首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon sequestration in tropical soils has potential for mitigating global warming and increasing agricultural productivity. We analyzed 26 long-term experiments (LTEs) in different agro-climatic zones (ACZs) of India to assess the potential and cost of C sequestration. Data on initial and final soil organic C (SOC) concentration in the recommended N, P and K (NPK); recommended N, P and K plus farmyard manure (NPK + FYM) and unfertilized (control) treatments were used to calculate carbon sequestration potential (CSP) i.e., capacity to sequester atmospheric carbon dioxide (CO2) by increasing SOC stock, under different nutrient management scenarios. In most of the LTEs wheat equivalent yields were higher in the NPK + FYM treatment than the NPK treatment. However, partial factor productivity (PFP) was more with the NPK treatment. Average SOC concentration of the control treatment was 0.54%, which increased to 0.65% in the NPK treatment and 0.82% in the NPK + FYM treatment. Compared to the control treatment the NPK + FYM treatment sequestered 0.33 Mg C ha−1 yr−1 whereas the NPK treatment sequestered 0.16 Mg C ha−1 yr−1. The CSP in different nutrient management scenarios ranged from 2.1 to 4.8 Mg C ha−1 during the study period (average 16.9 yr) of the LTEs. In 17 out of 26 LTEs, the NPK + FYM treatment had higher SOC and also higher net return than that of the NPK treatment. In the remaining 9 LTEs SOC sequestration in the NPK + FYM treatment was accomplished with decreased net return suggesting that these are economically not attractive and farmers have to incur into additional cost to achieve C sequestration. The feasibility of SOC sequestration in terms of availability of FYM and other organic sources has been discussed in the paper.  相似文献   

2.
Cropping systems in farmland areas of Iran are characterized by continuous cultivation of crops with consumption of chemical fertilizers leading to serious soil erosion and fertility decline. Information regarding the simultaneous evaluation of crop rotation and fertilization on the canola is lacking. Hence, field experiments were conducted during 2007-2010 using split-split plot design. Three crop rotations: chickpea, sunflower, wheat, and canola (R1); green manure, chickpea, green manure, wheat, green manure and canola (R2); canola, wheat, and canola (R3) were used as main plots. Sub plots were consisted of six methods of fertilization including (N1): farmyard manure (FYM); (N2): compost; (N3): chemical fertilizers; (N4): FYM + compost and (N5): FYM + compost + chemical fertilizers; and control (N6). Four levels of biofertilizers consisted of (B1): phosphate solubilizing bacteria (PSB); (B2): Trichoderma harzianum; (B3): PSB + T. harzianum; and (B4): without biofertilizers were arranged in the sub-sub plots. Results showed that green manure application in canola rotation (R2) increased grain yield and nutrient uptake. Combined application of FYM, compost and chemical fertilizers (N5) elevated the nitrogen uptake rate and grain oil yield. Simultaneous use of PSB and T. harzianum (B3) resulted in the increase of nitrogen and sulfur contents of grain. R2 rotation with regard to its biological and environmental efficiencies accompanied with FYM + compost and B3 (PSB + T. harzianum) is suggested as a low input system to obtain a more sustainable and productive farming in canola.  相似文献   

3.
Soil compaction is a major cause of decrease in crop yield. The most serious cause of soil compaction is continuous ploughing at the same depth which affects bulk density, porosity and root proliferation, consequently affecting concentration and uptake of nutrients by plants. The effects of soil compaction on concentration and uptake of Nitrogen, Phosphorus and Potassium (NPK) by wheat were studied at the Agriculture Research Institute, Mingora, Pakistan in two separate experiments, conducted during 2002–2003 and repeated in 2003–2004. The treatments in each experiment consisted of four compaction levels arranged in a randomized complete block design replicated four times. Subsoil compaction affected soil bulk density and total porosity. With increasing compaction, bulk density increased in the range of 15–26% while total porosity decreased in the range of 15–27%. Compaction treatments significantly and progressively decreased concentration and uptake of NPK in both years of the experiments. Higher nutrient concentration and uptake was recorded during the second year as compared to first year, probably as a result of higher seasonal rainfall. Concentration of NPK showed reductions of 5–20%, 10–53% and 9–21%, respectively, due to the compaction treatments over control. The uptake of NPK decreased due to the compaction treatments in the range of 7–26%, 11–54% and 11–28%, respectively, over control. Compaction treatments decreased the dry matter accumulation in the range of 2–9% whereas grain yield showed a reduction of 5–48%. Inverse relationships between bulk density, and concentration and uptake of NPK, dry matter accumulation and grain yield were recorded. The implications of these findings for intensive agricultural systems in Pakistan and similar environments are discussed.  相似文献   

4.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate phosphorus (P) fertilizer utilization efficiency, including the physiological efficiency, recovery efficiency and the mass (the input–output) balance, at five sites across different soil types and climate zones in China. The five treatments used were control, N, NP, NK and NPK, representing various combinations of N, P and K fertilizer applications. Phosphorus fertilization increased average crop yield over 15 years and the increases were greater with wheat (206%) than maize (85%) across all five sites. The wheat yield also significantly increased over time for the NPK treatments at two sites (Xinjiang and Shanxi), but decreased at one site (Hunan). The P content in wheat was less than 3.00 g kg−1 (and 2.10 g kg−1 for maize) for the N and NK treatments with higher values for the Control, NP and NPK treatments. To produce 1 t of grain, crops require 4.2 kg P for wheat and 3.1 kg P for maize. The P physiological use efficiency was 214 kg grain kg−1 P for wheat and 240 kg grain kg−1 P for maize with over 62% of the P from P fertilizer. Applying P fertilizer at 60–80 kg P ha−1 year−1 could maintain 3–4 t ha−1 yields for wheat and 5–6 t ha−1 yields for maize for the five study sites across China. The P recovery efficiency and fertilizer use efficiency averaged 47% and 29%, respectively. For every 100 kg P ha−1 year−1 P surplus (amount of fertilizer applied in excess of crop removal), Olsen-P in soil was increased by 3.4 mg P kg−1. Our study suggests that in order to achieve higher crop yields, the long-term P input–output balance, soil P supplying capacity and yield targets should be considered when making P fertilizer recommendations and developing strategies for intensively managed wheat–maize cropping systems.  相似文献   

5.
Due to global warming, water is expected to become scarce especially in semiarid regions. Therefore, there is a need to increase the efficiency in water use by crops under rainfed agriculture. The effect of nutrient availability on the growth, production, root development, water relations and water use efficiency (WUE) by the intercrop maize/cowpea was investigated in 2 contrasting years (dry and wet) in the semiarid region of Brazil. The crops were grown on a strongly acidic, sandy soil with three treatments: (i) application of NPK fertilizers plus lime (NPK + lime), (ii) application of NPK fertilizers (NPK) and (ii) control (Contr.) in low and high input regimes. The soil water balance was calculated with the crop model EPICSEAR. Application of fertilizers and lime increased biomass production and grain yield of the intercrop up to 400% and 550%, respectively, and maize suffered more from the effects of low nutrient availability and soil acidity than cowpea. The root development of both crops was strongly improved by the application of NPK and lime and cowpea developed a deeper root system which enabled this crop to keep a higher transpiration rate in the dry year. As a consequence of the shallow root system, maize was prone to water stresses caused by the dry spells and its harvest index was reduced when dry spells occurred during flowering and grain filling.  相似文献   

6.
Banana is the primary food crop in Uganda, but yields are low due to a complex of abiotic and biotic constraints. However, quantitative information on the importance, interactions, and geographic distribution of yields and constraints is scanty. We monitored yields, biotic and abiotic constraints in 159 plots in Central, South and Southwest Uganda in 2006–2007. About half the plots were on-farm demonstrations that received fertilizer (average 71N, 8P, 32 K kg ha−1 year−1) through a development project, the rest were ordinary farmer fields (i.e. controls). Fresh banana yields in controls were significantly (P ≤ 0.05) higher in Southwest (20 t ha−1 year−1) compared with Central (12 t ha−1 year−1) and South (10 t ha−1 year−1). Demonstrations yielded 3–10 t ha−1 year−1 more than controls. Yield losses were calculated using the boundary line approach. In Central, yield losses, expressed as percentage of attainable yield, were mainly attributed to pests (nematodes 10% loss, weevils – 6%) and suboptimal crop management (mulch 25%). In South, poor soil quality (pH – 21%, SOM – 13%, N-total – 13%, and Clay – 11%) and suboptimal crop management (weeds – 20%) were the main constraints. In Southwest, suboptimal crop management (mulch 16%), poor soil quality (K/(Ca + Mg) − 11%) and low rainfall (5%) were the primary constraints. The study revealed that biotic stresses (i.e. pests, weeds) are particularly important in Central, whereas abiotic stresses (i.e. nutrient deficiencies, drought) dominate in South and Southwest. This study concludes that (i) technologies currently available allow farmers to double yields and (ii) past research efforts have mistakenly neglected abiotic constraints.  相似文献   

7.
In order to investigate the effect of trifluralin, pronamide, haloxyfop-p methyl, propaquizafop and isoxaben on weed control and oilseed rape yield, a two year field experiment was conducted at Darab, Iran, during 2004–2005 and 2005–2006 growing seasons. Herbicides reduced weed biomass compared with the weedy check. In 2004–2005, at 16 WAP (weeks after planting), application of trifluralin plus propaquizafop plus isoxaben at 1200 + 200 + 250 g a.i./ha and trifluralin plus haloxyfop-p methyl plus isoxaben at 1200 + 100 + 500 g a.i./ha provided best control (80%) of wild mustard (Sinapis arvensis L.), compared to other treatments. At 8 and 16 WAP, wild mustard control decreased to 47 and 42%, respectively, when trifluralin was applied alone at 1400 g a.i./ha. In 2005–2006 at 16 WAP, maximum reduction in wild mustard biomass (82%) was achieved with trifluralin plus propaquizafop plus isoxaben at 1200 + 200 + 250 g a.i./ha. In both years, all herbicide treatments controlled fumitory (Fumaria officinalis L.) 64–96%. In 2004–2005, at 16 WAP, wild oat (Avena fatua L.) biomass reduction by trifluralin plus propaquizafop plus isoxaben at 1200 + 200 + 250 g a.i./ha was 95%. In 2005–2006, at 8 and 16 WAP, minimum biomass reduction of wild oat (37–53%) was observed with trifluralin at 1200 and 1400 g a.i./ha. In both years, at 8 and 16 WAP, the most effective herbicide treatments were trifluralin plus propaquizafop plus isoxaben and trifluralin plus haloxyfop-p methyl plus isoxaben regardless of the dose applied and provided maximum reduction in total weed biomass (77–89%) compared to other treatments. Results of both years showed that all herbicide treatments increased oilseed rape grain yield as compared with the weedy check but percentage of oil was not affected by various herbicide treatments. Maximum grain yield was obtained with trifluralin plus haloxyfop-p methyl plus isoxaben at 1200 + 100 + 500 g a.i./ha.  相似文献   

8.
不同肥料滴灌配施夏玉米产量与氮磷钾吸收利用特性   总被引:4,自引:1,他引:4  
以郑单958为材料,在滴灌施肥条件下设不施氮(N0)、不施磷(P0)、不施钾(K0)和氮磷钾均施(NPK)4个处理,以传统灌溉施肥方式(施用量同NPK处理)为对照,研究滴灌水肥一体不同肥料配施夏玉米产量与氮磷钾吸收、分配及利用特性。结果表明,滴灌条件下,相较于磷钾肥,玉米对氮肥更敏感。N0处理的产量、干物质积累量、整株氮磷吸收量均显著降低,其叶片钾含量、茎鞘磷含量极显著增加,导致叶片钾积累量、茎鞘磷积累量显著增加。P0和K0处理玉米产量、干物质积累量、植株氮素吸收量均与NPK处理无显著差异,分别导致磷素和钾素吸收量显著降低。不施磷钾肥处理氮素从秸秆向子粒的转运受到限制,子粒含氮量下降,氮素收获指数显著降低。滴灌条件下,氮磷钾肥平衡施用玉米养分吸收均衡、分配合理,物质生产和产量显著高于传统灌溉施肥方式。  相似文献   

9.
An alarming rate of ground water depletion and increasing labour scarcity are major threats to future rice production in north west India. Management strategies that reduce the irrigation amount and labour requirement while maintaining or increasing yield are urgently needed. Dry seeded rice (DSR) has been proposed as one means of achieving these objectives, but little is known about optimal water management for DSR. Therefore a field study was conducted on a clay loam soil in Punjab, India, during 2008 and 2009, to investigate the effects of irrigation management on the performance of puddled transplanted rice (PTR) and dry seeded rice. Irrigation scheduling treatments were based on soil water tension (SWT) ranging from ponding/saturation (daily irrigation) to alternate wetting and drying (AWD) with irrigation thresholds of 20, 40 and 70 kPa at 18–20 cm soil depth. Rainfall was above average and well distributed in 2008 (822 mm), and average and less well distributed in 2009 (663 mm).  相似文献   

10.
Labour and water scarcity in north west India are driving researchers and farmers to find alternative management strategies that will increase water productivity and reduce labour requirement while maintaining or increasing land productivity. A field experiment was done in Punjab, India, in 2008 and 2009 to compare water balance components and water productivity of dry seeded rice (DSR) and puddled transplanted rice (PTR). There were four irrigation schedules based on soil water tension (SWT) ranging from saturation (daily irrigation) to alternate wetting drying (AWD) with irrigation thresholds of 20, 40 and 70 kPa at 18–20 cm soil depth. There were large and significant declines in irrigation water input with AWD compared to daily irrigation in both establishment methods. The irrigation water savings were mainly due to reduced deep drainage, seepage and runoff, and to reduced ET in DSR. Within each irrigation treatment, deep drainage was much higher in DSR than in PTR, and more so in the second year (i.e. after 2 years without puddling). The irrigation input to daily irrigated DSR was similar to or higher than to daily irrigated PTR. However, within each AWD treatment, the irrigation input to DSR was less than to PTR, due to reduced seepage and runoff, mainly because all PTR treatments were continuously flooded for 2 weeks after transplanting. There was 30–50% irrigation water saving in DSR-20 kPa compared with PTR-20 kPa due to reduced seepage and runoff, which more than compensated for the increased deep drainage in DSR. Yields of PTR and DSR with daily irrigation and a 20 kPa irrigation threshold were similar each year. Thus irrigation and input water productivities (WPI and WPI+R) were highest with the 20 kPa irrigation threshold, and WPI of DSR-20 kPa was 30–50% higher than of PTR-20 kPa. There was a consistent trend for declining ET with decreasing frequency of irrigation, but there was no effect of establishment method on ET apart from higher ET in DSR than PTR with daily irrigation. Water productivity with respect to ET (WPET) was highest with a 20 kPa irrigation threshold, with similar values for DSR and PTR. An irrigation threshold of 20 kPa was the optimum in terms of maximising grain yield, WPI and WPI+R for both PTR and DSR. Dry seeded rice with the 20 kPa threshold outperformed PTR-20 kPa in terms of WPI through maintaining yield while reducing irrigation input by 30–50%.  相似文献   

11.
Soil fertility varies markedly within and between African smallholder farms, both as a consequence of inherent factors and differential management. Fields closest to homesteads (homefields) typically receive most nutrients and are more fertile than outlying fields (outfields), with implications for crop production and nutrient use efficiencies. Maize yields following application of 100 kg N ha−1 and different rates and sources of P were assessed on homefields and outfields of smallholder farms in Zimbabwe. Soil organic carbon, available P and exchangeable bases were greater on the homefields than outfields. In each of three experimental seasons, maize yields in homefield control plots were greater than in the outfields of farms on a granitic sandy and a red-clay soil. Application of mineral N significantly increased maize yields on homefields in the first season (2.1–3.0 t ha−1 on the clay soil and 1.0–1.5 t ha−1 on the sandy soil) but the effects of N alone were not significant on the outfields due to other yield-limiting factors. Greatest yields of about 6 t ha−1 were achieved on the clayey homefield with 100 kg N ha−1 and 30 kg P ha−1 applied as single super phosphate (SSP). Manure application gave greater yields (3–4 t ha−1) than SSP (2–3 t ha−1) in the sandy homefield and in the clayey outfield. Maize did not respond significantly to N, dolomitic lime, manure and P on the sandy outfield in the first and second seasons. In the third season, manure application (∼17 t manure ha−1 year−1) on the sandy outfield did result in a significant response in grain yields. Apparent P recovery in the first season was 55–65% when P was applied at 10 kg ha−1 on the clayey homefield (SSP), clayey outfield (SSP and manure) and sandy homefield (manure) with apparent P recovery less than 40% when P was applied at 30 kg ha−1. On the sandy outfield, P recovery was initially poor (<20%), but increased in the successive seasons with manure application. In a second experiment, less than 60 kg N ha−1 was required to attain at least 90% of the maximum yields of 2–3 t ha−1 on the sandy homefield and clayey outfield. N use efficiency varied from >50 kg grain kg−1 N on the infields, to less than 5 kg grain kg−1 N on the sandy outfields. Apparent N recovery efficiency by maize was greatest at small N application rates with P applied. We conclude that blanket fertilizer recommendations are of limited relevance for heterogeneous smallholder farms. Targeted application of mineral fertilizers and manure according to soil type and past management of fields is imperative for improving crop yields and nutrient use efficiencies.  相似文献   

12.
This article reports on field experiments with 4 different rotations that are commonly used throughout Haryana in NW India (rice-wheat, cotton-wheat, pearl millet-wheat, cluster bean-wheat), where we assess wheat yield and chapatti quality measures with different crop establishment methods and input of micronutrients. In a series of experiments conducted on farmers’ fields in 2007-2008 and 2008-2009 winter seasons, the addition of micronutrients and sulphur to wheat crops was used alongside the use of a common farmer practice, the use of farmyard manure (FM) and best practice inputs of N-fertilizer (150 kg N ha−1), P-fertilizer (26 kg P ha−1) and K-fertilizer (33 kg K ha−1). The application of FM with the recommended NPK treatment produced 9-13% more grain yield in the rice-wheat rotation when compared with the recommended NPK only treatment. Given that the farm sites used here had low levels of soil P, this may suggest that the recommended rate of 26 kg P ha−1 for the rice-wheat rotation is too low. The addition of FM did not improve any grain quality outcomes at any of the sites. There were no yield responses with S application with any of the rotations but the S input resulted in more wheat protein from all sites (average 8%). The addition of S also gave similar increases in grain hardness and the chapatti score. The inclusion of micronutrients (boron, copper, iron, zinc and manganese) with the recommended NPK treatment did not increase the grain yield at any of the sites when compared with the recommended NPK treatment, and sometimes, but not consistently, gave small responses with protein, grain hardness and chapatti score. In concurrent experiments wheat growth and chapatti quality were compared in zero till and conventionally sown systems, and with and without S fertilizer amendment. Here too there were no grain yield responses to S, and the protein, grain hardness and chapatti score were increased with S addition. Grain yields with zero till and conventional wheat were similar in the rice-wheat system and zero till sowing resulted in small increases in yield at all of the non-rice sites. The grain from the zero till treatments had higher protein (1-3%), grain hardness (3-10%) and chapatti score from all 4 rotations. Zero till has substantial adoption in the rice-wheat districts of Haryana but little farmer awareness and adoption in the areas where the other rotations are used. The data given here show that with zero tillage and an integrated practice of nutrient management farmers in Haryana can maintain grain yields of wheat whilst improving quality outcomes.  相似文献   

13.
Experiments were conducted in 2006–2007 at six research stations of the Iranian Plant Protection Research Institute to study the efficacy of different herbicides to control weeds in wheat. Treatments included mesosulfuron-methyl plus iodosulfuron-methyl-sodium plus mefenpyr-diethyl (WG) at 45 + 45 + 135 g a.i./ha, respectively, sulfosulfuron at 21, 31.5, 42 and 51 g a.i./ha, chlorsulfuron at 15 g a.i./ha, bromoxynil plus MCPA at 600 g a.i./ha with clodinafop propargyl at 64 g a.i./ha, sulfosulfuron plus metsulfuron-methyl at 36 g a.i./ha, mesosulfuron-methyl plus iodosulfuron-methyl-sodium plus mefenpyr-diethyl (OD) at 15 + 3 + 45 g a.i./ha, respectively, and a full season weed-free control. Herbicides were applied at wheat tillering. Results showed that sulfosulfuron plus metsulfuron-methyl, and bromoxynil plus MCPA with clodinafop propargyl resulted in satisfactory weed control and wheat grain yield at most locations. Weed control efficacy of both formulations of mesosulfuron-methyl plus iodosulfuron-methyl-sodium was variable across locations. Efficacy of the OD formulation appears to depend upon location, so that application of this herbicide at Shiraz and Gorgan resulted in better weed control compared to use of the WG. Satisfactory performance of the OD formulation at Gorgan and Shiraz could be attributed in part to the even pattern of rainfall distribution during the growing season and wheat cultivar used, respectively. With respect to grain yield, however, the OD formulation was better than WG formulation at most of the locations.  相似文献   

14.
Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming Experimental Station in northern China during 2003–2008. The experiment was set-up using a split-plot design with 3 tillage/crop residue methods as main treatments: conventional, reduced (till with crop residue incorporated in fall but no-till in spring), and no-till (with crop residue mulching in fall). Sub-treatments were 3 NP fertilizer rates: 105–46, 179–78 and 210–92 kg N and P ha−1. Maize grain yields were greatly influenced by the growing season rainfall and soil water contents at sowing. Mean grain yields over the 6-year period in response to tillage/crop residue treatments were 5604, 5347 and 5185 kg ha−1, under reduced, no-till and conventional tillage, respectively. Grain yields under no-till, were generally higher (+19%) in dry years but lower (−7%) in wet years. Mean WUE was 13.7, 13.6 and 12.6 kg ha−1 mm−1 under reduced, no-till, and conventional tillage, respectively. The no-till treatment had 8–12% more water in the soil profiles than the conventional and reduced tillage treatments at sowing and harvest time. Grain yields, WUE and NAE were highest with the lowest NP fertilizer application rates (at 105 kg N and 46 kg P ha−1) under reduced tillage, while yields and WUE tended to be higher with additional NP fertilizer rates under conventional tillage, however, there was no significant yield increase above the optimum fertilizer rate. In conclusion, maize grain yields, WUE and NAE were highest under reduced tillage at modest NP fertilizer application rates of 105 kg N and 46 kg P ha−1. No-till increased soil water storage by 8–12% and improved WUE compared to conventional tillage, thus showing potentials for drought mitigation and economic use of fertilizers in drought-prone rainfed conditions in northern China.  相似文献   

15.
Weedy rice, specifically red rice (Oryza sativa L.), is a major weed in rice which causes up to 80% yield loss and reduction of grain quality. Red rice accessions from Arkansas, U.S.A., were characterized to classify red rice accessions into certain phenotypic groups relevant to weedy rice management. The red rice accessions were 70% strawhull, 22% blackhull, 7% brownhull and <1% goldhull. Generally, blackhull red rice was the tallest (139 cm) and strawhull the shortest (133 cm) among all accessions. Blackhull red rice had more tillers (102/plant), smaller flag leaves (13 cm wide, 34 cm long), and flowered later (1225 heat units) than strawhull red rice which had 85 tillers/plant, 15 cm-wide and 34 cm-long flag leaves, and flowered after accumulating 1195 heat units. Morphological differences between accessions within each hull type were highly significant, showing great diversity within a hull color group as indicated by large ranges in traits. For example, blackhulls were 75–190 cm tall with 18–69 cm long flag leaves, 21–188 tillers and produced 40–949 g seed. Strawhulls were 46–189 cm tall with 18–66 cm flag leaf length, 16–172 tillers and produced 100–608 g seed. Some traits, such as seed production, differed widely between accessions within each hull color group such that the average seed production/accession for blackhull did not differ from that of strawhull weedy rice (196 vs. 192 g/plant). The onset of flowering among all accessions ranged from 56 to 126 d after planting. Red rice accessions formed six phenotypic clusters generally segregated by plant size or flowering time. Each morphotype would have different competitive abilities; thus, weedy rice management could be geared toward plant types. Highly competitive plant types would require intensive control measures to minimize yield losses and reduce the soil seed bank. Flowering dates impact stewardship strategies for herbicide-resistant or any genetically modified rice.  相似文献   

16.
增施有机肥对夏玉米物质生产及土壤特性的影响   总被引:2,自引:0,他引:2  
2015和2016年在大田试验条件下,研究不施肥(CK)、常规施肥(NPK)、常规施肥+有机肥(增施鸡粪1 500 kg/hm~2,NPKM)对夏玉米物质生产及土壤特性的影响。结果表明,与CK相比,NPK和NPKM处理2015和2016年玉米产量分别增加13.62%和18.61%、36.75%和44.93%。植株叶片SPAD值、植株根系和地上部生物量均表现为NPKMNPKCK。与CK相比,增施有机肥后,土壤呼吸、硝态氮、铵态氮含量、脲酶、蔗糖酶活性均显著增高,过氧化氢酶活性降低。相关分析表明,连续两年玉米子粒产量均与拔节期、吐丝期、成熟期的SPAD值和硝态氮含量呈显著正相关,与吐丝期和成熟期的根系生物量、地上部生物量、蔗糖酶活性呈显著正相关。  相似文献   

17.
The concept of aerobic culture is to save water resource while maintaining high productivity in irrigated rice ecosystem. This study compared nitrogen (N) accumulation and radiation use efficiency (RUE) in the biomass production of rice crops in aerobic and flooded cultures. The total water input was 800–1300 mm and 1500–3500 mm in aerobic culture and flooded culture, respectively, and four high-yielding rice cultivars were grown with a high rate of N application (180 kg N ha−1) at two sites (Tokyo and Osaka) in Japan in 2007 and 2008. The aboveground biomass and N accumulation at maturity were significantly higher in aerobic culture (17.2–18.5 t ha−1 and 194–233  kg N ha−1, respectively) than in flooded culture (14.7–15.8 t ha−1 and 142–173 kg N ha−1) except in Tokyo in 2007, where the surface soil moisture content frequently declined. The crop maintained higher N uptake in aerobic culture than in flooded culture, because in aerobic culture there was a higher N accumulation rate in the reproductive stage. RUE in aerobic culture was comparable to, or higher than, that in flooded culture (1.27–1.50 g MJ−1 vs. 1.20–1.37 g MJ−1), except in Tokyo in 2007 (1.30 g MJ−1 vs. 1.37 g MJ−1). These results suggest that higher biomass production in aerobic culture was attributable to greater N accumulation, leading to higher N concentration (N%) than in flooded culture. Cultivar differences in response to water regimes were thought to reflect differences in mainly (1) early vigor and RUE under temporary declines in soil moisture in aerobic culture and (2) the ability to maintain high N% in flooded culture.  相似文献   

18.
The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase (ΔY/ΔET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate (ΔY/ΔET) and the range of yield response to evapotranspiration, i.e. ET# − Es, where Es is modelled median soil evaporation.  相似文献   

19.
Water shortage in the Huai River Basin prompts farmers to adopt water-saving technologies such as direct-seeded nonflooded or aerobic rice. Different cultivation practices impact on tiller growth and development. Improved insight into tiller dynamics is needed to increase yield in these production systems. We conducted field experiments with four direct-seeded rice varieties under flooded and nonflooded conditions in Mengcheng county, Anhui province, in 2005–2006. The soil water content in the nonflooded treatment varied between saturation and field capacity. Yields in nonflooded soil ranged from 3.6 to 4.7 t ha−1, and did not differ significantly from yields in flooded soil that ranged from 3.6 to 5.1 t ha−1. Variety had a significant effect on biomass, yield, panicle number, spikelet number, grain weight, and grain filling percentage. Panicle number was the main factor limiting yield, resulting from a low tiller emergence frequency and a low fraction of productive tillers in both the flooded and the nonflooded soils. On average, the panicle number was 159–232 m−2, including 34–167 productive tillers per m2 for all the varieties under the two water regimes. The contribution of productive tillers to yield varied between 7% and 47%. There were two peaks of tillers that contributed to yield, one at the low (4th or 5th) and one at the high (10th or 11th) phytomer orders. Frequencies of tiller emergence at most phytomer orders were higher in the flooded soil than in the nonflooded soil. There were no significant differences in frequencies of productive tiller emergence and contributions to yield from tillers between the soil water regimes for three of the four tested varieties. To increase yield in direct-seeded nonflooded rice production systems, both the tiller emergence frequency and the fraction of productive tillers should increase through breeding, improved crop management, or a combination.  相似文献   

20.
Aerobic rice is a new production system for water-short environments. Adapted varieties are usually direct dry seeded and the crop grown under aerobic soil conditions with supplementary irrigation as necessary. Occasionally, yield failures occur which may be related to soil health problems. In the dry season of 2006 and 2007, we conducted a field experiment in the Philippines, to identify the major causes of such yield failure. Four treatments were implemented: (i) Control of direct dry-seeded rice (improved upland variety Apo), (ii) Biocide application, (iii) transplanting into aerobic soil, and (iv) 1 year fallow. Yield in the Biocide treatment was 2 t ha−1 in both years. In all other treatments, yield was 0–0.3 t ha−1. Plants grown in the Biocide treatment showed a reduced degree of galling of roots caused by root-knot nematodes (RKN) and better general root health than the Control treatment. Potentially pathogenic fungi were isolated from root samples (Pythium sp., Fusarium sp., and a Rhizoctonia-like species). Abiotic effects of the Biocide treatment were an increase in KCl-extractable N (initial season 2007) and a decrease in initial soil pH. In the Control treatment, soil pH increased from 6.5 to 8.0 over the two seasons. In 2007, plant tissue analysis indicated Mn deficiency in the Control treatment. Plants that were subjected to foliar micronutrient sprays reacted positively to Fe and Mn sprays in the Control treatment, and Mn spray in the Biocide treatment. We concluded that the Biocide application led to favorable soil conditions by reducing biotic stresses such as RKN and improving nutrient availability. In the other treatments, an interaction of RKN and micronutrient deficiencies with increasing soil pH led to yield failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号