首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
探讨玉米-大豆轮作条件下,降低生产成本、减少环境污染的大豆施肥模式,是目前东北大豆生产需要解决的技术问题。本研究基于建立的玉米-大豆轮作体系设置了5种施肥处理,分别为:T1:玉米施用化肥,大豆不施肥;T2:玉米施用化肥,大豆施用有机肥;T3:玉米施用化肥,大豆施用1/2量的化肥;T4:玉米施用化肥,大豆施用化肥;T5:玉米与大豆所需化肥总量一次性全部施入到玉米种植年份,大豆不施肥。分析了不同施肥模式对大豆不同生育期0~10、10~20、20~30cm土层深度内大豆根系干物质积累、根系形态特征时空变化以及与产量的关系。结果表明,经两个轮作周期,T2处理大豆产量最高为 2959kg·hm-2,比T4处理显著高出7.3%,产量提高主要体现在大豆的株高、主茎节数、单株荚数和单株粒数等性状的改善,而T1、T3、T5处理的大豆产量比T4处理显著低出15.4%,8.5%和5.0%。T2处理显著增加了大豆R6期0~10cm土层的根重密度,比T4处理显著高出42.3%,且与产量呈显著正相关,相关系数为0.655(p < 0.01);T2处理也明显增加了大豆R1期0~10、10~20cm土层以及R6期20~30cm土层的根长密度,分别比T4处理显著高出25.3%、71.3%和27.6%,且与产量呈显著正相关,相关系数为0.692 (p < 0.01)。与T4处理相比,尽管T3处理显著增加了大豆R1期10~20、20~30cm土层的根重密度和R6期10~20cm土层的根长密度及根表面积密度,但均与产量呈显著负相关。T4处理只显著增加R1期单位体积的根表面积,而对大豆根平均直径和其它时期单位体积的根表面积的影响不大。因此,不同施肥措施影响大豆根系特征及其产量的关系问题比较复杂。施用有机肥可通过增加表土层根的重量以及深土层根的长度从而提高大豆的产量。因此在有机肥源供应充足的地区,玉米、大豆两区轮作基础上,玉米收获后秋施15t·hm-2有机肥,是提高大豆产量,降低生产成本,减轻化肥应用负面环境影响的替代措施。  相似文献   

2.
大豆施用有机肥增产效果研究   总被引:1,自引:2,他引:1  
韩秉进  陈渊  赵殿臣 《大豆科学》2001,20(4):305-308
通过化肥 农肥不同用量试验得出 ,大豆产量对土壤的依存率为 74 .9% - 88.6%。施用农肥后明显降低了大豆产量对土壤的依赖程度。单施农肥增产 2 2 .3% - 33.6% ,在施化肥基础上施农肥 ,增产 12 .7% - 17.7%。肥料对大豆的增产作用 ,主要是增加了植株的荚数和粒数  相似文献   

3.
In regions with shallow water tables, ground water may have a positive (water supply) or negative (waterlogging or salinization) impact on crops. Reciprocally, crops can influence ground water, altering water table depth and chemical composition. We quantified these reciprocal influences along natural gradients of groundwater depth in flat sedimentary landscapes of the Inland Pampas occupied by wheat, soybean, and maize during two growing seasons (2006/2007 and 2007/2008). We correlated crop yield and groundwater depth maps at the field level and made direct plant, soil and groundwater observations at the stand level across topographic gradients. Water table level largely accounted for spatial crop yield variation, explaining 20–75% of their variance. An optimum groundwater depth range, where crop yields were highest, was observed for all three crop species analyzed (1.40–2.45 m for maize, 1.20–2.20 m for soybean, and 0.70–1.65 m for wheat). The areas within these optimum bands had yields that were 3.7, 3 and 1.8 times larger than those where the water table was below 4 m for wheat, maize, and soybean, respectively. As groundwater levels become shallower than these depth bands, crop yields declined sharply (∼0.05 kg m−2 on average for every 10 cm increase in water table level), suggesting negative effects of waterlogging, root anoxia and/or salinity. Groundwater levels below these depth bands were associated with gradually declining yields, likely driven by poorer groundwater supply.  相似文献   

4.
Nitrogen uptake,fixation and response to fertilizer N in soybeans: A review   总被引:2,自引:0,他引:2  
Although relationships among soybean (Glycine max [L.] Merr) seed yield, nitrogen (N) uptake, biological N2 fixation (BNF), and response to N fertilization have received considerable coverage in the scientific literature, a comprehensive summary and interpretation of these interactions with specific emphasis on high yield environments is lacking. Six hundred and thirty-seven data sets (site–year–treatment combinations) were analyzed from field studies that had examined these variables and had been published in refereed journals from 1966 to 2006. A mean linear increase of 0.013 Mg soybean seed yield per kg increase in N accumulation in aboveground biomass was evident in these data. The lower (maximum N accumulation) and upper (maximum N dilution) boundaries for this relationship had slopes of 0.0064 and 0.0188 Mg grain kg−1 N, respectively. On an average, 50–60% of soybean N demand was met by biological N2 fixation. In most situations the amount of N fixed was not sufficient to replace N export from the field in harvested seed. The partial N balance (fixed N in aboveground biomass − N in seeds) was negative in 80% of all data sets, with a mean net soil N mining of −40 kg N ha−1. However, when an average estimated belowground N contribution of 24% of total plant N was included, the average N balance was close to neutral (−4 kg N ha−1). The gap between crop N uptake and N supplied by BNF tended to increase at higher seed yields for which the associated crop N demand is higher. Soybean yield was more likely to respond to N fertilization in high-yield (>4.5 Mg ha−1) environments. A negative exponential relationship was observed between N fertilizer rate and N2 fixation when N was applied on the surface or incorporated in the topmost soil layers. Deep placement of slow-release fertilizer below the nodulation zone, or late N applications during reproductive stages, may be promising alternatives for achieving a yield response to N fertilization in high-yielding environments. The results from many N fertilization studies are often confounded by insufficiently optimized BNF or other management factors that may have precluded achieving BNF-mediated yields near the yield potential ceiling. More studies will be needed to fully understand the extent to which the N requirements of soybean grown at potential yields levels can be met by optimizing BNF alone as opposed to supplementing BNF with applied N. Such optimization will require evaluating new inoculant technologies, greater temporal precision in crop and soil management, and most importantly, detailed measurements of the contributions of soil N, BNF, and the efficiency of fertilizer N uptake throughout the crop cycle. Such information is required to develop more reliable guidelines for managing both BNF and fertilizer N in high-yielding environments, and also to improve soybean simulation models.  相似文献   

5.
为揭示在常规耕作制度基础上大豆田表土处理对表层土壤物理性状及产量的影响,试验采用大区对比法,设置2个处理(T1:当地常规耕作措施;T2:当地常规耕作措施+表土破碎处理),研究表土处理对0~30 cm土壤温湿度、容重、孔隙度、水稳定性团聚体及大豆产量的影响。结果表明:T2处理显著降低0~10 cm土层容重,降幅6.0%~13.8%,显著提高0~10 cm土层孔隙度,增幅3.83%~8.40%,降低5~15 cm土层的温度,降幅0.2~1.3℃,提高5~15 cm土层的湿度,增幅0.1%~1.5%;显著增加大团聚体(R0.25 mm)数量,增幅9.02%~20.30%,增加土壤水稳定性团聚体的平均质量直径(MWD)与几何平均直径(GMD),其中MWD和GMD增幅分别为4.25%~6.58%和28.4%~30.3%,产量提高6.24%。结果表明,常规耕作措施结合表土破碎处理能够降低表层土壤容重,增加表层土壤孔隙度,增加土壤大团聚体数量,增加土壤水稳定性,可为作物的生长提供较良好的土壤环境。  相似文献   

6.
The objectives of this research were to investigate the effect of rice straw management and application of different types of organic fertilizer on growth and yield of dry direct-seeded rice grown under rainfed conditions. The experiment was conducted in a farmer’s field at Muang Yai village, Khon Kaen province in 2005. A split-plot design was used, with the main plot under rice straw management (incorporating into the soil and burning), and sub-plots by type of organic fertilizer (green manure, cattle manure and powder organic fertilizer) and one plot under no-fertilizer application. It was found that rice straw incorporated into the soil had no significant effect on grain yield when compared with the effect of burning. Organic fertilizer of cattle manure and powder organic fertilizer significantly increased grain yield over that of green manure and no-fertilizer application. This paper is listed as a series of articles of the special issue “Water and Food” 6(1), March 2008.  相似文献   

7.
通过田间定位试验,等氮量条件下研究100%有机肥(T1)、30%有机肥+70%无机肥(T2)、20%有机肥+80%无机肥(T3)、100%无机肥(T4)和不施肥(CK)对玉米各生育期0~90 cm土层硝态氮含量、玉米产量和氮素利用率的影响。结果表明,施肥均可增加各土层硝态氮含量,随玉米生长发育,表层硝态氮有下移趋势,成熟期最明显,其中,T4处理31~90 cm土层分别比CK、T3、T1和T2处理高96.9%、39.1%、36.1%和17.8%。苗期和灌浆期0~90 cm土层硝态氮累积量与玉米产量相关系数分别为0.925~*和0.904~*,拔节期达0.997~(**),T2和T3处理供氮能力较强。T3、T2、T4和T1处理玉米增产率分别达138.76%、131.93%、117.28%和71.73%,其中,T3和T2处理高产并稳产,可最大限度提高氮肥利用率,明显降低环境污染风险。有机无机肥配施是较为合理的施肥模式,且配比以20%∶80%为最佳。  相似文献   

8.
Application of organic manures and composts in crop production has been strongly encouraged in many places but often without due consideration to their quality and price. Since organic amendments can vary greatly in composition and mineralization rate, a framework is needed to make rational choices on their use as replacements of inorganic fertilizer, especially when considering poor quality organic materials. A field experiment was carried out with maize grown annually for 5 years on a Rhodic Kandiustox in Thailand to test response to mineral fertilizer (at 0-0 to 125-55 kg N-P ha−1 yr−1), compost (0.59% N, 0.31% P and 0.55% K at 0-7500 kg ha−1 yr−1) and stubble removal. The DSSAT model was calibrated to predict yields using the first year's trial data and then used to predict treatment yields for the following 4 years. The Seasonal Analysis module of DSSAT using Dominance Analysis showed that mineral fertilizer (125-55 kg N-P ha−1 yr−1) with stubble return gave the highest net profit whereas the highest rate of compost without mineral fertilizer gave the biggest loss. The yield response was attributed primarily to N supply rather than P. Effects of compost, mineral fertilizer, stubble management, and their interactions on yield and profit were not related to bulk density or soil available water capacity even though soil organic matter (SOM) levels increased. With stubble return, the highest rate of mineral fertilizer increased SOM whereas with compost application or stubble removal it did not. The DSSAT simulation of yield indicated that the low quality compost would only be as profitable as mineral fertilizer if the N concentrations are 3-4 times higher than the present compost (1.8-2.4% N) or if the compost price is greatly reduced. The DSSAT yield simulation and Seasonal Analysis provided a framework whereby the suitability of compost as a N fertilizer replacement for maize could be determined based on its composition, rate of application and price. Further validation of this approach is needed where the organic amendments have significant effects on soil physical properties and where other nutrients besides N are a significant factor in the crop yield response.  相似文献   

9.
Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming Experimental Station in northern China during 2003–2008. The experiment was set-up using a split-plot design with 3 tillage/crop residue methods as main treatments: conventional, reduced (till with crop residue incorporated in fall but no-till in spring), and no-till (with crop residue mulching in fall). Sub-treatments were 3 NP fertilizer rates: 105–46, 179–78 and 210–92 kg N and P ha−1. Maize grain yields were greatly influenced by the growing season rainfall and soil water contents at sowing. Mean grain yields over the 6-year period in response to tillage/crop residue treatments were 5604, 5347 and 5185 kg ha−1, under reduced, no-till and conventional tillage, respectively. Grain yields under no-till, were generally higher (+19%) in dry years but lower (−7%) in wet years. Mean WUE was 13.7, 13.6 and 12.6 kg ha−1 mm−1 under reduced, no-till, and conventional tillage, respectively. The no-till treatment had 8–12% more water in the soil profiles than the conventional and reduced tillage treatments at sowing and harvest time. Grain yields, WUE and NAE were highest with the lowest NP fertilizer application rates (at 105 kg N and 46 kg P ha−1) under reduced tillage, while yields and WUE tended to be higher with additional NP fertilizer rates under conventional tillage, however, there was no significant yield increase above the optimum fertilizer rate. In conclusion, maize grain yields, WUE and NAE were highest under reduced tillage at modest NP fertilizer application rates of 105 kg N and 46 kg P ha−1. No-till increased soil water storage by 8–12% and improved WUE compared to conventional tillage, thus showing potentials for drought mitigation and economic use of fertilizers in drought-prone rainfed conditions in northern China.  相似文献   

10.
《Field Crops Research》1996,47(1):43-52
Manure management is a difficult task on many intensive dairy farms. Crops that can utilize large quantities of manure N, yield quality forage with larger rates of manure application, and allow manure spreading at different times in a year can simplify that task. A study was conducted in 1990 and 1991 on a Copake sandy loam soil (mixed mesic) in New Milford, Connecticut. The objectives were: (1) to measure and compare dry matter (DM) response of orchardgrass (Dactylis glomerata L.) to different amounts and application times of N fertilizer and liquid and solid cattle manure; and (2) to determine crop uptake of fertilizer and manure N. Fertilizer and liquid and solid manure were applied to the soil surface annually in amounts of 150, 300 or 450 kg N ha−1 in one, two or four equal applications. Orchardgrass dry matter production increased over the entire range of N amounts from all sources. Yields varied from approximately 2500 kg DM ha−1 for control plots (0 kg N) to 10600 kg for plots receiving 450 kg N ha−1 either as fertilizer or liquid manure. Crop response to liquid manure application was greater in year one with abundant rainfall than in year two with dry conditions during most of the growing season, whereas crop response to solid manure application improved in the second year, due to the availability of residual organic N. Orchardgrass was more sensitive to the timing of fertilizer N application than to manure N application. Despite the large differences in weather patterns experienced during this study, analysis of application patterns indicated that manure could be applied throughout the growing season to crop stubble (post-harvest) with comparable rates of uptake overall. N uptake in control plots averaged 56 kg N ha−1 for both years, compared to 340 kg N ha −1 for fertilizer plots, 250 kg N ha −1 for liquid manure plots and 190 kg N ha−1 for solid manure plots receiving 450 kg total N ha −1.  相似文献   

11.
Biological nitrogen fixation (BNF) as a result of the legumes–rhizobia symbioses is the main source of nitrogen in organic farming systems. Lucerne (Medicago sativa L.), used as green manure or as forage legume, is important on arable farms under dry site conditions. In a field experiment on organically managed agricultural fields, we examined the impacts of the utilisation system (harvested = forage production versus mulched = green manure) and the crop composition (pure lucerne crops versus lucerne–grass mixtures) on yield, biological nitrogen fixation (BNF), soil inorganic N content, N balance and water consumption of autumn-cultivated lucerne crops. The study was conducted at the University of Natural Resources and Applied Life Sciences, Vienna, in eastern Austria—a region characterized by pannonian site conditions (9.8 °C mean annual temperature, 545 mm average total precipitation) and stockless farming systems. Our results indicate that the utilisation system and the crop composition had no marked influence on above- and below-ground dry matter (DM) and N yield, soil inorganic N contents, BNF, or water use efficiency of lucerne. The level of symbiotically fixed N2 in harvested lucerne was 89–125 kg N ha−1 (27–33% Ndfa = nitrogen derived from atmosphere) in the first year and 161–175 kg N ha−1 (47–49% Ndfa) in the second year of the study. The high soil inorganic N supply in the first year increased the N uptake from soil by lucerne and led to a reduced BNF. Under the dry and unfavourable conditions in both study years, the nitrogen release from the legume mulch was retarded and BNF in mulched lucerne was not reduced. Assuming low gaseous N losses by mulching (15–30 kg N ha−1), the green manure system reached a positive N balance (+137 to +186 kg N ha−1) for the subsequent crops because abundant residues remained on the field.  相似文献   

12.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate phosphorus (P) fertilizer utilization efficiency, including the physiological efficiency, recovery efficiency and the mass (the input–output) balance, at five sites across different soil types and climate zones in China. The five treatments used were control, N, NP, NK and NPK, representing various combinations of N, P and K fertilizer applications. Phosphorus fertilization increased average crop yield over 15 years and the increases were greater with wheat (206%) than maize (85%) across all five sites. The wheat yield also significantly increased over time for the NPK treatments at two sites (Xinjiang and Shanxi), but decreased at one site (Hunan). The P content in wheat was less than 3.00 g kg−1 (and 2.10 g kg−1 for maize) for the N and NK treatments with higher values for the Control, NP and NPK treatments. To produce 1 t of grain, crops require 4.2 kg P for wheat and 3.1 kg P for maize. The P physiological use efficiency was 214 kg grain kg−1 P for wheat and 240 kg grain kg−1 P for maize with over 62% of the P from P fertilizer. Applying P fertilizer at 60–80 kg P ha−1 year−1 could maintain 3–4 t ha−1 yields for wheat and 5–6 t ha−1 yields for maize for the five study sites across China. The P recovery efficiency and fertilizer use efficiency averaged 47% and 29%, respectively. For every 100 kg P ha−1 year−1 P surplus (amount of fertilizer applied in excess of crop removal), Olsen-P in soil was increased by 3.4 mg P kg−1. Our study suggests that in order to achieve higher crop yields, the long-term P input–output balance, soil P supplying capacity and yield targets should be considered when making P fertilizer recommendations and developing strategies for intensively managed wheat–maize cropping systems.  相似文献   

13.
在吉林省松原市宁江区大洼镇开展两年的田间试验,明确猪粪秸秆堆肥替代化肥对春玉米碳代谢的调控效应,确定猪粪秸秆堆肥替代化肥比例。采用裂区试验设计,主区设置2个猪粪秸秆堆肥施用量,副区设置堆肥替代化肥比例3个水平,探讨猪粪秸秆堆肥替代化肥对春玉米碳代谢、产量及品质的影响。结果表明,随着堆肥替代化肥比例增加,玉米碳代谢水平逐渐增强,玉米的产量及品质逐步提升,堆肥20 000 kg/hm2替代20%化肥(C2F2)处理表现最佳,相较不能堆肥、常规施肥(F0)处理条件下春玉米PEP羧化酶活性、RUBP羧化酶活性分别提高了29.69%、19.03%。产量提高了18.6%,淀粉、粗蛋白、脂肪含量分别提高了6.73%、12.90%、14.24%。综上所述,施用猪粪秸秆堆肥20 000 kg/hm2替代20%化肥可以显著提高春玉米碳代谢关键酶活性、产量及品质。  相似文献   

14.
Cropping systems in farmland areas of Iran are characterized by continuous cultivation of crops with consumption of chemical fertilizers leading to serious soil erosion and fertility decline. Information regarding the simultaneous evaluation of crop rotation and fertilization on the canola is lacking. Hence, field experiments were conducted during 2007-2010 using split-split plot design. Three crop rotations: chickpea, sunflower, wheat, and canola (R1); green manure, chickpea, green manure, wheat, green manure and canola (R2); canola, wheat, and canola (R3) were used as main plots. Sub plots were consisted of six methods of fertilization including (N1): farmyard manure (FYM); (N2): compost; (N3): chemical fertilizers; (N4): FYM + compost and (N5): FYM + compost + chemical fertilizers; and control (N6). Four levels of biofertilizers consisted of (B1): phosphate solubilizing bacteria (PSB); (B2): Trichoderma harzianum; (B3): PSB + T. harzianum; and (B4): without biofertilizers were arranged in the sub-sub plots. Results showed that green manure application in canola rotation (R2) increased grain yield and nutrient uptake. Combined application of FYM, compost and chemical fertilizers (N5) elevated the nitrogen uptake rate and grain oil yield. Simultaneous use of PSB and T. harzianum (B3) resulted in the increase of nitrogen and sulfur contents of grain. R2 rotation with regard to its biological and environmental efficiencies accompanied with FYM + compost and B3 (PSB + T. harzianum) is suggested as a low input system to obtain a more sustainable and productive farming in canola.  相似文献   

15.
Smallholder farmers in sub-Saharan Africa are confronted by low productivity and limited investment capacity in nutrient inputs. Integrated soil fertility management (ISFM) aims at increased productivity through the combined use of improved germplasm, judicious fertilizer application and organic matter management, adapted to the local farming conditions. We hypothesize that the application of these different ISFM components can result in significant increases in productivity and economic benefits of cassava–legume intercropping systems. Participatory demonstration trials were conducted in the highlands of Sud-Kivu, DR Congo with 12 farmer groups during 3 seasons. Treatments included the farmers’ common practice (local common bean and cassava varieties, seed broadcast and manure addition) and sequentially added ISFM components: improved bean and cassava germplasm, modified crop arrangements, compound NPK fertilizer application and alternative legume species (groundnut or soybean). The use of improved germplasm did not result in yield increases without simultaneous implementation of other ISFM components. Modifying the crop arrangement by planting cassava at 2 m between rows and 0.5 m within the row, intercropped with four legume lines, increased bean yields during the first season and permits a second bean intercrop, which can increase total legume production by up to 1 t ha−1 and result in an additional revenue of almost 1000 USD ha−1. Crop arrangement or a second legume intercrop did not affect cassava storage root yields. Fertilizer application increased both legume and cassava yield, and net revenue by 400–700 USD ha−1 with a marginal rate of return of 1.6–2.7. Replacing the common bean intercrop by groundnut increased net revenue by 200–400 USD ha−1 partly because of the higher market value of the grains, but mostly due to a positive effect on cassava storage root yield. Soybean affected cassava yields negatively because of its high biomass production and long maturity period; modifications are needed to integrate a soybean intercrop into the system. The findings demonstrate the large potential of ISFM to increase productivity in cassava–legume systems in the Central-African highlands. Benefits were, however, not observed in all study sites. In poor soils, productivity increases were variable or absent, and soil amendments are required. A better understanding of the conditions under which positive effects occur can enable better targeting and local adaptation of the technologies.  相似文献   

16.
Poor seed yield of soybean in Mediterranean-type environments may result from insufficient iron (Fe) uptake and poor biological nitrogen (N) fixation due to high bicarbonate and pH in soils. This study was conducted to evaluate the effects of N and Fe fertilization on growth and yield of double cropped soybean (cv. SA 88, MG III) in a Mediterranean-type environment in Turkey during 2003 and 2004. The soil of the experimental plots was a Vertisol with 176 g CaCO3 kg−1 and pH 7.7 and 17 g organic matter kg−1 soil. Soybean seeds were inoculated prior to planting with commercial peat inoculants. N fertilizer rates were 0, 40, 80, and 120 kg N ha−1 of which half was applied before planting and the other half at full blooming stage (R2). Fe fertilizer rates were 0, 200 and 400 g Fe EDTA (5.5% Fe and 2% EDTA) ha−1. It was sprayed as two equal portions at two trifoliate (V2) and at five trifoliate stages (V5). Plants were sampled at flower initiation (R1), at full pod (R4) and at full seed (R6) stages. Application of starter N increased biomass and leaf area index at R1 stage whereas Fe fertilization did not affect early growth parameters. N application continued to have a positive effect on growth parameters at later stages and on seed yield. Fe fertilization increased growth parameters at R4 and R6 stages, and final seed yield in both years. This study demonstrated an interactive effect of N and Fe fertilization on growth and yield of soybean in the soil having high bicarbonate and pH. There was a positive interaction between N and Fe at the N rates up to 80 kg N ha−1. However, further increase in N rate produced a negative interaction. Fertilization of soybean with 80 kg N ha−1 and 400 g Fe ha−1 resulted in the highest seed yield in both years. We concluded that application of starter and top dressed N in combination with two split FeEDTA fertilization can be beneficial to improve early growth and final yield of inoculated soybean in Mediterranean-type soils.  相似文献   

17.
Alleviation of soil compaction can be achieved through application of appropriate measures which will vary from soil to soil and with the socio-economic factors of the farmers. The effects of alleviation measures applied to artificially compacted soil on yield components, grain yield, dry matter and nutrient uptake by wheat was studied at the Agriculture Research Institute, Mingora, Pakistan, in two separate experiments in 2002–2003 and 2003–2004. The improvement measures included deep ploughing (DP), farmyard manure (FYM) and gypsum (GYP), and comprised a compacted control and four treatments T1 (control), T2 (DP), T3 (DP + FYM), T4 (DP + gypsum) and T5 (DP + FYM + GYP), arranged in completely randomized block design replicated four times. Improvement measures applied to compacted soil significantly decreased soil bulk density and increased total porosity. Bulk density decreased in the range of 12–15% while total porosity showed an increase of 16–23% over the control. Improvement measures significantly increased concentration and uptake of NPK in both years. Higher concentration and uptake was recorded during the second year as compared to the first year, probably as a result of higher seasonal rainfall in the second year. The uptake of NPK by wheat plants increased in the range of 43–51, 25–94 and 11–28%, respectively, over plants in the compacted control. Similarly, improvement treatments increased grains spike−1, thousand grain weight, dry matter accumulation and grain yield in the range of 14–21, 5–14, 3–10 and 21–37% respectively, over the control. This work demonstrates that it is possible to overcome the deleterious effects of compaction induced by wheeled traffic, and improve crop yields and nutrient uptake in intensive cropping systems in rainfed environments in Pakistan and similar environments.  相似文献   

18.
Livestock producers are interested in growing forage soybean [Glycine max (L.) Merr.] in summer and ensiling alone or in mixtures with corn or sorghum. Four row spacings (20, 40, 60, and 80 cm), four seeding rates (50, 100, 150, and 200 kg seeds per hectare) and four harvesting stages for forage production (V5, R2, R4, and R6) were evaluated under irrigated conditions in a randomized split–split plot design with three replications in three different locations in Turkey with Mediterranean-type climate in 2004 and 2005. Dry matter (DM) yield was significantly reduced with increased row spacings in all locations. There was no significant difference between 20, 40, or 60 cm row spacings while 80 cm provided the lowest yield. Increased seeding rates (50, 100, 150, and 200 kg seeds per hectare) generally increased DM yield, although the most suitable row spacing varied by location. DM yield was significantly affected by harvest maturity increasing with advancing maturity in all locations. DM constituent plant components were generally unaffected by row spacing and seeding rate but harvest maturity did significantly affect DM partitioning. As expected, leaf blade fractions decreased continually as plant maturity increased, while stem and flower plus pod fraction increased from V5 to R6. In general, row spacing and seeding rate did not significantly affect crude protein, degradable protein, and in vitro dry matter digestibility of soybean forage, but all decreased significantly with advancing maturity. These studies demonstrated soybeans managed for forage in a Mediterranean-type environment can average of 9.3 and 11.3 t ha−1 dry matter yield at R4 and R6 stages, respectively, while averaging 13.3% crude protein, 8.2% degradable protein, and 60.6% in vitro dry matter digestibility.  相似文献   

19.
The effective use of manure nutrients requires an accurate assessment of their availability to the specific crops being grown. A fertilizer equivalence approach was used to evaluate the availability of nitrogen (N) and phosphorus (P) from liquid dairy manure to potatoes in field experiments conducted in northeast Wisconsin in 2000, 2001, and 2002. Crop responses to moderate and high rates of liquid dairy manure (93,500 and 187,000 L ha?1) were compared to results obtained from N or P fertilizer applied at five rates (0 to 269 kg ha?1). Availability estimates were made using the fertilizer equivalence method based on tuber yield, harvested tuber N or P concentration and uptake, petiole nitrate or total P concentration, and soil nitrate or extractable P phosphate levels. Results showed an apparent availability of manurial N from 10% to 40%, with an overall average across all 3 years and all parameters of 28.6% for the lower rate and 24.6% for the high rate. These values are slightly less than average availability measured where corn has been used as the test crop. Although all parameters did not show responses to P fertilizer additions in these trials, where estimates were possible, P availability ranged from 20% to 90% with an overall average across all 3 years of 55.4% for the low and 50.5% for the high manure rates. Despite potato being more shallow-rooted and somewhat less efficient in N and P use compared to corn, it appears that only minor adjustments to manurial nutrient availability estimates are warranted when potatoes are grown.  相似文献   

20.
Productivity and resource-use efficiency in corn (Zea mays L.) are crucial issues in sustainable agriculture, especially in high-demand resource crops such as corn. The aims of this research were to compare irrigation scheduling and nitrogen fertilization rates in corn, evaluating yield, water (WUE), irrigation water (IRRWUE) and nitrogen use (NUE) efficiencies. A 2-year field experiment was carried out in a Mediterranean coastal area of Central Italy (175 mm of rainfall in the corn-growing period) and corn was subjected to three irrigation levels (rainfed and supply at 50 and 100% of crop evapotranspiration, ETc) in interaction with three nitrogen fertilization levels (not fertilized, 15 and 30 g (N) m−2). The results indicated a large yearly variability, mainly due to a rainfall event at the silking stage in the first year; a significant irrigation effect was observed for all the variables under study, except for plant population. Nitrogen rates affected grain yield plant−1 and ear−1, grain and biomass yield, HI, WUE, IRRWUE and NUE, with significant differences between non-fertilized and the two fertilized treatments (15 and 30 g (N) m−2). Furthermore, deficit irrigation (50% of ETc) was to a large degree equal to 100% of the ETc irrigation regime. A significant interaction “N × I” was observed for grain yield and WUE. The effect of nitrogen availability was amplified at the maximum irrigation water regime. The relationships between grain yield and evapotranspiration showed basal ET, the amount necessary to start producing grain, of about 63 mm in the first and 206 mm in the second year. Rainfed crop depleted most of the water in the 0–0.6 m soil depth range, while irrigated scenarios absorbed soil water within the profile to a depth of 1.0 m. Corn in a Mediterranean area can be cultivated with acceptable yields while saving irrigation water and reducing nitrogen supply and also exploiting the positive interaction between these two factors, so maximizing resource-use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号