首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To compare N uptake and use efficiency of rice among different environments and quantify the contributions of indigenous soil and applied N to N uptake and use efficiency, field experiments were conducted in five sites in five provinces of China in 2012 and 2013. Four cultivars were grown under three N treatments in each site. Average total N uptake was 10–12 g m?2 in Huaiji, Binyang, and Haikou, 20 g m?2 in Changsha, and 23 g m?2 in Xingyi. Rice crops took up 54.6–61.7% of total plant N from soil in Huaiji, Binyang, and Haikou, 64.3% in Changsha, and 63.5% in Xingyi. Partial factor productivity of applied N and recovery efficiency of applied N in Changsha were higher than in Huaiji, Binyang, and Haikou, but were lower than in Xingyi. Physiological efficiency of soil N and fertilizer N were lower in Changsha than in Huaiji, Binyang, and Haikou, while the difference in them between Changsha and Xingyi were small or inconsistent. Average grain yields were 6.5–7.5 t ha?1 (medium yield) in Huaiji, Binyang, and Haikou, 9.0 t ha?1 (high yield) in Changsha, and 12.0 t ha?1 (super high yield) in Xingyi. Our results suggest that both indigenous soil and applied N were key factors for improving rice yield from medium to high level, while a further improvement to super high yield indigenous soil N was more important than fertilizer N, and a simultaneous increasing grain yield and N use efficiency can be achieved using SPAD-based practice in rice production.  相似文献   

2.
氮肥用量对油菜产量及氮素利用效率的影响   总被引:11,自引:0,他引:11  
通过大田试验研究了氮肥用量对油菜产量、养分含量、养分累积量及氮肥利用效率的影响。结果表明,与不施氮相比,施氮肥75、150和225kg/hm2平均分别增产41.9%、70.3%和66.2%,籽粒含氮量分别提高9.1%、14.2%和13.1%,植株地上部氮素总累积量分别增加59.6%、111.6%和108.0%。施氮促进油菜生长发育,显著提高油菜对氮素的吸收、累积和籽粒需氮量,但氮肥农学利用率、偏生产力和表观利用率均随氮肥用量的增加显著下降。氮肥用量在150kg/hm2时,能较好地协调油菜较高产量水平与合理氮肥利用率的统一。  相似文献   

3.
Past breeding achievements in grain yield were mainly related to increases in harvest index (HI) without major changes in biomass production. As modern cultivars have already high HI, future breeding to improve grain yield will necessarily focus on increased biomass. Improved biomass would depend on our capacity to improve the amount of photosynthetically active radiation intercepted by the crop (IPAR%) or the efficiency with which the canopy converts that radiation into new biomass (radiation use efficiency, RUE). Four field experiments with a set of wheat cultivars selected, bred and introduced in the Mediterranean area of Spain and that represent important steps in wheat breeding in Spain were conducted in order to identify whether and how wheat breeding in this area affected the amount of IPAR% and RUE both before and after anthesis. Although there was genotypic variability, cultivars did not show any consistent trend with the year of release of the cultivars for their biomass, pre and post-anthesis IPAR%, Crop growth rate (CGR) or RUE but, the post-anthesis CGR and RUE of the two oldest genotypes were lower than that of the other cultivars. As the oldest genotypes have lower number of grains per m2 than their modern counterparts, it is suggested that post-anthesis RUE in these cultivars was reduced by lack of sinks and therefore further increases in grains per unit area in modern cultivars could permit to improve biomass via increases in post-anthesis RUE.  相似文献   

4.
The effects of applying nitrogen (30 or 40 kg N/ha) to wheat crops at and after anthesis, after 200 kg N/ha had already been applied to the soil during stem extension, were studied in field experiments comprising complete factorial combinations of different cultivars, fungicide applications and nitrogen treatments. Actual recoveries of late-season fertilizer nitrogen (LSFN), as indicated by 15N studies, interacted with cultivar and fungicide treatment, and depended on nitrogen source (urea applied as a solution to the foliage, or as ammonium nitrate applied to the soil) and year. These interactions, however, were not reflected in apparent fertilizer recoveries ((N in grain with LSFN − N in grain without LSFN)/N applied as LSFN), or in the crude protein concentration. Apparent fertilizer recovery was always lower than actual recoveries, and declined during grain filling. Fertilizer treatments with higher actual fertilizer recoveries were associated with lower net remobilisation of non-LSFN (net remobilised N = N in above ground crop at anthesis − N in non-grain, above ground crop at harvest). LSFN also increased mineral nitrogen in the soil at harvest even when applied as a solution to the foliage. These effects are discussed in relation to potential grain N demand.  相似文献   

5.
Nitrogen (N) use efficiency (NUE), defined as grain produced per unit of fertilizer N applied, is difficult to predict for specific maize (Zea mays L.) genotypes and environments because of possible significant interactions between different management practices (e.g., plant density and N fertilization rate or timing). The main research objective of this study was to utilize a quantitative framework to better understand the physiological mechanisms that govern N dynamics in maize plants at varying plant densities and N rates. Paired near-isogenic hybrids [i.e., with/without transgenic corn rootworm (Diabrotica sp.) resistance] were grown at two locations to investigate the individual and interacting effects of plant density (low—54,000; medium—79,000; and high—104,000 pl ha−1) and sidedress N fertilization rate (low—0; medium—165; and high—330 kg N ha−1) on maize NUE and associated physiological responses. Total aboveground biomass (per unit area basis) was fractionated and both dry matter and N uptake were measured at four developmental stages (V14, R1, R3 and R6). Both plant density and N rate affected growth parameters and grain yield in this study, but hybrid effects were negligible. As expected, total aboveground biomass and N content were highly correlated at the V14 stage. However, biomass gain was not the only factor driving vegetative N uptake, for although N-fertilized maize exhibited higher shoot N concentrations than N-unfertilized maize, the former and latter had similar total aboveground biomass at V14. At the R1 stage, both plant density and N rate strongly impacted the ratio of total aboveground N content to green leaf area index (LAI), with the ratio declining with increases in plant density and decreases in N rate. Higher plant densities substantially increased pre-silking N uptake, but had relatively minor impact on post-silking N uptake for hybrids at both locations. Treatment differences for grain yield were more strongly associated with differences in R6 total biomass than in harvest index (HI) (for which values never exceeded 0.54). Total aboveground biomass accumulated between R1 and R6 rose with increasing plant density and N rate, a phenomenon that was positively associated with greater crop growth rate (CGR) and nitrogen uptake rate (NUR) during the critical period bracketing silking. Average NUE was similar at both locations. Higher plant densities increased NUE for both medium and high N rates, but only when plant density positively influenced both the N recovery efficiency (NRE) and N internal efficiency (NIE) of maize plants. Thus plant density-driven increases in N uptake by shoot and/or ear components were not enough, by themselves, to increase NUE.  相似文献   

6.
Productivity and resource-use efficiency in corn (Zea mays L.) are crucial issues in sustainable agriculture, especially in high-demand resource crops such as corn. The aims of this research were to compare irrigation scheduling and nitrogen fertilization rates in corn, evaluating yield, water (WUE), irrigation water (IRRWUE) and nitrogen use (NUE) efficiencies. A 2-year field experiment was carried out in a Mediterranean coastal area of Central Italy (175 mm of rainfall in the corn-growing period) and corn was subjected to three irrigation levels (rainfed and supply at 50 and 100% of crop evapotranspiration, ETc) in interaction with three nitrogen fertilization levels (not fertilized, 15 and 30 g (N) m−2). The results indicated a large yearly variability, mainly due to a rainfall event at the silking stage in the first year; a significant irrigation effect was observed for all the variables under study, except for plant population. Nitrogen rates affected grain yield plant−1 and ear−1, grain and biomass yield, HI, WUE, IRRWUE and NUE, with significant differences between non-fertilized and the two fertilized treatments (15 and 30 g (N) m−2). Furthermore, deficit irrigation (50% of ETc) was to a large degree equal to 100% of the ETc irrigation regime. A significant interaction “N × I” was observed for grain yield and WUE. The effect of nitrogen availability was amplified at the maximum irrigation water regime. The relationships between grain yield and evapotranspiration showed basal ET, the amount necessary to start producing grain, of about 63 mm in the first and 206 mm in the second year. Rainfed crop depleted most of the water in the 0–0.6 m soil depth range, while irrigated scenarios absorbed soil water within the profile to a depth of 1.0 m. Corn in a Mediterranean area can be cultivated with acceptable yields while saving irrigation water and reducing nitrogen supply and also exploiting the positive interaction between these two factors, so maximizing resource-use efficiency.  相似文献   

7.
As the most important cultural practices for cotton production, the single effects of plant density and [nitrogen (N) and potassium (K)] fertilization on yield and yield components are well documented but their combined effects on Bt cotton are poorly understood. Using a split–split plot design with four replications, we conducted a two-year field experiment in two fields, one with lower fertility and the other with higher fertility, in the Yellow River Valley of China. The aim was to evaluate both the individual and combined effects of plant density and nitrogen and potassium fertilization on yield, yield components and uptake of major nutrients. The main plots were assigned to plant density (4.5 and 7.5 plants/m2), while nitrogen (0 and 240 kg N/ha) and potassium fertilization (0 and 150 kg K/ha) were assigned to the sub- and sub–subplots. Lint yield was improved with high plant density (7.5 plants/m2) in the lower fertility field, particularly without N and K application, but not in the higher fertility field. Nitrogen or K application also increased lint yield, and a combination of high plant density, N and K application further improved lint yield in the lower fertility field, while only K application increased lint yield in the higher fertility field. Lint percentage was not affected by any of the variables studied. Thus, the yield increase due to plant density, fertilization or their combinations was attributed to increases in boll number or boll weight. The ratio of seed cotton to stalk (RSS) was linearly correlated with harvest index, and thus can be a simple indicator of dry matter allocation to reproductive structures. Increased yield due to plant density and fertilization was mainly attributed to the enhanced biological yield in the lower fertility field, while the yield increase due to K fertilization was mainly due to increased RSS in the higher fertility field. The plants used approximately equal N and P to produce 100 kg lint in both fields, but the uptake of K to produce 100 kg lint in the higher fertility field was about 21% more than that in the lower fertility field. Ratios of N:P:K were 1:0.159:0.604 in the lower fertility field and 1:0.159:0.734 in higher fertility field. This study suggests that K fertilization was extremely important for maintaining high yield, although luxury consumption occurred in the higher fertility field; N was applied more than required in the highly fertile field, and increased plant density would be beneficial to cotton yield in the lower fertility field.  相似文献   

8.
不同小麦品种产量和氮素吸收利用的差异   总被引:4,自引:0,他引:4  
为明确不同氮肥水平下不同小麦品种产量、氮素吸收和利用的差异,在大田条件下,以山东省主推的21个小麦品种为材料,研究了0、120、180、240和300kg·hm~(-2)共5个氮肥水平下不同小麦品种的产量、氮素利用率、氮素吸收效率和氮素利用效率等指标。结果表明,氮肥、品种及两者的互作效应显著影响冬小麦籽粒产量、氮素利用率、氮素吸收效率和利用效率;氮肥水平不同则品种间的氮效率差异程度不同。大部分供试品种的氮效率类型在不同氮肥水平下的聚类结果不一致,仅临麦4号、鲁原502、泰山28和山农25在各氮肥水平下的产量、氮素利用率均较高,可划为氮高效品种。氮高效品种达到高氮效率的途径不同,临麦4号通过高氮素吸收效率、泰山28通过高氮素利用效率、鲁原502和山农25通过氮素吸收效率和利用效率共同作用实现氮高效。由此可知,应在不同氮肥水平下对冬小麦品种进行产量和氮素利用率的综合评价,以筛选出适应不同地力环境的品种和与品种特性相适应的施肥技术;在氮高效品种的选育和推广中,应针对不同小麦品种的氮素吸收和利用特性进行鉴别和调控,才能最大程度挖掘和利用其高产、高效潜力,实现增产增效。  相似文献   

9.
玉米自交系对低氮反应的田间与盆栽评价   总被引:1,自引:4,他引:1       下载免费PDF全文
深入了解玉米自交系的氮效率现状是选育氮高效品种的基础。利用20个自交系在两个地块上、两个施氮水平下,研究了它们的氮效率(产量/施氮量)表现。同时,进行盆栽试验,探讨利用苗期生物量实现氮效率快速筛选的可能性。结果表明,氮效率、氮吸收效率及氮利用效率在玉米自交系间存在显著差异。地块间自交系的氮效率变异较大,CA170(2)、原引1号(5)、早27(17)对土壤氮素的降低反应敏感,减产幅度达到45%以上,是高氮高效品系;478(1)是中产耐低氮品系;武312(13)、北黄4(20)为双低效品系。盆栽苗期试验与田间试验结果一致性较差,说明不能达到氮效率快速筛选的目的。  相似文献   

10.
Over time, the relative effect of elevated [CO2] on the photosynthesis and dry matter (DM) production of rice crops is likely to be changed with increasing duration of CO2 exposure, but the resultant [CO2] effects on rice N concentration, uptake, efficiency and allocation remain unclear, especially under different soil N availability. Therefore, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A japonica cultivar with large panicle was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. Averaged across all N levels and years, shoot N concentration (dry base) was lower under FACE by 1.8%, 6.1%, 12.2%, 14.3%, 12.1%, and 6.9% at early-tillering, mid-tillering, panicle initiation (PI), booting, heading and grain maturity, respectively. Shoot N uptake under FACE was enhanced by 46%, 38%, 6% and 16% on average during the growth periods from transplanting to early-tillering (period 1), early-tillering to mid-tillering (period 2), mid-tillering to PI (period 3) and heading to grain maturity (period 5), respectively, but slightly decreased by 2% in the period from PI to heading (period 4). Seasonal changes in crop response to FACE in ratio of shoot N uptake during a given growth period to that over the whole season followed a similar pattern to that of shoot N uptake, with average responses of 33%, 26%, −3%, −11% and 10% in periods 1–5 of the growth period, respectively. As a result, FACE increased final aboveground N uptake by 9% at maturity. FACE greatly reduced the ratio of leaf to shoot N content over the season, while allocation of N to stems and spikes showed an opposite trend. FACE treatment resulted in the significant increase in N use efficiency for biomass (NUEp) over the season except at early-tillering and in N use efficiency for grain yield (NUEg) at grain maturity. These results indicate that, in order to maximize grain output in a future high [CO2] environment, the recommended rates, proportion and timing across the season of N application should be altered, in order to take full advantage of strong N uptake capacity during the early growth period and facilitate N uptake after that.  相似文献   

11.
为探讨稻茬小麦的氮硫肥施用技术,在水稻秸秆全量还田条件下设置0、195和270 kg·hm-2 3个施氮水平和0、30和60 kg·hm-23个施硫水平,研究氮、硫肥配施对小麦氮素吸收利用、籽粒产量和品质的影响。结果表明,随施氮量的增加,小麦穗数、穗粒数和产量均显著增加,面团形成时间和稳定时间延长,但施氮量达270 kg·hm-2时氮肥农学效率和表观利用率显著下降,籽粒支链淀粉、清蛋白、醇溶蛋白和谷蛋白含量降低。增施硫肥可使籽粒产量显著增加,延长面团形成时间和稳定时间,并提高籽粒支链淀粉、谷蛋白和总蛋白含量。相比其他氮、硫肥组合处理,施氮195 kg·hm-2配合施硫60 kg·hm-2提高了总氮素积累量、氮肥农学效率和氮肥利用效率;该组合处理下籽粒产量比仅施氮270 kg·hm-2处理提高了5.7%。此外,195 kg·hm-2施氮量配施硫60 kg·hm-2还提高了面团形成时间、稳定时间和蛋白各组分含量。这说明氮硫合理配施可提升小麦对氮素的吸收利用,起到提高籽粒产量、改善籽粒蛋白品质和粉质质量的作用;减氮条件下通过适量配施硫肥可作为小麦优质高效生产的栽培途径。  相似文献   

12.
为培育具有高潜力的减肥增效油菜品种,以不同甘蓝型油菜种质资源为材料,通过两年三点的田间肥效试验,研究了它们对氮肥的响应特征及节氮增产潜力.以产量平均值为分界线将供试材料划分为4种类型:低氮高效型、双高效型、双低效型和高氮高效型.在高氮条件下,双高效型和高氮高效型材料具有16.96%~36.50%的节氮潜力和21.57%...  相似文献   

13.
Drought stress which often occurs during early growth stage is one constraint in sugarcane production. In this study, the response of sugarcane to drought and nitrogen application for physiological and agronomical characteristics was investigated. Two water regimes (well-watered and drought stress from 60 to 120 day after transplanting) and four nitrogen levels (0, 4.4, 8.8 and 13.2 g pot?1 equivalent to 0, 90, 180 and 270 kg ha?1, respectively) were assigned in a Split-plot design with three replications. The results showed that photosynthetic responses to light intensity and intercellular CO2 concentrations of sugarcane were different between fertilized and non-fertilized treatments. Photosynthetic rates of 180 and 270 N treatments, normally, were significantly higher than that of 90 N, but not significant at drought conditions. Photosynthetic rates of 0 N treatment were the lowest under both conditions. Higher nitrogen application supported higher photosynthetic rate, stomatal conductance, and chlorophyll content because of higher nitrogen concentration accumulated into the leaf. Drought significantly reduced the potential photosynthetic rate, stomatal conductance, SPAD, leaf area, and biomass production. Higher nitrogen applications with larger root system could support higher photosynthetic activities to accumulate more dry mass. Strong positive coefficient between photosynthetic and biomass nitrogen use efficiency and drought tolerance index may suggest that higher nitrogen use efficiency could help plants have higher ability to tolerate drought stress.  相似文献   

14.
A long-term (1999–2007) field experiment was conducted to investigate the effects of three nitrogen (N) fertilization rates (0, 130, and 300 kg N/ha) on micronutrient density in wheat grain and its milling fractions. At maturity, grains were harvested and fractionated into flour, shorts, and bran for micronutrient and N analysis. N fertilization increased iron (Fe), zinc (Zn), and copper (Cu) density in wheat grain compared to the control. Increase of N application rate from 130 to 300 kg N/ha, however, did not further increase the three micronutrient densities in grain. Micronutrient concentrations were usually highest in the bran and lowest in the flour. High N application increased Zn and Cu densities in all three milling fractions and increased Fe concentration in shorts and bran but not in flour. N application did not affect the manganese (Mn) concentration in grain. N fertilization changed the proportions of Fe and Cu in flour and bran but did not affect the distribution of Zn. Because N fertilization increased micronutrient accumulation in wheat grain, proper management of N fertilization has the potential to enhance the nutritional quality of this important food.  相似文献   

15.
Water and nutrient availability are two major constraints in most rice-based rainfed shallow lowland systems of Asia. Both stresses interact and contribute to the low productivity and widespread poverty in this environment. The objective of this study was to improve the understanding of interaction between the two factors and to identify varietal characteristics beneficial for productivity in a water- and nutrient-limited rice environment. For this purpose, we screened 19 rice genotypes adapted to different rice environments under two water and two nutrient treatments during the wet season of 2004 and 2005 in southern Luzon, Philippines. Across all genotypes tested and in comparison with the irrigated control, rainfed conditions reduced grain yield of the treatment without N application by 69% in 2004 and by 59% in 2005. The mean nitrogen fertilizer response was highest in the dryer season of 2004 and the rainfed treatment, indicating that water stress had no effect on fertilizer response. Nitrogen application reduced the relative yield loss to 49% of the irrigated treatment in 2004 and to 52% of the irrigated treatment in 2005. Internal efficiency of N (IEN) and recovery efficiency of applied N (REN) were significantly different between genotypes, but were not affected by water availability (REN) or by water and nutrient availability (IEN). In contrast, grain yield and total N uptake were affected by cultivar, N and water availability. Therefore, germplasm for rainfed environments should be screened under conditions of limited and good nitrogen and water supplies. The four best cultivars, CT6510-24-1-2, IR55423-01, IR72, and IR57514-PMI5-B-1-2, performed well across all treatments and both years. Except for IR72, they were all characterized by medium height, medium duration, high early vigor, and a moderate level of drought tolerance. This combination of characteristics seems to enable the optimal use of limited water and nutrient resources occurring in many shallow rainfed lowlands. We also concluded that moderate drought stress does not necessarily affect the response to moderate N rates, provided that drought does not induce high spikelet sterility and that fertilizer N is properly managed.  相似文献   

16.
Utilisation of nitrogen (N) has been closely related to increases in crop productivity. However, not all crops respond similarly and the objective of this study is to identify physiological processes that determine responses to N supply for maize and sunflower. Grain yield in maize (range: 210–1255 g m−2) was greater and more responsive to N supply than in sunflower (106–555 g m−2 in carbohydrate equivalents) over a wide range of total N uptake (3–>20 g N m−2). In maize, differences in grain yield among levels of N supply were associated more with variation in biomass than in harvest index. In sunflower, differences in grain yield (in carbohydrate equivalents) among levels of N supply were related similarly to variation in both biomass and harvest index. The decrease in biomass production with decreasing N supply was associated with decreases in both radiation interception and radiation use efficiency (RUE). Decreased interception was due to effects of N supply on reducing canopy leaf area, whereas the reduced RUE was associated with decreased SLN. Total biomass production in maize was more responsive to N supply than in sunflower. The major determinants of the differences in response of biomass accumulation to N supply found between maize and sunflower are: (i) sunflower tends to maintain SLN with increase in partitioning of N to leaves under N limitation whereas maize tends to maintain leaf area with increase in partitioning of biomass to leaves and (ii) the ability of maize to maintain N uptake following cessation of leaf production.  相似文献   

17.
Poor seed yield of soybean in Mediterranean-type environments may result from insufficient iron (Fe) uptake and poor biological nitrogen (N) fixation due to high bicarbonate and pH in soils. This study was conducted to evaluate the effects of N and Fe fertilization on growth and yield of double cropped soybean (cv. SA 88, MG III) in a Mediterranean-type environment in Turkey during 2003 and 2004. The soil of the experimental plots was a Vertisol with 176 g CaCO3 kg−1 and pH 7.7 and 17 g organic matter kg−1 soil. Soybean seeds were inoculated prior to planting with commercial peat inoculants. N fertilizer rates were 0, 40, 80, and 120 kg N ha−1 of which half was applied before planting and the other half at full blooming stage (R2). Fe fertilizer rates were 0, 200 and 400 g Fe EDTA (5.5% Fe and 2% EDTA) ha−1. It was sprayed as two equal portions at two trifoliate (V2) and at five trifoliate stages (V5). Plants were sampled at flower initiation (R1), at full pod (R4) and at full seed (R6) stages. Application of starter N increased biomass and leaf area index at R1 stage whereas Fe fertilization did not affect early growth parameters. N application continued to have a positive effect on growth parameters at later stages and on seed yield. Fe fertilization increased growth parameters at R4 and R6 stages, and final seed yield in both years. This study demonstrated an interactive effect of N and Fe fertilization on growth and yield of soybean in the soil having high bicarbonate and pH. There was a positive interaction between N and Fe at the N rates up to 80 kg N ha−1. However, further increase in N rate produced a negative interaction. Fertilization of soybean with 80 kg N ha−1 and 400 g Fe ha−1 resulted in the highest seed yield in both years. We concluded that application of starter and top dressed N in combination with two split FeEDTA fertilization can be beneficial to improve early growth and final yield of inoculated soybean in Mediterranean-type soils.  相似文献   

18.
Reducing the high nitrogen (N) balance surpluses occurring in oilseed rape production through the cultivation of N-efficient cultivars is imperative for environmental reasons. In this study, seed yield and N efficiency parameters of oilseed rape cultivars grown under three N rates were investigated in field experiments performed during five years. Seed yields differed significantly among cultivars especially at limiting N supply, with significant shifts in cultivar ranking according to the N level. At high N supply, cultivar differences relied more on year effects. The importance of N efficiency parameters for yield varied owing to year and N rate effects. N uptake was an important parameter for yield at all N rates. While at low N, the duration of N uptake was most decisive, shoot N uptake capacity during vegetative growth was relatively more important under high N conditions. N utilization efficiency became more important with increasing N supply. At high N supply, cultivars with low seed N concentrations were superior in yield. Harvest index was also significantly correlated to yield across N rates; however, its importance depended much on environmental conditions. In conclusion, the specification of plant traits that might contribute to enhanced N efficiency in oilseed rape will depend very much on the N supply of the target environment and the target yield level.  相似文献   

19.
The understanding of the interactive effect of water and N availability, associated with the ability of crops to efficiently use these resources, is a crucial issue for stabilizing cereal production in Mediterranean areas. A 3-year side by side experiment on durum wheat and barley, under different water regimes and nitrogen levels, was carried out in a typical Mediterranean environment of Southern Italy, to identify the outstanding features of these species that contribute to enhanced grain yield and improved water and nitrogen use efficiency.  相似文献   

20.
为合理调整不同氮素吸收利用效率油菜品种的氮肥用量,提高氮素利用效率,大田试验条件下,根据长江流域冬油菜主产区广泛种植的34个甘蓝型油菜品种的氮素吸收和利用效率的差异,以氮素吸收和利用效率的平均值为界线将供试品种分为4类,即A-高效吸收高效利用型、B-低效吸收高效利用型、C-高效吸收低效利用型和D-低效吸收低效利用型,研究4类油菜的生长性状、干物质及氮素积累和分配的特点。结果显示,A类品种在主序长、主序角果数、一次分枝数和一次分枝角果数等农艺性状上表现很强的生长优势,B、C两类居中,D类品种最低。氮素吸收效率高的品种,其干物质量、氮素积累量相对越多,不同类型油菜的地上部生物量及氮素积累量顺序为C、A>D、B;氮素利用效率高的品种,干物质量和氮素积累在籽粒中的分配相对较多,而在果壳中分配相对较少,籽粒产量以及籽粒氮素积累量顺序则为A>B、C>D。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号