher GPC, water absorption, mixing time and loaf volume, whereas in durum wheat, the introgression resulted in significant increases in GPC, wet gluten, mixing time, and spaghetti firmness, as well as a decrease in cooking loss. On the negative side, the functional Gpc-B1 introgression was associated in some varieties with a significant reduction in grain weight, test weight, and flour yield and significant increases in ash concentration. Significant gene × environment and gene × genotype interactions for most traits stress the need for evaluating the effect of this introgression in particular genotypes and environments.  相似文献   

13.
Intercropping (IC) cereals and legumes could be an option for obtaining forage suitable for ensiling and enabling reduced N fertilization. Two experiments were performed in central Italy with durum wheat (Triticum durum Desf.) and field bean (Vicia faba L. var. minor) grown for forage production in IC and as sole crops (SC) with different N rates (20 and 50 kg ha?1) and row ratios (1:1 and 2:1 cereal/legume). The aims were to assess (i) whether IC is a feasible option to reduce N fertilization; (ii) the best combination of practices to obtain forage suitable for ensiling; and (iii) competition/facilitation effects exerted by field bean on durum wheat. Results showed IC allowed fertilizer‐N reduction and led to improved forage yield with better quality, compared with SC. Land equivalent ratio indicated a high efficiency of the IC, by up to 26% with respect to SC. Field bean was the dominant species of IC, but N fertilization reduced its competitive ability and enhanced that of wheat. In the intercrop fertilized with 50 kg N ha?1, the proportion of the wheat in the herbage (0·34–0·41 of the total dry matter) was sufficient for ensiling of the forage mass. Field bean exerted both competition and facilitation effects on the cereal. N uptake of durum wheat was greater under IC with beans than as wheat SC.  相似文献   

14.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate growth of C3 crops. Although barley is one of the important cereals of the world, little information exists about the effect of elevated [CO2] on grain yield of this crop, and realistic data from field experiments are lacking. Therefore, winter barley was grown within a crop rotation over two rotation cycles (2000 and 2003) at present and elevated [CO2](375 ppm and 550 ppm) and at two levels of nitrogen supply (adequate (N2): 262 kg ha−1 in 1st year and 179 kg ha−1 in 2nd year) and 50% of adequate (N1)). The experiments were carried out in a free air CO2 enrichment (FACE) system in Braunschweig, Germany. The reduction in nitrogen supply decreased seasonal radiation absorption of the green canopy under ambient [CO2] by 23%, while CO2 enrichment had a positive effect under low nitrogen (+8%). Radiation use efficiency was increased by CO2 elevation under both N levels (+12%). The CO2 effect on final above ground biomass was similar for both nitrogen treatments (N1: +16%; N2: +13%). CO2 enrichment did not affect leaf biomass, but increased ear and stem biomass. In addition, final stem dry weight was higher under low (+27%) than under high nitrogen (+13%). Similar findings were obtained for the amount of stem reserves available during grain filling. Relative CO2 response of grain yield was independent of nitrogen supply (N1: +13%; N2: +12%). The positive CO2 effect on grain yield was primarily due to a higher grain number, while changes of individual grain weight were small. This corresponds to the findings that under low nitrogen grain growth was unaffected by CO2 and that under adequate nitrogen the positive effect on grain filling rate was counterbalanced by shortening of grain filling duration.  相似文献   

15.
Crop physiological traits of Liangyoupeijiu, a “super” hybrid rice variety recently bred in China, were compared with those of Takanari and Nipponbare in 2003 and 2004 in Kyoto, Japan. Liangyoupeijiu showed a significantly higher grain yield than Nipponbare in both years, and achieved a grain yield of 11.8 t ha−1 in 2004, which is the highest yield observed under environmental conditions in Kyoto. Liangyoupeijiu had longer growth duration and larger leaf area duration (LAD) before heading, causing larger biomass accumulation before heading than the other two varieties. Liangyoupeijiu had a large number of grains and translocated a large amount of carbohydrates from the vegetative organ to the panicle during the grain filling period. The three yield components measured were panicle weight at heading (P0), the amount of carbohydrates translocated from the leaf and stem to the panicle during the grain filling period (ΔT), and the newly assimilated carbohydrates during grain filling (ΔW). It was found that the sum of P0 and ΔT were strongly correlated with grain yield when all the data (n = 8) were combined (r = 0.876**). However, there was no significant difference in the radiation use efficiency (RUE) of the whole growth period between Liangyoupeijiu and Nipponbare for both years. Even though the growth duration was shorter, Takanari, an indica/japonica cross-bred variety, showed a similar yield to Liangyoupeijiu in both years. The mean RUE of the whole growth period was significantly higher in Takanari, 1.60 and 1.64 g MJ−1 in 2003 and 2004, respectively, than in Liangyoupeijiu, which had a RUE of 1.46 and 1.52 g MJ−1 in 2003 and 2004, respectively. The high grain yield of Takanari was mainly due to its high RUE compared with Liangyoupeijiu and its large P0 and ΔT. Our result showed that the high grain yield of Liangyoupeijiu was due to its large biomass accumulation before heading, which resulted from its large LAD rather than its RUE.  相似文献   

16.
In wheat, the ability to store and remobilise large amounts of stem water soluble carbohydrates (WSC) to grain constitutes a desirable trait to incorporate into germplasm targeted to regions with frequent terminal drought. The main aim of this paper was to examine the relationships between WSC storage, grain number and grain weight across several environments. A small set of recombinant inbred lines (2–4) contrasting in stem WSC were grown in six field trials where water availability, sowing date and/or N level were manipulated, with line yields ranging from 400 to 850 g m−2 across experiments. Biomass, N and WSC concentration (WSCc, mg g−1 dry weight) and amount (WSCa, g m−2) were monitored. A resource-oriented area-based model [Fischer, R.A., 1984. Growth and yield of wheat. In: Smith, W.H., Bante, S.J. (Eds.), Potential Productivity of Field Crops Under Different Environments. International Rice Research Institute, Los Baños, pp. 129–154] and intrinsic rates of organ growth were used to investigate the consequences on grain number of potential competition between spike and stem around flowering.  相似文献   

17.
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the “red edge” of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI–CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m−2) from Zadoks 14–37 with an r2 of 0.97 and RMSE of 0.65 g N m−2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.  相似文献   

18.
Environmental conditions during grain-fill can affect the duration of protein accumulation and starch deposition, and thus play an important role in grain yield and flour quality of wheat. Two bread-, one durum- and one biscuit wheat were exposed to extreme low (−5.5 °C for 3 h) and high (32 °C/15 °C day/night for three days) temperatures during grain filling under controlled conditions for two consecutive seasons. Flour protein content was increased significantly in one bread wheat, Kariega, under heat stress. Cold stress significantly reduced SDS sedimentation in both bread wheats. Kernel weight and diameter were significantly decreased at both stress treatments for the two bread wheats. Kernel characteristics of the biscuit wheat were thermo stable. Kernel hardness was reduced in the durum wheat for the heat treatment. Durum wheat had consistently low SDS sedimentation values and the bread wheat high values. Across the two seasons, the starch content in one bread wheat was significantly reduced by both high and low temperatures, as is reflected in the reduction of weight and diameter of these kernels. In the durum wheat, only heat caused a significant reduction in starch content, which is again reflected in the reduction of kernel weight and diameter.  相似文献   

19.
Two field experiments involving two triticale genotypes and the application of a senescing agent (KI) to simulate the effect of a terminal drought stress were conducted at two sites during 1996. Although protein did not differ between genotypes, significant differences were found in methionine and lysine. The percentage of amino acids in the grain increased linearly with grain-protein content, this relationship being non-linear in the same degree for all amino acids. An inverse relationship (r2=0·803) was found between the rates of carbohydrate and protein accumulation in absence of the senescing agent, indicating competition in the transport of proteins and carbohydrates to the grain. Terminal drought stress induced by KI application increased the amino-acid concentration in the grain, mainly due to a higher protein content. Nevertheless, the amino-acid composition of the protein did not change after this application. The senescing agent significantly reduced dry weight as well as carbohydrate- and protein-accumulation rates in the grain, thus forcing the grain to be filled with carbohydrates assimilated before anthesis. Therefore, the grain-carbohydrate accumulation rate appeared highly dependent (r2=0·884) of the quantity of nonstructrural carbohydrates available at anthesis. The KI treatments could be of value not only for simulating terminal drought, but also for studying protein and carbohydrate accumulation in small-grain cereals.  相似文献   

20.
The objectives of this study are to propose a model for explaining the genotypic and environmental variation in above-ground biomass growth via photosynthesis and respiration processes from transplanting to heading for different rice genotypes grown under a wide range of environments, and to identify the physiological traits associated with genotypic difference in the biomass growth based on model analysis. Cross-locational experiments were conducted with nine different rice genotypes at eight locations in Asia covering a wide climate range under irrigated conditions with sufficient nitrogen application. The crop growth rate observed during the period from transplanting to heading ranged from 3.4 to 19.4 g m−2 d−1 among the genotypes grown at the eight locations. About one-third of the data sets were utilized for model calibration and the remaining sets were used for model validation. An above-ground biomass growth model was developed by integrating processes of single leaf photosynthesis as a function of stomatal conductance and leaf nitrogen content, growth and maintenance respiration and crop development. To rigorously examine the validity of this process model, measured data were input as external variables for leaf area index (LAI) development and leaf nitrogen content per unit leaf area. The model well explained the observed dynamics in above-ground biomass growth (R2 = 0.95*** for validation dataset) of nine rice genotypes grown under a variety of environments in Asia. The model simulation suggested that genotypic difference in the biomass growth was closely related to the difference in the stomatal conductance and leaf nitrogen content, as well as to LAI. This paper proposes the model structure, algorithms and all parameter values contained in the model, and discuss its effectiveness as a component of a more comprehensive model for simulating dynamics of biomass growth, LAI development and nitrogen uptake as a function of genotypic coefficients and environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号