首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Near isogenic lines carrying large-effect QTL (qtl12.1), which has a consistent influence on grain yield under upland drought stress conditions in a wide range of environments, were evaluated under water stress in the fields. The line which gave higher yield under drought was crossed with a local elite line, PMK3, and forwarded to F2:3 generation. Significant variation was found among the F2:3 lines for agronomic traits under water stress in the fields. Low to high broad sense heritability (H) for investigated traits was also found. Water stress indicators such as leaf rolling and leaf drying were negatively correlated with plant height, biomass and grain yield under stress. Bulked segregant analysis (BSA) was performed with the markers in the vicinity of qtl12.1, and RM27933 was found to be segregated perfectly well in individual components of drought resistant and drought susceptible bulks which were bulked based on yield under water stress among F2:3 lines. Hence, this simple and breeder friendly marker, RM27933, may be useful as a potentially valuable candidate marker for the transfer of the QTL qtl12.1 in the regional breeding program. Bioinformatic analysis of the DNA sequence of the qtl12.1 region was also done to identify and analyze positional candidate genes associated with this QTL and to ascertain the putative molecular basis of qtl12.1.  相似文献   

2.
《Field Crops Research》2002,73(2-3):181-200
A series of experiments were conducted in drought-prone northeast Thailand to examine the magnitude of yield responses of diverse genotypes to drought stress environments and to identify traits that may confer drought resistance to rainfed lowland rice. One hundred and twenty eight genotypes were grown under non-stress and four different types of drought stress conditions.Under severe drought conditions, the maintenance of PWP of genotypes played a significant role in determining final grain yield. Because of their smaller plant size (lower total dry matter at anthesis) genotypes that extracted less soil water during the early stages of the drought period, tended to maintain higher PWP and had a higher fertile panicle percentage, filled grain percentage and final grain yield than other genotypes. PWP was correlated with delay in flowering (r=−0.387) indicating that the latter could be used as a measure of water potential under stress. Genotypes with well-developed root systems extracted water too rapidly and experienced severe water stress at flowering. RPR which showed smaller coefficient of variation was more useful than root mass density in identifying genotypes with large root system.Under less severe and prolonged drought conditions, genotypes that could achieve higher plant dry matter at anthesis were desirable. They had less delay in flowering, higher grain yield and higher drought response index, indicating the importance of ability to grow during the prolonged stress period.Other shoot characters (osmotic potential, leaf temperature, leaf rolling, leaf death) had little effect on grain yield under different drought conditions. This was associated with a lack of genetic variation and difficulty in estimating trait values precisely.Under mild stress conditions (yield loss less than 50%), there was no significant relationship between the measured drought characters and grain yield. Under these mild drought conditions, yield is determined more by yield potential and phenotype than by drought resistant mechanisms per se.  相似文献   

3.
FUNAABOR-2 is a popular Ofada rice variety grown in a large area under rainfed upland condition across western states of Nigeria. We used the combination of phenotypic and marker-assisted selection(MAS) to improve grain yield of FUNAABOR-2 under drought stress(DS) at the reproductive stage via introgression of two drought quantitative trait loci(QTLs), qDTY12.1 and qDTY2.3. Foreground selection was carried out using peak markers RM511 and RM250, associated with qDTY12.1 and qDTY2.3, respectively, followed by recombinant selection with RM28099 and RM1261 distally flanking qDTY12.1. Furthermore, BC1 F2-derived introgressed lines and their parents were evaluated under DS and non-stress(NS) conditions during the 2015–2016 dry season. Overall reduction of grain yield under DS compared to NS was recorded. Introgressed lines with qDTY12.1 and qDTY2.3 combinations showed higher yield potential compared to lines with single or no QTL under DS, indicating significant positive interactions between the two QTLs under the FUNAABOR-2 genetic background. Pyramiding of qDTY12.1 and qDTY2.3 in the FUNAABOR-2 genetic background led to higher grain yield production under DS and NS.  相似文献   

4.
Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality. However, the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease. The genetic improvement of Varalu was done by introgressing a major yield QTL, qDTY12.1, along with two major blast resistance genes i.e. Pi54 and Pi1 through marker-assisted backcross breeding. Both traits were transferred till BC2 generation and intercrossing was followed to pyramid the two traits. Stringent foreground selection was carried out using linked markers as well as peak markers (RM28099, RM28130, RM511 and RM28163) for the targeted QTL (qDTY12.1), RM206 for Pi54 and RM224 for Pi1. Extensive background selection was done using genome-wide SSR markers. Six best lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) having qDTY12.1 and two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%-96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified. These lines showed yield advantage under drought stress as well as irrigated conditions. MSM-36 showed better performance in the national coordinated trials conducted across India, which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production. The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.  相似文献   

5.
Genetically improved crops with higher water productivity help maintaining and increasing agricultural production in drought-prone areas. Their development involves, as in the case of maize, selection for high grain yield and improved secondary traits. With the objective of better understanding the role and regulation of the morphology of drought adaptation, a recombinant inbred line (RIL) population of tropical maize (Zea mays L.) was evaluated in six field experiments under intermediate (IS) and severe (SS) drought stress at flowering and under well-watered (WW) conditions in Mexico. The analyses per water regime revealed 32 quantitative trait loci (QTLs) for the five measurements of relative content of leaf chlorophyll (CL), 25 for the five visual ratings of plant senescence (SEN), and 11 for the three measurements of electric root capacitance (RCT). Impressive clusters of QTLs were observed on chromosomes 2 (bins 2.03-05), 4 (bin 4.09), and 10 (bins 10.04-05), suggesting that a small number of genes control chlorophyll metabolism and plant senescence. The high CL and low SEN of the drought resistant parent are aspects of its high water productivity resulting from improved constitutive traits. Co-locations of QTLs for CL, SEN and RCT with QTLs for plant height (PHT), the anthesis-silking interval (ASI), and grain yield (GY) were observed in bins 1.06-07, 8.06, and 4.09 but not for the large QTL clusters on chromosomes 2 and 10, suggesting independent genetic control of reproductive traits. Still, the phenotypic data showed that high CL and low SEN were favorable for grain yield production under drought, while delayed SEN was associated with higher grain yield under WW conditions. CL and SEN are suitable to complement selection for drought tolerance in order to sustain future breeding progress.  相似文献   

6.
Improving drought tolerance has always been an important objective in many crop improvement programs and is becoming more important as one way of adapting crops to climate changes. However, due to its complexity, the genetic mechanisms underlying the expression of drought tolerance in plants are poorly understood and this trait is difficult to characterize and quantify. This study assessed the importance of the wild progenitor of cultivated barley, Hordeum spontaneum C. Koch, in contributing developmental and yield-related traits associated with drought tolerance and therefore its usefulness in breeding for improved adaptation to drought stress conditions. Fifty-seven fixed barley lines derived from crosses with two H. spontaneum lines (41-1 and 41-5) were evaluated in Mediterranean low rainfall environments with 10 improved varieties and three landraces for grain yield, developmental and agronomic traits. The study was conducted for three years (2004–2006) in a total of nine environments (location–year combinations), eight in Syria and one in Jordan, which were eventually reduced to seven due to a large error variance in two of them. There was significant genetic variation among the genotypes for most of the traits measured, as well as differential responses of genotypes across environments. Traits such as peduncle length, peduncle extrusion and plant height were positively correlated with grain yield in the dry environments. Differences in phenology were small and not significantly correlated with differences in grain yield under stress. Performances at the three highest yielding environments were much more closely correlated than those at the four stress environments. The GGE biplot analysis allowed identification of genotypes consistently best adapted to the lowest yielding environments and confirmed the existence of unique environments for identifying better adapted genotypes in the low rainfall environments of Syria. The top yielding lines in the driest of the seven environments derived mostly from crosses with H. spontaneum 41-1, while most of the improved varieties showed a positive genotype by environment (GE) interaction with the highest yielding environments. The results of the field experiments indicated that there was variation for grain yield under drought stress among barley genotypes, and that some of the lines derived from H. spontaneum had consistently superior specific adaptation to the range of severe stress conditions used in this study. The usefulness of H. spontaneum in breeding programs for stress conditions is likely to increase in view of the predicted increase in the occurrence of high temperatures and droughts.  相似文献   

7.
Weeds are a major constraint to rice (Oryza spp.) production in West Africa. Superior weed competitive rice genotypes may reduce weed pressure and improve rice productivity. Two upland and two lowland experiments were conducted in southern Benin to examine genotypic variations in weed-suppressive ability and grain yield under weedy conditions, and to identify plant characteristics that could be used as selection criteria for improved weed competitiveness. A total of 19 genotypes, including Oryza sativa and Oryza glaberrima genotypes and interspecific hybrids developed from crossing O. sativa and O. glaberrima, were grown under weed-free and weedy conditions in an upland with supplemental irrigation and in a flooded lowland. In weedy plots, hand weeding was done once or not at all. Mean relative yield loss across all genotypes due to weed competition ranged from almost 0% to 61%. Large genotypic variations in weed biomass and grain yield under weedy conditions were found. Visual growth vigor at 42 and 63 days after sowing (DAS) under weed-free conditions significantly correlated with weed biomass at maturity in both upland and lowland experiments (R2 = 0.26–0.48). Where weed pressure was low to moderate, with mean relative yield loss less than 23%, the multiple regression models using grain yield and plant height at maturity or only grain yield measured under weed-free conditions as independent variables could explain 66–88% of the genotypic variation in grain yield under weedy conditions. At higher weed pressure (mean relative yield loss: 61%), as observed in one of the upland experiments, biomass accumulation of rice at 42 days after sowing was associated with higher grain yield under weedy conditions. Biomass accumulation also significantly correlated with visual growth vigor at the same sampling dates. Therefore, we conclude that grain yield, plant height at maturity and visual growth vigor at 42–63 DAS under weed-free conditions appear to be useful selection criteria for developing superior weed competitive rice genotypes.  相似文献   

8.
Positive correlations between plant height and grain yield have been reported for sorghum. The introduction of stay-green in sorghum, and the associated reduction in lodging, has opened the possibility to exploit this positive association. The aim of this study was to analyse the direct effects of the dwarfing gene dw3 (and therefore plant height) on shoot biomass, grain yield, and yield components in pairs of 3-dwarf genotypes and their isogenic 2-dwarf tall mutants. Isogenic pairs with different genetic backgrounds were grown in three field experiments under nutrient and water non-limiting conditions. Tall mutants were significantly taller and produced more shoot and stem biomass than their shorter counterparts. Generally, tall types yielded more grain than short types, but significant interactions between experiment, genetic background and stature affected the consistency of the results. dw3 only affected grain size and not grain number. Increased grain mass of tall types was associated with significantly greater stem mass per grain at anthesis and greater shoot biomass per grain accumulated between anthesis and maturity. The increased biomass of tall plants was therefore important for increased grain yield under optimum conditions. Potential implications of increased biomass production for drought adaptation are discussed.  相似文献   

9.
Drought is a major constraint for rice production and yield stability in rainfed ecosystems, especially when it occurs during the reproductive stage. Combined genetic and physiological analysis of reproductive-growth traits and their effects on yield and yield components under drought stress is important for dissecting the biological bases of drought resistance and for rice yield improvement in water-limited environments. A subset of a doubled haploid (DH) line population of CT9993-5-10-1-M/IR62266-42-6-2 was evaluated for variation in plant water status, phenology, reproductive-growth traits, yield and yield components under reproductive-stage drought stress and irrigated (non-stress) conditions in the field. Since this DH line population was previously used in extensive quantitative trait loci (QTLs) mapping of various drought resistance component traits, we aimed at identifying QTLs for specific reproductive-growth and yield traits and also to validate the consensus QTLs identified earlier in these DH lines using meta-analysis. DH lines showed significant variation for plant water status, reproductive-growth traits, yield and yield components under drought stress. Total dry matter, number of panicles per plant, harvest index, panicle harvest index, panicle fertility, pollen fertility, spikelet fertility and hundred grain weight had significant positive correlations with grain yield under drought stress. A total of 46 QTLs were identified for the various traits under stress and non-stress conditions with phenotypic effect ranging from 9.5 to 35.6% in this study. QTLs for panicle exsertion, peduncle length and pollen fertility, identified for the first time in this study, could be useful in marker-assisted breeding (MAB) for drought resistance in rice. A total of 97 QTLs linked to plant growth, phenology, reproductive-growth traits, yield and its components under non-stress and drought stress, identified in this study as well as from earlier published information, were subjected to meta-analysis. Meta-analysis identified 23 MQTLs linked to plant phenology and production traits under stress conditions. Among them, four MQTLs viz., 1.3 for plant height, 3.1 for days to flowering, 8.1 for days to flowering or delay in flowering and 9.1 for days to flowering are true QTLs. Consensus QTLs for reproductive-growth traits and grain yield under drought stress have been identified on chromosomes 1 and 9 using meta-QTL analysis in these DH lines. These MQTLs associated with reproductive-growth, grain yield and its component traits under drought stress could be useful targets for drought resistance improvement in rice through MAB and/or map-based positional analysis of candidate genes.  相似文献   

10.
Rice (Oryza sativa L.) is a semi-aquatic member of the grass family that is poorly adapted to dry environments and has greater sensitivity to water-deficits than other important cereals in this family. To increase productivity in aerobic or water-limited environments rice must overcome its adaptations to flooded environments. Deletion mutants offer an alternative genetic resource for improving drought tolerance. Almost 3500 IR64 deletion mutants were screened under vegetative and reproductive stage drought stress in the field and evaluated for leaf drying and/or grain yield. Seven novel conditional mutants of rice which showed gain of function through continued growth as drought stress developed compared to the wild type were identified. Mutant recovery rate was 0.1%. Further evaluation of putative drought mutants revealed that their average shoot biomass at maturity and grain yield per plant under stress exceeded those of the wild type by two-fold. Studies under controlled conditions confirmed mutants to have continued growth of both roots and shoots as drought developed compared to the wild type, and a tendency for greater water extraction. We propose that deletions in these mutants have affected a regulator of the highly conservative growth response common to irrigated lowland rice cultivars. Our results suggest that screening deletion mutants for performance under managed drought stress in the field could be a highly effective way to identify valuable genetic resources for improved drought response and aerobic adaptation in rice.  相似文献   

11.
《Field Crops Research》2002,73(2-3):153-168
Responses of rice genotypes to drought stress may be different when characteristics of the drought stress environments differ. The performance of 128 genotypes was examined under irrigation and four different types of drought stress, to determine genotypic consistency in yield and factors determining yields under different drought stress conditions. The different drought conditions were mild drought during grain filling, short and severe drought at flowering, prolonged severe drought during the reproductive to grain filling, and prolonged mild drought during vegetative and grain filling.Genotypic grain yield under mild stress conditions was associated with yield under irrigated conditions, indicating the importance of potential yield in environments where the yield reduction was less than 50%. However, yields under irrigated conditions differed over time and locations.Under prolonged or severe drought conditions, flowering time was an important determinant of grain yield. Earlier flowering genotypes escaped the severe stress and had higher grain yields indicating large genotype by environment (G×E) interactions which have implications for plant breeding even for mild stress. It is suggested that variations in flowering time, potential yields and drought patterns need to be considered for development of drought-resistant cultivars using specific physiological traits.  相似文献   

12.
Drought is the primary constraint in pearl millet (Pennisetum glaucum) production in the drier semi-arid and arid regions of south Asia and Africa. The traditional landraces from drier regions are good sources of drought adaptation but often lack high yield under near-optimum growing environments. The objective of this paper was to assess whether crosses between landrace populations and elite germplasm can produce hybrids with better grain yield under favourable conditions than landraces, without compromising grain yield under drought. The research evaluated 20 crosses and their nine parents (consisting of landrace-based populations and elite composites) under drought and non-drought conditions. Drought response index (DRI), based on flowering and grain yield measured in drought and non-drought environments, was used to assess drought tolerance. Landrace populations yielded significantly more grain under drought stress than elite composites and crosses and had the highest mean DRI (3.99). In contrast, composites showed maximum sensitivity to drought with significantly negative DRI (−3.64). Adaptation to either drought or high productivity conditions appeared to be associated with different plant types: higher panicle number, lower grain number per panicle, and smaller seed size were associated with drought adaptation; low tillering and greater number of large-sized seeds per panicle were favoured for optimum growing conditions. Crosses yielded significantly better than composites under drought, better than landrace populations under non-drought and had a wide range in drought sensitivity. Around 40% of crosses produced on average 23% higher grain yield than the best landrace under favourable conditions, without compromising grain yield under drought. The results illustrate that hybridization of landrace populations with elite composites can produce germplasm that combines drought tolerance of traditional material with high production potential of elite genetic material.  相似文献   

13.
《Plant Production Science》2013,16(3):334-337
Abstract

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the staple cereal of the hottest, driest areas of the tropics and subtropics. Drought stress is a regular occurrence in these regions, making stress tolerance an essential attribute of new pearl millet cultivars. Recent breeding research has mapped several quantitative trait loci (QTLs) for components of grain and stover yield per se, as well as yield maintenance, under terminal drought stress conditions. We report here the evaluation of these QTLs as possible selection criteria for improving stress tolerance of an elite hybrid cultivar. Initial evaluations, based on hybrids made with topcross pollinators bred from lines selected directly from the mapping population, indicated an advantage to the QTL-based topcross hybrids. This advantage seemed to be related to a particular plant phenotype that was similar to that of the drought tolerant parent of the mapping population. Subsequent evaluations were based on testcross hybrids of drought tolerance QTL introgression lines in the background of the drought-sensitive parent of the mapping population, H 77/833-2. These introgression lines were bred by limited marker-assisted backcrossing of a putative major drought tolerance QTL into H 77/833-2 from the mapping population’s drought tolerant parent. Several of these QTL introgression lines had a significant positive general combining ability for grain yield under terminal stress and significantly out-yielded testcross hybrids made with the original recurrent parent both in unrelieved terminal drought stress and in gradient stress evaluations.  相似文献   

14.
Under terminal drought conditions, cereal varieties with limited tillering have been suggested to be advantageous, because they have fewer nonproductive tillers, thereby limiting water consumption prior to anthesis. In this study, four field trials were conducted over two growing seasons in southern Spain, under rainfed and irrigated conditions. Twenty-five genotypes were studied to evaluate the contribution of the main stem (MS) and tillers to grain yield and its components. Significant differences were found among genotypes for these contributions under non-stressed environments, but these differences were not significant under water-stress conditions. The contribution of the MS to plant grain yield was higher than that of tillers (68% vs. 32%) and was stable between years in irrigated trials. However, in the rainfed trials, MS contributed differently depending on year-to-year climate variations. Thus, under favorable weather conditions the contribution of MS to grain yield was higher than in the unfavorable year (85% vs. 59%). In irrigated environments, MS and tiller grain yield depended on the number of grains per spike, spikelets per spike, and thousand kernel weight (TKW). Under water-limited conditions, MS yield depended on the number of grains per spike and grains per spikelet, whereas the number of spikelets and TKW had less influence on MS grain yield. Furthermore, under water-stress conditions, high tillering genotypes showed yield levels similar to the genotypes with restricted tillering. Additionally, there was no significant evidence of a positive or negative effect of maximum tiller number on grain yield under rainfed conditions.  相似文献   

15.
《Field Crops Research》2002,73(2-3):169-180
Drought frequently reduces grain yield of rainfed lowland rice. A series of experiments were conducted in drought-prone northeast Thailand to study the magnitude and consistency of yield responses of diverse, rainfed lowland rice genotypes to drought stress environments and to examine ways to identify genotypes that confer drought resistance. One hundred and twenty-eight genotypes were grown under non-stress and four different types of drought stress conditions. The relationship of genotypic variation in yield under drought conditions to genetic yield potential, flowering time and flowering delay, and to a drought response index (DRI) that removed the effect of potential yield and flowering time on yield under stress was examined.Drought stress that developed prior to flowering generally delayed the time of flowering of genotypes, and the delay in flowering was negatively associated with grain yield, fertile panicle percentage and filled grain percentage. Genotypes with a longer delay in flowering time had extracted more water during the early drought period, and as a consequence, had higher water deficits. They were consistently associated with a larger yield reduction under drought and in one experiment with a smaller DRI. Genotypes, however, responded differently to the different drought stress conditions and there was no consistency in the DRI estimates for the different genotypes across the drought stress experiments. The results indicate that with the use of irrigated-control and drought test environments, genotypes with drought resistance can be identified by using DRI or delay in flowering. However, selections will differ depending on the type of drought condition. The inconsistency of the estimates in DRI and flowering delay across different drought conditions reflects the nature of the large genotype-by-environment interactions observed for grain yield under various types of drought in rainfed lowland conditions.  相似文献   

16.
Drought stress is one of the major constraints affecting rice production and yield stability in the rainfed regions. To understand the physiological basis of drought resistance related component traits, we used a backcross inbred population of rice under three kinds of moisture regimes viz., non-stress, moderate (24.48%) and severe stress (73.97%) conditions which reflect the differential responses of the genotypes to varying stress intensities. The plot yield, 1000-grain weight, panicle exsertion and canopy air temperature difference exhibited high heritability under the control conditions, whereas spikelet sterility and single plant yield exhibited high heritability under the moderate stress conditions. Traits such as days to 50% flowering, plant height and osmotic potential showed high heritability under the severe stress conditions. Plot yield under stress was significantly and positively correlated with harvest index and 1000-grain weight, but negatively associated with leaf rolling score and days to 50% flowering. The drought susceptibility index and drought response index were negatively correlated between each other both under the moderate and severe stress conditions. The derived traits viz., difference in panicle length between the control and the severe stress was associated with osmotic adjustment measured under field conditions. Difference in plant height and panicle length was negatively associated with plot yield under stress.  相似文献   

17.
Drought tolerance is an important rainfed rice breeding objective, but because the heritability (H) of yield under drought stress is thought to be low, secondary physiological traits are considered better targets for selection than yield under stress per se. This assumption has rarely been tested, and there are no reports on H for yield under drought stress from experiments repeated over seasons in rainfed lowland rice. To assess the potential for improving yield under drought stress via direct selection, and to identify associated quantitative trait loci (QTL), doubled haploid lines with a narrow range of flowering dates, derived from the population CT9993-5-10-1-M/IR62266-42-6-2, were screened under full irrigation and severe drought stress induced by draining the paddy before flowering in 2000–2002 at Raipur, India. Drought stress reduced mean yield by 80%. H was similar in stress and non-stress trials, as was the relative magnitude of the genotype and genotype × year variances. The genetic correlation between yield in stress and non-stress conditions was 0.8, indicating that about 64% of the genetic variation for yield under stress was accounted for by differences in yield potential also expressed in irrigated environments. These results indicate that direct selection for yield under drought stress can produce yield gains under stress without reducing yield potential. There was no secondary trait for which selection resulted in greater predicted response in yield under stress than direct selection for stress yield per se. A QTL was detected on chromosome 1 near sd1 that explained 32% of the genetic variation for yield under stress, but only 4% under non-stress. Its effect was consistent across years. This QTL accounted for much of the variation in drought yield not accounted for by variation in yield potential.  相似文献   

18.
《Field Crops Research》1996,48(1):65-80
Selection for improved performance under drought based on grain yield alone has often been considered inefficient, but the use of secondary traits of adaptive value whose genetic variability increases under drought can increase selection efficiency. In the course of recurrent selection for drought tolerance in six tropical maize (Zea mays L.) populations, a total of 3509 inbred progenies (S1 to S3 level) were evaluated in 50 separate yield trials under two or three water regimes during the dry winter seasons of 1986–1990 at Tlaltizapán, México. In over 90% of the trials, ears plant−1, kernels plant−1, weight kernel−1, anthesis-silking interval (ASI), tassel branch number and visual scores for leaf angle, leaf rolling and leaf senescence were determined. Low scores indicated erect, unrolled or green leaves. Canopy temperature, leaf chlorophyll concentration and stem-leaf extension rate were measured in 20–50% of the trials. Across all trials, linear phenotypic correlations (P < 0.01) between grain yield under drought and these traits, in order listed, were 0.77, 0.90, 0.46, −0.53, −0.16, 0.06NS, −0.18, −0.11, −0.27, 0.17 and 0.10. Genetic correlations were generally similar in size and sign. None of physiological or morphological traits indicative of improved water status correlated with grain yield under drought, although some had relatively high heritabilities. Genetic variances for grain yield, kernels ear−1, kernels plant−1 and weight kernel−1 decreased with increasing drought, but those for ASI and ears plant−1 increased. Broad-sense heritability for grain yield averaged around 0.6, but fell to values near 0.4 at very low grain yield levels. Genetic correlations between grain yield and ASI or ears plant−1 were weak under well-watered conditions, but approached −0.6 and 0.9, respectively, under severe moisture stress. These results show that secondary traits are not lacking genetic variability within elite maize populations. Their low correlation with grain yield may indicate that variation in grain yield under moisture stress is dominated by variation in ear-setting processes related to biomass partitioning at flowering, and much less by factors putatively linked to crop water status. Field-based selection programs for drought tolerance should consider these results.  相似文献   

19.
Development of a standard evaluation protocol has been a pressing problem for the selection of drought‐resistant genotypes of tall fescue (Festuca arundinacea). This study was conducted to evaluate the association of forage yield with specific phenological and morphological traits to find a proper model for indirect selection under irrigated (normal) and drought‐stress conditions in tall fescue. A random sample of seventy‐five genotypes were clonally propagated and evaluated in normal and drought‐stress environments in the field during 2009 and 2010. Results showed that water stress had a negative effect on forage yield and most of the morphological traits measured and reduced genotypic variation for most of them. Forage yield had the highest genotypic variation, whereas days to pollination had the lowest variation. Low broad‐sense heritability estimates were obtained for dry‐matter yield, but heritability for the traits of number of stems per plant, plant height and crown diameter was moderately high. These traits were identified as the main components of forage yield. The importance of these components and their direct and indirect effects on forage yield was different in normal and drought‐stress conditions. This suggests that indirect selection for developing high‐yielding, drought‐tolerant varieties should be performed under drought‐stress conditions with a specific model.  相似文献   

20.
Grain sorghum (Sorghum bicolor L. Moench) is a genetically diverse cereal crop grown in many semiarid regions of the world. Improving drought tolerance in sorghum is of prime importance. An association panel of about 300 sorghum genotypes from different races, representative of sorghum globally, was assembled for genetic studies. The objectives of this research were to (i) quantify the performance of the association panel under field conditions in Kansas, (ii) characterize the association panel for phenological, physiological and yield traits that might be associated with tolerance to limited moisture (drought), and (iii) identify genotypes with higher yield potential and stability under different environments that may be used in the sorghum breeding program. Results show large diversity for physiological and yield traits such as chlorophyll content, leaf temperature, grain numbers and grain weight per panicle, harvest index and yield. Significant differences were found for plant height, grain weight and numbers per panicle, harvest index, and grain yield among and within races. The US elite lines had the highest number of grains and grain weight per panicle while the guinea and bicolor races recorded the lowest. Harvest index and yield was highest for the US elite lines and the caudatum genotypes. Overall, there was a negative correlation between plant height and grain weight, grain numbers and yield. Harvest index and grain numbers were negatively affected by moisture limitation for all the races. Among the races, the caudatum genotypes were more stable in grain yield across the different environments. Overall, there was a wide variability within the association panel for physiological and yield traits that may prove to be useful for improving drought tolerance in sorghum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号