首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The ability of Fusarium oxysporum (PSM 197), a potential mycoherbicide for control of Striga hermonthica, to control different Striga species (S. hermonthica, S. asiatica and S. gesneroides) and another parasitic weed, Alectra vogelli, was investigated under glasshouse conditions. Significant reductions in the total number of emerged plants of S. asiatica (91.3%), S. gesneroides (81.8%) and S. hermonthica (94.3%) were achieved in the presence of F. oxysporum (PSM 197). The pathogen only caused a reduction of 8.5% in A. vogelli. This high susceptibility of the three Striga species provides a possible opportunity to control these parasites simultaneously with this mycoherbicide.  相似文献   

2.
Thidiazuron at 0.1 to 10 mg 1?1 induced concurrent germination and haustorium initiation in Striga asiatica (L.) Kuntze and S. hermonthica (Del.) Benth, but it had no effects on S. gesnerioides (Willd.) Vatke. Both millet and sorghum strains of S. hermonthica were equally responsive. The response of Striga seeds to thidiazuron increased with conditioning. Early applications of the compound induced some germination, but had adverse effects on the conditioning process. Induction de la germination des graines de Striga par le thidiazuron Le thidiazuron de 0,1 à 10 mg 1?1 a induit de façon conjointe le germination et l'initiation d'haustoria chez Striga asiatica et S. hermonthica, mais n'a pas eu d'effet sur S. gesnerioïdes. Les souches de S. hermonthica liées au millet et au sorgho ont un comportement équivalent. La réponse des graines de Striga au thidiazuron a augmenté par conditionnement préalable. Des applications précoces de produit ont induit quelques germinations, mais ont eu des effets contraires sur Ie processus de conditionnement. Einleitung der Samenkeimung bei Striga-Arten durch Thidiazuron Mittels Thidiazuron-Lösungen von 0,1 bis 10 mg 1?1 konnten eine gleichzeitige Keimung und Ausbildung der Haustorien bei Striga asiatica (L.) Kuntze und S. hermonthica (Del.) Benth. herbeigeführt werden, nicht jedoch bei S. gesnerioides (Willd.) Vatke. Der Rispenhirsen-und der Sorghum-Typ von S. hermonthica reagierten in gleichem Maße. Konditionierung der Striga-Samen förderte die Wirkung von Thidiazuron. Frühe Anwendung des Wirkstoffs führte zu einer geringen Keimung, beeinträchtigte jedoch die Konditionierung.  相似文献   

3.
Two species of the parasitic genus Striga, S. hermonthica (Del.) Benth. and S. gesnerioides Willd., cause severe damage to graminaceous and leguminous crops, respectively, in tropical and semi tropical areas. Striga seed germination requires the presence of germination stimulants exuded by the roots of host plants. After attachment to the host root, the young parasite exhibits a subterranean stage of development during which it already induces considerable damage in the crop. Then, the parasite emerges from the soil, develops chlorophyllous shoots and, after flowering, produces a large number of minute seeds. Many field experiments performed in the USA to control another species (S. asiatica) have shown that application of chlorthaldimethyl, di camba or dinitroanilines prevented Striga emergence. Nevertheless the phenological stages of the parasite which are sensitive to the herbicides, as well as the mode of action of these products, are still unknown. Our experiments, performed in vitro, clearly show that chlorthal-dimethyl, dicamba or pendimethalin inhibit germination of S. hermonthica and S. gesnerioides seeds in the presence of natural germination stimulants. Moreover dicamba, clopyralid and linuron are able to induce the germination of S. gesnerioides seeds in the absence of stimulants (suicidal germination). Even if the mode of action of these herbicides in inhibition or induction of Striga seed germination has yet to be studied, such products can be useful to control Striga before attachment, thus preventing the crop from suffering the early damaging effect of the parasite. Moreover bromoxynil, ioxynil, bentazone and pyridate are potent inhibitors of photosynthesis in S. hermonthica, while they do not affect the hosts (maize and sorghum). Linuron also inhibits photosynthesis in the parasite, but it may affect these crops according to the rate applied. All these inhibitors of photosystem II could be used to control S. hermonthica after emergence, thus preventing seed production. Nouvelle approche expérimentale pour la recherche de méthodes de lutte chimique contre les Striga: utilisation de modelès simplifiés in vitro Les Striga sont des Scrophulariacées hémi-parasites de racine. Deux espèces, S. hermonth-ica (Del.) Benth. et S. gesnerioides Willd. provoquent des pertes de rendement très importantes respectivement dans les céréales et les légumineuses, notamment dans la zone inter tropicale de l'Afrique. La germination des graines de Striga nécessite la présence de stimulants de germination exsudés par les racines de l'hôte. Après fixation sur les racines de son hôte, le jeune parasite présente une phase de vie souterraine hétérotrophe au cours de laquelle il inflige déjà de sévères dommages à la culture. Après émergence le parasite développe un ap-pareil aérien chlorophyllien fleurit et fructifie, produisant des milliers de graines minuscules. De nombreux essais, réalisés en plein champ aux USA pour lutter contre une autre espèce (S. asiatica) ont montré que l'application de chlorthal-diméthyle, de dicamba ou de diverses dinitroanilines inhibe partiellement l'émergence du parasite. Le stade phénologique du parasite sur lequel ces produits agissent, de même que leur mode d'action sont inconnus. Nos expériences, réalisées in vitro, montrent chlorthal-diméthyle, le dicamba et la pendiméthaline inhibent la germination des graines de S. hermonthica et S. gesnerioides en présence des stimulants de germination. En outre, le dicamba, le clopyralid, et surtout le linuron, sont capables d'induire la germination des graines de S. gesnerioides en l'absence des stimulants (germination suicide). Tous ces produits, dont le mode d'action dans l'inhibition ou l'induction de la germination reste èétudier, ouvrent des perspectives prometteuses pour la lutte préventive—la plus efficace—contre les Striga. En outre le bromoxynil, l'ioxynil, la bentazone et le pyridate, sélectifs du Maïs et du Sorgho, sont d'excellents inhibiteurs de la photosynthèse de S. hermonthica. Le linuron inhibe également la photosynthèse du parasite, mais il est moins sélectif des céréales. Ces herbicides inhibiteurs du photosystème II pourraient être utilisés dans le cadre d'un programme de lutte pour détruire S. hermonthica après émergence, empêchant ainsi la production des graines.  相似文献   

4.
The parasitic angiosperms, Striga hermonthica and Striga asiatica, severely constrain cereal production in sub-Saharan Africa by causing huge losses in grain yield. Understanding the diversity of Striga populations is important because it allows identification of races or biotypes thus improving chances of breeding success. Amplified fragment length polymorphism (AFLP) analysis was used to study genetic diversity among 17 populations of S. asiatica and 24 populations of S. hermonthica from Kenya. A total of 349 DNA fragments ranging from 51 to 500 bp were obtained from four EcoRI and MseI primer combinations. Genetic distances for S. asiatica populations ranged from 0.009 to 0.116 with a mean of 0.032. S. hermonthica populations had a genetic distance that ranged from 0.007 to 0.025 with a mean of 0.015. Only two clusters were found in S. asiatica populations whereas no apparent structure was evident in S. hermonthica populations. There was no evidence of isolation by distance for the two species. Although the low genetic diversity suggests Striga is relatively uniform across the populations studied, it is possible that pathogenicity and virulence genes may be located in genomic regions that were not sampled. The data, however, does not provide evidence to support diversification of both Striga species in the region where the study was conducted.  相似文献   

5.
Native fungi of West Africa were evaluated as a means to control Striga hermonthica (Del.) Benth., a troublesome parasitic weed of several gramineous crops. An isolate of Fusarium oxysporum, grown on sorghum straw and incorporated into pots, successfully prevented all emergence of S. hermonthica, and resulted in a 400% increase of sorghum dry weight. The fungus inhibited germination and attachment of S. hermonthica to sorghum roots in Plexiglas root chambers. Several crop species, including sorghum, inoculated with the fungus showed neither any disease symptoms nor any reduction in biomass.  相似文献   

6.
Striga hermonthica and S. gesnerioides pose serious threats to cereal and cowpea production, endangering peoples' livelihoods on the Abomey plateau, Benin. A 2-year joint experiment was undertaken with farmers in two hamlets to investigate the potential of managing sowing dates of cowpea, sorghum transplanting, and trap cropping as ways of increasing agricultural production and reducing Striga damage. Early sowing of cowpea failed due to dry spells. Late sowing reduced cowpea yield due to water deficiency at the end of the growing season. Transplanting sorghum seedlings raised in fertilised or Striga-free nurseries doubled or tripled cereal yield and substantially reduced S. hermonthica infestation compared to direct early-sown sorghum. Transplanting sorghum from plant hills to fill gaps was unsuccessful. Trap crops such as cowpea and groundnut increased subsequent maize yield. Trap cropping had only a small effect on S. hermonthica infestation. The very poor soils in Somè central were a major constraint upon yield improvement to acceptable levels even after the introduction of the new crop (and Striga) management methods.  相似文献   

7.
For the first time in sterile nutrient media in the absence of the host plant, different forms and rates of nitrogen compounds were screened for their effect onS. hermonthica Benth. shoot development beyond seed germination. There was no shoot formation beyond the inoculation stages whenS. hermonthica germlings were grown in media devoid of nitrogen source. In culture media containing some nitrogen sources, healthy shoots were formed. Increasing concentrations of KNO3, NaNO3, Ca(NO3)2, Mg(NO3)2 and asparagine resulted in a significant increase inS. hermonthica shoot development. Inversely, increasing concentrations of (NH4)2SO4, NH4H2PO4, NH4Cl and urea led to increasing significant reduction ofS. hermonthica shoot development. The amino acids, glycine and asparagine supported reduced shoot development ofS. hermonthica, indicating that organic nitrogen cannot replace inorganic nitrogen forStriga growth. The ammonium nitrogen compounds, (NH4)2SO4 and NH4H2PO4, suppressed further shoot elongation and total dry weight of 20 and 40 days oldStriga hermonthica plants, in sterile culture media. The organic compounds urea, allylthiourea and thiourea had an effect similar to ammonium compounds. Arginine and glycine on the other hand did not suppress the further development of the parasite. The suppressive effect of nitrogen however, was greater when the parasite was 20 days old than when it was 40 days old. This work provides data to show that some nitrogen compounds reduce the severity ofS. hermonthica attack by direct suppression ofStriga growth and development at the post-germination stage and after shoots have been formed.  相似文献   

8.
Thirteen fungal species were isolated from diseased plants of Striga hermonthica (Del.) Benth in northern Ghana. The pathogenicity of 12 isolates of the fungal species including Curvularia fallax Boed, Fusarium equiseti (Corda) Sacc., Fusarium equiseti var. bullatum (Sherb.) Wollenw., F. oxysporum Schlecht, F. solani (Mart) Sacc., Macrophonuina phasealina (Tassi) Goidan, and Sclerotium rolfsii (Sacc.) were evaluated against S. hermonthica under controlled environmental conditions. All isolates were pathogenic to S. hermonthica when propagated on wheat (Triticum aestivum L.) grains and incorporated pre-planting into the soil. However, their virulence differed. Two isolates of F. oxysporum and one isolate of F. solani reduced the emergence of S. hermonthica by 88%, 98%, and 76%, respectively. Sorghum (Sorghum bicolor (L.) Moench) yield was increased by 26% when S. hermonthica was controlled. In contrast, in the control treatment with S. hermonthica no yield could be obtained. The F. oxysporum isolates were not pathogenic on sorghum. Germination tests indicated that the F. oxysporum isolates were highly pathogenic to S. hermonthica seeds. Although the F. solani isolate reduced the emergence of S. hermonthica in the pot experiments, it did not influence germination. This indicates that pathogens may attack different stages in the life cycle of S. hermonthica.  相似文献   

9.
The parasltie flowering plants, Striga species, represent the largest biological constraint to cereal and legume crop production in sub-Saharan Africa. Eighty-three percent of Striga worldwide (35 species) occurs in Africa. Among them, Striga hermonthica causes the greatest damage. The IITA's scientists began research on breeding maize for horizontal resistance to Striga in 1982. By 1995 a comprehensive approach to combat Striga on maize had been developed and demonstrated. This included the development of a simple field infestation technique, the discovery of durable resistance genes, genetic studies of resistance genes and the formation of many resistant varieties (hybrids and synthetics) with high grain quality, high grain and stover yields and a combined resistance to major biotic and abiotic stresses. Multilocation testing and subsequent seed multiplication of the resistant varieties was carried out by national programmes in Benin, Burkina Faso, Cameroon, the Ivory Coast, Ethiopia, Ghana, Nigeria, and Togo. Striga-resistant maize varieties show horizontal resistance not only to S. hermonthica, but also to another species, Striga asiatica. Based on the results of a 15 year research, an integrated approach using resistant varieties and cereal-legume intercropping or rotation is recommended as a sustainable and permanent solution to combat Striga in Africa. This horizontal resistance package, with a combined resistance to other biotic stresses, could be applicable not only to Striga problems in other crops such as sorghum, millet, rice and cowpea, but also to other parasitic weeds, such as Orobanche species. This paper reviews and discusses why, approximately a century's research work on parasitic weeds, has not led to a major research breakthrough.  相似文献   

10.
The root hemiparasite Striga hermonthica causes very significant yield loss in its dryland staple cereal host, Sorghum bicolor. Striga‐resistant sorghum cultivars could be an important part of integrated S. hermonthica control. For effective resistance breeding, knowledge about the diversity of the parasite is essential. This study aimed (i) to determine the genetic diversity within and between seven S. hermonthica populations from East and West Africa using 15 microsatellite markers and (ii) to assess the virulence and host–parasite interactions of these Striga populations grown on 16 diverse sorghum genotypes in a glasshouse trial. Most of the genetic variance (91%) assessed with microsatellite markers occurred within S. hermonthica populations. Only a small portion (8%) occurred between regions of origin of the populations. A positive correlation (R2 = 0.14) between pairwise geographic and genetic distances reflected the slightly increasing differentiation of S. hermonthica populations with increasing geographic distance. East African S. hermonthica populations, especially those from Sudan, had significantly greater average infestation success across all sorghum genotypes than West African populations. Some specific host–parasite interaction effects were observed. The high genetic variation among individuals of each S. hermonthica population underlines the high potential adaptability to different hosts and changing environments. This points to the need to manage sorghum resistance alleles in space and time and to employ resistant varieties as part of integrated S. hermonthica control, so as to hinder the parasite overcoming resistance.  相似文献   

11.
M. WEBB  M C. SMITH 《Weed Research》1996,36(3):203-211
Aspects of the population: dynamics of Striga hermonthica (Del.) Benth. on pearl millet (Pennisetum americanum (L.) K. Schum.) were studied in Sahelian Mali. Seasonal development was recorded and density-dependent mortality and fecundity in post-emergent populations investigated. An attempt was also made to assess yield loss due to S. hermonthica attack using a regression approach. The first S. hermonthica plants emerged 42 days after crop germination, and the minimum time to complete the life cycle from emergence was 56 days. Results indicated a premature mortality of 66% in emerged populations. The growth stage reached by the time of host plant death appeared to be important in determining survival to maturity, premature mortality being greatest in plants that had not reached flowering by this time. The potential seed output per plant was estimated at 10 985. There was no evidence that the fecundity of S. hermonthica was affected by the density of emerged populations. Regression models showed a significant relationship between millet yield and emerged S. hermonthica density. The results suggest that lower densities give a relatively larger decrease in yield per S. hermonthica plant. The results of the study are discussed in relation to their implications for control.  相似文献   

12.
Striga seeds were extracted from soils collecled in Mali and the viahility of these seeds was estimated. Striga seeds were found in 45 of 46 samples taken from 23 fields. Siriga hermonthica (Del.) Benth. growmg on the host crop millet, was present at all 46 sites sampled. The a size uf the Striga seedbaiik measured lo a depth of 15 cm was estimated to be 38 800 m -2 of surface area (geometnc mean 11 500). The average number of S. hermonthica plants observed per millei hill was 8.83 (geometric mean 3.89) or 13.98 m-2 (gcometrie mean 5.69 m-2). Higher crop hill densities tended to result in higher densities of emerged S. hermonthica per hill. The relationship between seeds m-2 and S. her-monhica plants m-2 was fitied to a reetungular hyperbola and used to reassess an existing model of S. herniouhica control.  相似文献   

13.
Striga hermonthica is a parasitic weed that poses a serious threat to the production of economically important cereals in sub‐Saharan Africa. The existence of genetic diversity within and between S. hermonthica populations presents a challenge to the successful development and deployment of effective control technologies against this parasitic weed. Understanding the extent of diversity between S. hermonthica populations will facilitate the design and deployment of effective control technologies against the parasite. In the present study, S. hermonthica plants collected from different locations and host crops in Kenya and Nigeria were genotyped using single nucleotide polymorphisms. Statistically significant genetic differentiation (FST = 0.15, = 0.001) was uncovered between populations collected from the two countries. Also, the populations collected in Nigeria formed three distinct subgroups. Unique loci undergoing selection were observed between the Kenyan and Nigerian populations and among the three subgroups found in Nigeria. Striga hermonthica populations parasitising rice in Kenya appeared to be genetically distinct from those parasitising maize and sorghum. The presence of distinct populations in East and West Africa and in different regions in Nigeria highlights the importance of developing and testing Striga control technologies in multiple locations, including locations representing the geographic regions in Nigeria where genetically distinct subpopulations of the parasite were found. Efforts should also be made to develop relevant control technologies for areas infested with ‘rice‐specific’ Striga spp. populations in Kenya.  相似文献   

14.
M Abate  T Hussien  W Bayu  F Reda 《Weed Research》2017,57(5):303-313
Striga hermonthica is a major biotic constraint to agriculture in the lowland areas of Ethiopia where sorghum is a major stable crop. A pot and a field experiment were conducted in 2011 during the rainy season using 10 sorghum genotypes. Each experiment had infested and non‐infested conditions as the main plots and the 10 genotypes as subplots. The aim of this study was to examine the response of root traits of the sorghum genotypes to S. hermonthica infested conditions and to investigate relationships among S. hermonthica, root and growth traits of sorghum genotypes. Sorghum genotypes were categorized in to three groups, that is, low, moderate and high S. hermonthica count groups. Each group showed a differential response to root traits. Low S. hermonthica count groups had significantly lower root length, root length density, root to shoot ratio and root dry weight compared with susceptible groups. In contrast to low Shermonthica count groups, moderate S. hermonthica count groups had higher root length, root length density, root to shoot ratio and root dry weight. Highly significant and strong relations were observed among root traits of sorghum, indicating that any of the root traits can be used as indicators for resistance. The result indicates different reactions in root traits in the upper soil layer may be useful for genetic improvement of Shermonthica resistance and tolerance breeding in sorghum.  相似文献   

15.
In the subalpine zone on Mt. Hakusan, Japan, Plantago asiatica, an alien plant, and Plantago hakusanensis, a native alpine species, grow sympatrically along with their putative hybrids. Here, their flowering behavior, which affects the frequency of hybridization and the colonizing ability of P. asiatica and its hybrids, is described. The flowering behavior of each species and of two F1 hybrids from different seed parents was determined based on the position of the flower in the inflorescence by using a generalized linear mixed model. The percentage fruit set of individually bagged inflorescences was calculated to corroborate the assumptions of the opportunities for self‐pollination. All the flowers were protogynous; however, many P. asiatica anthers dehisced before browning of the stigma in the flower and the sex presentations in the inflorescence were asynchronous. The percentage of fruit set was high. Consequently, P. asiatica has the opportunity for self‐pollination within the flower and in the inflorescence. In contrast, the P. hakusanensis anthers dehisced after browning of the stigma in the flower; their sex presentation was synchronous in the inflorescence, showing negligible opportunities for self‐pollination, and the fruit set was low. Accordingly, in the field, P. hakusanensis might require pollination among the inflorescences for seed production and be actively outcrossed, while P. asiatica is able to outcross in the early flowering phase. Therefore, P. asiatica and P. hakusanensis have opportunities for hybridization. The F1 hybrids exhibited intermediate flowering behavior and produced fruits, demonstrating the potential to reproduce by selfing.  相似文献   

16.
This study investigated the virulence of the entomopathogenic fungus, Metarhizium anisopliae strain ARSEF 4556, and the entomopathogenic nematode Steinernema carpocapsae against adult and nymphal stages of the tick Hyalomma anatolicum excavatum. The fungus was tested at three different concentrations, 106, 107, and 108 conidia ml?1. Ticks were exposed to 4000 IJs of S. carpocapsae in 0.5 ml distilled water in Petri dishes lined with 2 layers of moist filter paper. Adult ticks were not susceptible to M. anisopliae, whereas the nymphs were highly susceptible. Nymph mortality was dose dependent with all ticks being killed at the highest dose 96 hours post-inoculation. In contrast, S. carpocapsae was much more effective against engorged adults than unfed adults or nymphs. Tick susceptibility was not influenced by gender. The mean mortalities of the unfed adult males, females, and nymphs were 30% ± 9.2%, 40% ± 7.5%, and 36% ± 4.7%, respectively. Nymphal mortality was 36% and there was a significant difference between nematode treatment and control group (P < 0.05).  相似文献   

17.
Striga asiatica and Rhamphicarpa fistulosa are important parasitic weeds of rain‐fed rice, partly distributed in similar regions in sub‐Saharan Africa (SSA). It is not evident whether their ecologies are mutually exclusive or partially overlapping. In Kyela, a rice‐growing area in south Tanzania where both parasites are present, three transects of about 3 km each across the upland–lowland continuum were surveyed in June 2012 and 2013. A total of 36 fields were categorised according to their position on the upland–lowland continuum as High, Middle or Low and soil samples were taken. In each field, parasitic and non‐parasitic weed species were identified in three quadrats. Additionally, in two pot experiments with four different moisture levels ranging from wilting point to saturation, influence of soil moisture on emergence and growth of parasites was investigated. Striga asiatica was observed in higher lying drier fields, while R. fistulosa was observed in the lower lying wetter fields. Furthermore, non‐parasitic weed species that were exclusive to S. asiatica‐infested fields are adapted to open well‐drained soils, while species that were exclusive to R. fistulosa fields are typical for wet soils. The experiments confirmed that S. asiatica is favoured by free‐draining soils and R. fistulosa by waterlogged soils. These results imply that changes in climate, specifically moisture regimes, will be crucial for future prevalence of these parasitic weeds. The non‐overlapping ecological range between their habitats suggests that their distribution and associated problems might remain separate. Thus, management strategies can be focused independently on either species.  相似文献   

18.
Oxalic acid is an essential virulence factor of Sclerotinia sclerotiorum that elicits wilting symptoms in infected host plants. Foliar wilting in response to oxalic acid is known to be dependent on an increase in stomatal conductance. To determine whether stomatal regulation controls susceptibility to S. sclerotiorum, abscisic acid-insensitive and open stomata mutants of Arabidopsis thaliana were analyzed. Whereas abscisic acid-insensitive mutants were hypersusceptible to S. sclerotiorum, open stomata mutants were as susceptible as wild type. It was concluded that stomatal regulation does not control susceptibility to S. sclerotiorum because open stomata mutants are known to only impair guard cells whereas abscisic acid-insensitive mutants also affect other cell types. Guard cell-independent processes also control sensitivity to oxalic acid because oxalic acid was more toxic to abscisic acid-insensitive mutants than to open stomata mutants. To explore a possible mechanism of toxicity, production of reactive oxygen species was measured in plant cells after exposure to oxalic acid. Oxalic acid was found to elicit reactive oxygen species production independently of abscisic acid. Nevertheless, cancellation of reactive oxygen species elicitation after co-stimulation of wild-type guard cells with oxalic acid and abscisic acid provided evidence for antagonistic interaction between both molecules.  相似文献   

19.
Strigolactones, plant‐secreted underground signalling molecules, play an important role in agricultural ecosystems, because they mediate the interaction of crops with symbiotic AM fungi and parasitic weeds like Striga hermonthica. Cereal host plants secret these signalling molecules particularly under nutrient‐deficient conditions and especially when phosphate (P) is limiting. The objective of the present study was to see the potential of P seed priming for Shermonthica management in cereals in relation to strigolactone production. It has been demonstrated that P fertiliser application down‐regulates the production of these signalling molecules in the rhizosphere, which results in lower Shermonthica infection of cereals. The laboratory study showed maximum production of strigolactones from dry and water‐soaked seeds, while seed soaking in P solution reduced their production. Similarly, maximum Shermonthica infection was observed under control treatments with dry sowing or water soaking, while P seed soaking decreased Shermonthica germination, emergence and dry biomass in all cereal crops. Our study shows that P seed priming resulted in lower exudation of strigolactones, which induced less Shermonthica seeds germination and hence may lead to lower Shermonthica infection. P‐based seed priming could prove to be an effective and affordable strategy to reduce Shermonthica infection in cereals. Further research for practical field application is needed.  相似文献   

20.
In 2002, a powdery mildew with catenate conidia lacking fibrosin bodies was found on cucumber in a greenhouse in Kanagawa Prefecture, Japan. Morphological observation revealed that the fungus belongs to Oidium subgenus Reticuloidium, anamorph of the genus Golovinomyces. Molecular phylogenetic analyses of the nucleotide sequences of the rDNA ITS regions and D1/D2 domains of the 28S rDNA indicated that the fungus belongs to the clade of G. orontii with other Golovinomyces fungi from a wide range of host plants, suggesting that the fungus was newly transported from abroad. Because there has been no prior report of cucumber powdery mildew caused by Reticuloidium, further research on the physiology, epidemiology, control and resistant cucumber varieties is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号